587
Views
21
CrossRef citations to date
0
Altmetric
Reviews

IL-17A and IL-23: plausible risk factors to induce age-associated inflammation in Alzheimer’s disease

, , , , &

References

  • Ageing, W H O, Unit, L C. (2008). WHO global report on falls prevention in older age. WHO, 1–47.
  • Arababadi MK, Bidaki MZ, Kennedy D. (2014). IL-17A in hepatitis B infection: friend or foe? Arch Virol, 159, 1883–1888.
  • Atwood CS, Martins RN, Smith MA, Perry G. (2002). Senile plaque composition and posttranslational modification of amyloid-beta peptide and associated proteins. Peptides, 23, 1343–1350.
  • Bagheri V, Askari A, Arababadi MK, Kennedy D. (2014). Can Toll-Like Receptor (TLR) 2 be considered as a new target for immunotherapy against hepatitis B infection? Hum Immunol, 75, 549–554. doi:10.1016/j.humimm.2014.02.018
  • Behairi N, Belkhelfa M, Mesbah-Amroun H, et al. (2015). All-trans-retinoic acid modulates nitric oxide and interleukin-17A production by peripheral blood mononuclear cells from patients with Alzheimer’s disease. Neuroimmunomodulation, 22, 385–393. doi:10.1159/000435885
  • Belkhelfa M, Rafa H, Medjeber O, et al. (2014). IFN-gamma and TNF-alpha are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients. J Interferon Cytokine Res, 34, 839–847. doi:10.1089/jir.2013.0085
  • Bijlmakers MJ, Kanneganti SK, Barker JN, et al. (2011). Functional analysis of the RNF114 psoriasis susceptibility gene implicates innate immune responses to double-stranded RNA in disease pathogenesis. Hum Mol Genet, 20, 3129–3137. doi:10.1093/hmg/ddr215
  • Browne TC, McQuillan K, McManus RM, et al. (2013). IFN-gamma Production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J Immunol, 190, 2241–2251. doi:10.4049/jimmunol.1200947
  • Bucala R. (2014). Diabetes, aging, and their tissue complications. J Clin Investig, 124, 1887–1888. doi:10.1172/JCI75224
  • Chen J-H, Ke K-F, Lu J-H, et al. (2015). Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ 1–42-induced Alzheimer’s disease model rats. PLoS One, 10, e0116549. doi:10.1371/journal.pone.0116549
  • Chen J-M, Jiang G-X, Li Q-W, et al. (2014). Increased serum levels of interleukin-18,-23 and-17 in chinese patients with Alzheimer’s disease. Dementia Geriatric Cognit Disord, 38, 321–329. doi:10.1159/000360606
  • Da Silva CA, Hartl D, Liu W, et al. (2008). TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. J Immunol, 181, 4279–4286.
