313
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Myeloid-Derived Suppressor Cells at the Intersection of Inflammaging and Bone Fragility

, , , &

References

  • Bala Y, Zebaze R, Ghasem-Zadeh A, et al. (2014). Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. J Bone Miner Res, 29, 1356–1362. doi:10.1002/jbmr.2167
  • Bao Y, Mo J, Ruan L, Li G. (2015). Increased monocytic CD14(+)HLADRlow/− myeloid-derived suppressor cells in obesity. Mol Med Rep, 11, 2322–2328. doi:10.3892/mmr.2014.2927
  • Barnie PA, Zhang P, Lv H, et al. (2017). Myeloid-derived suppressor cells and myeloid regulatory cells in cancer and autoimmune disorders. Exp Ther Med, 13, 378–388. doi:10.3892/etm.2016.4018
  • Billings M, Holtfreter B, Papapanou PN, et al. (2018). Age-dependent distribution of periodontitis in two countries: findings from NHANES 2009 to 2014 and SHIP-TREND 2008 to 2012. J Periodontol, 89(Suppl 1), S140–S58. doi:10.1002/JPER.17-0670
  • Boots AM, Maier AB, Stinissen P, et al. (2013). The influence of ageing on the development and management of rheumatoid arthritis. Nat Rev Rheumatol, 9, 604–613. doi:10.1038/nrrheum.2013.92
  • Bowdish DM. (2013). Myeloid-derived suppressor cells, age and cancer. Oncoimmunology, 2, e24754. doi:10.4161/onci.24754
  • Boyce BF. (2013). Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res, 92, 860–867. doi:10.1177/0022034513500306
  • Boyle WJ, Simonet WS, Lacey DL. (2003). Osteoclast differentiation and activation. Nature, 423, 337–342. doi:10.1038/nature01658
  • Bronte V, Brandau S, Chen SH, et al. (2016). Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun, 7, 12150. doi:10.1038/ncomms12150
  • Callaway DA, Jiang JX. (2015). Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab, 33, 359–370. doi:10.1007/s00774-015-0656-4
  • Chalan P, van Den Berg A, Kroesen BJ, et al. (2015). Rheumatoid arthritis, immunosenescence and the hallmarks of aging. Curr Aging Sci, 8, 131–146.
  • Duque G, Demontiero O, Troen BR. (2017). Osteoporosis. In "Hazzard's Principles of Geriatric Medicine and Gerontology" – 7th edition (Halter, Ouslander, Tinetti, Asthana, High, Studenski, Eds.), New York, NY: McGraw-Hill, pp. 1801–1826.
  • Eke PI, Wei L, Borgnakke WS, et al. (2016). Periodontitis prevalence in adults >/=65 years of age, in the USA. Periodontology, 2000(72), 76–95. doi:10.1111/prd.12145
  • Feng X, McDonald JM. (2011). Disorders of bone remodeling. Annu Rev Pathol, 6, 121–145. doi:10.1146/annurev-pathol-011110-130203
  • Flores RR, Clauson CL, Cho J, et al. (2017). Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-kappaB-dependent mechanism. Aging Cell, 16, 480–487. doi:10.1111/acel.12571
  • Fonseca H, Moreira-Goncalves D, Coriolano HJ, Duarte JA. (2014). Bone quality: the determinants of bone strength and fragility. Sports Med, 44, 37–53. doi:10.1007/s40279-013-0100-7
  • Franceschi C, Campisi J. (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci, 69(Suppl 1), S4–9. doi:10.1093/gerona/glu057
  • Franceschi C, Capri M, Monti D, et al. (2007). Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev, 128, 92–105. doi:10.1016/j.mad.2006.11.016
  • Franceschi C, Garagnani P, Parini P, et al. (2018). Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol, 14, 576–590. doi:10.1038/s41574-018-0059-4
  • Gabrilovich DI, Bronte V, Chen SH, et al. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Res. 67, 425. Author reply 26. doi:10.1158/0008-5472.CAN-06-3037
  • Gabrilovich DI, Nagaraj S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol, 9, 162–174. doi:10.1038/nri2506
  • Gingery A, Bradley E, Shaw A, Oursler MJ. (2003). Phosphatidylinositol 3-kinase coordinately activates the MEK/ERK and AKT/NFkappaB pathways to maintain osteoclast survival. J Cell Biochem, 89, 165–179. doi:10.1002/jcb.10503
  • Goronzy JJ, Weyand CM. (2003). Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity – catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther, 5, 225–234. doi:10.1186/ar974