  • Degens H. (2010). The role of systemic inflammation in age-related muscle weakness and wasting. Scand J Med Sci Sports, 20, 28–38. doi:10.1111/j.1600-0838.2009.01018.x
  • Diaz-Gerevini GT, Repossi G, Dain A, et al. (2016). Beneficial action of resveratrol: how and why? Nutrition, 32, 174–178. doi:10.1016/j.nut.2015.08.017
  • Ding L-H, Liu D, Xu M, et al. (2015). TLR2–myD88–NF-κB pathway is involved in tubulointerstitial inflammation caused by proteinuria. J Biochem Cell Biol, 69, 114–120. doi:10.1016/j.biocel.2015.10.014
  • Doecke JD, Laws SM, Faux NG, et al. (2012). Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol, 69, 1318–1325. doi:10.1001/archneurol.2012.1282
  • Dubois B, Feldman HH, Jacova C, et al. (2010). Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol, 9, 1118–1127. doi:10.1016/S1474-4422(10)70223-4
  • Dues DJ, Andrews EK, Schaar CE, et al. (2016). Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways. Aging (Albany NY), 8, 777–795. doi:10.18632/aging.100939
  • Fathalizadeh J, Fathalizadeh H, Mirzabeigi M, et al. (2016). The role of interleukin-17a (il-17a) in depression. Iran Red Cres Med J, 18, e24972. doi:10.5812/ircmj.24972
  • Gaffen S. (2016). IL-17 receptor composition. Nat Rev Immunol, 16, 4. doi:10.1038/nri.2015.2
  • Gladiator A, LeibundGut-Landmann S. (2013). Innate lymphoid cells: new players in IL-17-mediated antifungal immunity. PLoS Pathog, 9, e1003763. doi:10.1371/journal.ppat.1003763
  • Goering J, Pope MR, Fleming SD. (2016). TLR2 regulates complement-mediated inflammation induced by blood loss during hemorrhage. Shock, 45, 33–39. doi:10.1097/SHK.0000000000000477
  • Griffin WS. (2013). Neuroinflammatory cytokine signaling and Alzheimer’s disease. N Engl J Med, 368, 770–771. doi:10.1056/NEJMcibr1214546
  • Hajjar RR, Atli T, Al-Mandhari Z, et al. (2013). Prevalence of aging population in the Middle East and its implications on cancer incidence and care. Ann Oncol, 24, vii11–24. doi:10.1093/annonc/mdt268
  • Happel KI, Dubin PJ, Zheng M, et al. (2005). Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med, 202, 761–769. doi:10.1084/jem.20050193
  • Hu WT, Chen-Plotkin A, Grossman M, et al. (2010). Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology, 75, 2079–2086. doi:10.1212/WNL.0b013e318200d78d
  • Hu WT, Watts K, Grossman M, et al. (2013). Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP. Neurology, 81, 1945–1952. doi:10.1212/01.wnl.0000436625.63650.27
  • Jin JJ, Kim HD, Maxwell JA, et al. (2008). Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation, 5, 23. doi:10.1186/1742-2094-5-23
  • Kolls JK, Linden A. (2004). Interleukin-17 family members and inflammation. Immunity, 21, 467–476. doi:10.1016/j.immuni.2004.08.018
  • Kondo M, Murakawa Y, Harashima N, et al. (2009). Roles of proinflammatory cytokines and the Fas/Fas ligand interaction in the pathogenesis of inflammatory myopathies. Immunology, 128, e589–599. doi:10.1111/j.1365-2567.2008.03039.x
  • Lambracht-Washington D, Qu B-X, Fu M, et al. (2011). DNA immunization against amyloid beta 42 has high potential as safe therapy for Alzheimer’s disease as it diminishes antigen-specific Th1 and Th17 cell proliferation. Cel Mole Neurobiol, 31, 867–874. doi:10.1007/s10571-011-9680-7
  • Ley K, Smith E, Stark MA. (2006). IL-17A-producing neutrophil-regulatory Tn lymphocytes. Immunol Res, 34, 229–242. doi:10.1385/IR:34:3:229
  • Liu Y, Yu JT, Zhang W, et al. (2014). Interleukin-23 receptor polymorphisms are associated with Alzheimer’s disease in Han Chinese. J Neuroimmunol, 271, 43–48. doi:10.1016/j.jneuroim.2014.03.013
  • Makinian M, Mirzaei T, Ravari A. (2015). The effects of head and face massage on delirium among elderly women hospitalized in coronary care units. Iran J Crit Care Nurs, 8, 125–132.
  • Marcum ZA, Fried LF. (2011). Aging and antihypertensive medication-related complications in the chronic kidney disease patient. Curr Opin Nephrol Hypertens, 20, 449–456. doi:10.1097/MNH.0b013e32834902ad
  • Marques JM, Rial A, Munoz N, et al. (2012). Protection against Streptococcus pneumoniae serotype 1 acute infection shows a signature of Th17- and IFN-gamma-mediated immunity. Immunobiology, 217, 420–429. doi:10.1016/j.imbio.2011.10.012
  • Marwaha AK, Leung NJ, McMurchy AN, Levings MK. (2012). TH17 cells in autoimmunity and immunodeficiency: protective or pathogenic? Front Immunol, 3, 129. doi:10.3389/fimmu.2012.00198
  • McKenzie BS, Kastelein RA, Cua DJ. (2006). Understanding the IL-23-IL-17 immune pathway. Trends Immunol, 27, 17–23. doi:10.1016/j.it.2005.10.003
  • McManus RM, Higgins SC, Mills KH, Lynch MA. (2014). Respiratory infection promotes T cell infiltration and amyloid-beta deposition in APP/PS1 mice. Neurobiol Aging, 35, 109–121. doi:10.1016/j.neurobiolaging.2013.07.025
  • Meng K, Li J, Zhang A, et al. (2016). Probiotic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus). BMC Genomics, 17, 89. doi:10.1186/s12864-016-3328-4
  • Milanova V, Ivanovska N, Dimitrova P. (2014). TLR2 elicits IL-17-mediated RANKL expression, IL-17, and OPG production in neutrophils from arthritic mice. Mediators Inflamm, 2014, 643406. doi:10.1155/2014/643406
  • Moseley TA, Haudenschild DR, Rose L, Reddi AH. (2003). Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev, 14, 155–174.
  • Ortega C, Fernandez AS, Carrillo JM, et al. (2009). IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol, 86, 435–443. doi:10.1189/JLB.0109046
  • Parham C, Chirica M, Timans J, et al. (2002). A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J Immunol, 168, 5699–5708.
  • Pimplikar SW, Nixon RA, Robakis NK, et al. (2010). Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci, 30, 14946–14954. doi:10.1523/JNEUROSCI.4305-10.2010
  • Pinti M, Cevenini E, Nasi M, et al. (2014). Circulating mitochondrial DNA increases with age and is a familiar trait: implications for “ inflamm- aging”. Europ J Immunol, 44, 1552–1562. doi:10.1002/eji.201343921
  • Ravari A, Mirzaei T, Kennedy D, Kazemi Arababadi M. (2017). Chronoinflammaging in Alzheimer; A systematic review on the roles of toll like receptor 2. Life Sci, 171, 16–20. doi:10.1016/j.lfs.2017.01.003
  • Ravari A, Mirzaei T, Salamizadeh A, Askari-Majdabadi H. (2017). The effect of the spiritual care training on anxiety reduction in home caregivers of the elderly with Alzheimer. Koomesh, 19, 467–474.
  • Roark CL, French JD, Taylor MA, et al. (2007). Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma delta T cells. J Immunol, 179, 5576–5583.
  • Saresella M, Calabrese E, Marventano I, et al. (2011). Increased activity of Th-17 and Th-9 lymphocytes and a skewing of the post-thymic differentiation pathway are seen in Alzheimer’s disease. Brain Behav Immunity, 25, 539–547. doi:10.1016/j.bbi.2010.12.004
  • Saresella M, Marventano I, Calabrese E, et al. (2014). A complex proinflammatory role for peripheral monocytes in Alzheimer’s disease. J Alzheimers Dis, 38, 403–413. doi:10.3233/JAD-131160
  • Schulz SM, Köhler G, Holscher C, et al. (2008). IL-17A is produced by Th17, γδ T cells and other CD4− lymphocytes during infection with Salmonella enterica serovar Enteritidis and has a mild effect in bacterial clearance. Int Immunol, 20, 1129–1138. doi:10.1093/intimm/dxn069
  • Sepehri Z, Kiani Z, Alavian SM, et al. (2016). The link between TLR7 signaling and hepatitis B virus infection. Life Sci, 158, 63–69. doi:10.1016/j.lfs.2016.06.026
  • Shaftel SS, Kyrkanides S, Olschowka JA, et al. (2007). Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest, 117, 1595–1604. doi:10.1172/JCI31450
  • Shibata N, Ohnuma T, Takahashi T, et al. (2002). Effect of IL-6 polymorphism on risk of Alzheimer disease: genotype-phenotype association study in Japanese cases. Am J Med Genet, 114, 436–439. doi:10.1002/ajmg.10417
  • Soysal P, Stubbs B, Lucato P, et al. (2016). Inflammation and frailty in the elderly: A systematic review and meta-analysis. Ageing Res Rev, 31, 1–8. doi:10.1016/j.arr.2016.08.006
  • Takahashi M, Kobayashi Y. (2003). Cytokine production in association with phagocytosis of apoptotic cells by immature dendritic cells. Cell Immunol, 226, 105–115. doi:10.1016/j.cellimm.2003.11.008
  • Tan MS, Yu JT, Jiang T, et al. (2014). IL12/23 p40 inhibition ameliorates Alzheimer’s disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis, 38, 633–646. doi:10.3233/JAD-131148
  • Vaknin-Dembinsky A, Balashov K, Weiner HL. (2006). IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol, 176, 7768–7774.
  • Volt H, Garcia JA, Doerrier C, et al. (2016). Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J Pineal Res, 60, 193–205. doi:10.1111/jpi.12303
  • Vom Berg J, Prokop S, Miller KR, et al. (2012). Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat Med, 18, 1812–1819. doi:10.1038/nm.2965
  • von Vietinghoff S, Ley K. (2009). IL-17A controls IL-17F production and maintains blood neutrophil counts in mice. J Immunol, 183, 865–873. doi:10.4049/jimmunol.0804080
  • Wang C, Klechikov AG, Gharibyan AL, et al. (2014). The role of pro-inflammatory S100A9 in Alzheimer’s disease amyloid-neuroinflammatory cascade. Acta Neuropathol, 127, 507–522. doi:10.1007/s00401-013-1208-4
  • Wang J-H, Cheng X-R, Zhang X-R, et al. (2016). Neuroendocrine immunomodulation network dysfunction in SAMP8 mice and PrP-hAβPPswe/PS1ΔE9 mice: potential mechanism underlying cognitive impairment. Oncotarget, 7, 22988–23005. doi:10.18632/oncotarget.8453
  • Wraith DC. (2006). Anti-cytokine vaccines and the immunotherapy of autoimmune diseases. Eur J Immunol, 36, 2844–2848. doi:10.1002/eji.200636760
  • Yehuda S, Rabinovitz S. (2015). Fatty acids rehabilitated long-term neurodegenerative: like symptoms in olfactory bulbectomized rats. J Neural Transm (Vienna), 122, 629–641. doi:10.1007/s00702-014-1321-0
  • Yin Y, Wen S, Li G, Wang D. (2009). Hypoxia enhances stimulating effect of amyloid beta peptide (25-35) for interleukin 17 and T helper lymphocyte subtype 17 upregulation in cultured peripheral blood mononuclear cells. Microbiol Immunol, 53, 281–286. doi:10.1111/j.1348-0421.2009.00120.x
  • Zenaro E, Pietronigro E, Della Bianca V, et al. (2015). Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med, 21, 880–886. doi:10.1038/nm.3913
  • Zhang J, Ke K-F, Liu Z, et al. (2013). Th17 cell-mediated neuroinflammation is involved in neurodegeneration of Aβ 1-42-induced Alzheimer’s disease model rats. PLoS One, 8, e75786. doi:10.1371/journal.pone.0075786
  • Zota V, Nemirovsky A, Baron R, et al. (2009). HLA-DR alleles in amyloid beta-peptide autoimmunity: a highly immunogenic role for the DRB1*1501 allele. J Immunol, 183, 3522–3530. doi:10.4049/jimmunol.0900620

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.