  • Jackaman C, Nelson DJ. (2014). Are macrophages, myeloid derived suppressor cells and neutrophils mediators of local suppression in healthy and cancerous tissues in aging hosts? Exp Gerontol, 54, 53–57. doi:10.1016/j.exger.2013.11.009
  • Jackaman C, Radley-Crabb HG, Soffe Z, et al. (2013). Targeting macrophages rescues age-related immune deficiencies in C57BL/6J geriatric mice. Aging Cell, 12, 345–357. doi:10.1111/acel.12062
  • Johnell O, Kanis JA. (2006). An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int, 17, 1726–1733. doi:10.1007/s00198-006-0172-4
  • Karsenty G, Wagner EF. (2002). Reaching a genetic and molecular understanding of skeletal development. Dev Cell, 2, 389–406.
  • Khosla S, Burr D, Cauley J, et al.. (2007). Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American society for bone and mineral research. J Bone Miner Res. 22, 1479–1491. doi:10.1359/jbmr.0707onj
  • Kirkwood KL, Cirelli JA, Rogers JE, Giannobile WV. (2007). Novel host response therapeutic approaches to treat periodontal diseases. Periodontology, 2000(43), 294–315. doi:10.1111/j.1600-0757.2006.00166.x
  • Lindsay R, Cosman F, Zhou H, et al. (2006). A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of teriparatide. J Bone Miner Res, 21, 366–373. doi:10.1359/JBMR.051109
  • Liu W, Yang LH, Kong XC, et al. (2015). Meta-analysis of osteoporosis: fracture risks, medication and treatment. Minerva Med, 106, 203–214.
  • Liu W, Zhang X. (2015). Receptor activator of nuclear factor-kappaB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues (review). Mol Med Rep, 11, 3212–3218. doi:10.3892/mmr.2015.3152
  • Lu T, Finkel T. (2008). Free radicals and senescence. Exp Cell Res, 314, 1918–1922. doi:10.1016/j.yexcr.2008.01.011
  • Manolagas SC. (2010). From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev, 31, 266–300. doi:10.1210/er.2009-0024
  • Marie PJ. (2014). Bone cell senescence: mechanisms and perspectives. J Bone Miner Res, 29, 1311–1321. doi:10.1002/jbmr.2190
  • Nakashima T, Takayanagi H. (2009). Osteoclasts and the immune system. J Bone Miner Metab, 27, 519–529. doi:10.1007/s00774-009-0089-z
  • Pang WW, Price EA, Sahoo D, et al. (2011). Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U.S.A., 108, 20012–20017. doi:10.1073/pnas.1116110108
  • Park JH, Lee NK, Lee SY. (2017). Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol Cells, 40, 706–713. doi:10.14348/molcells.2017.0225
  • Parker KH, Beury DW, Ostrand-Rosenberg S. (2015). Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res, 128, 95–139. doi:10.1016/bs.acr.2015.04.002
  • Pasco JA, Seeman E, Henry MJ, et al. (2006). The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos Int, 17, 1404–1409. doi:10.1007/s00198-006-0135-9
  • Riggs BL, Melton LJ, Robb RA, et al. (2008). A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res, 23, 205–214. doi:10.1359/jbmr.071020
  • Rossi DJ, Bryder D, Zahn JM, et al. (2005). Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U.S.A., 102, 9194–9199. doi:10.1073/pnas.0503280102
  • Russell RG, Watts NB, Ebetino FH, Rogers MJ. (2008). Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int, 19, 733–759. doi:10.1007/s00198-007-0540-8
  • Russell SJ, Kahn CR. (2007). Endocrine regulation of ageing. Nat Rev Mol Cell Biol, 8, 681–691. doi:10.1038/nrm2234
  • Sanders KM, Nicholson GC, Watts JJ, et al. (2006). Half the burden of fragility fractures in the community occur in women without osteoporosis. When is fracture prevention cost-effective? Bone, 38, 694–700. doi:10.1016/j.bone.2005.06.004
  • Sawant A, Ponnazhagan S. (2013). Myeloid-derived suppressor cells as osteoclast progenitors: a novel target for controlling osteolytic bone metastasis. Cancer Res, 73, 4606–4610. doi:10.1158/0008-5472.CAN-13-0305
  • Schieber M, Chandel NS. (2014). ROS function in redox signaling and oxidative stress. Curr Biol, 24, R453–62. doi:10.1016/j.cub.2014.03.034
  • Seeman E, Delmas PD, Hanley DA, et al. (2010). Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res, 25, 1886–1894. doi:10.1002/jbmr.81
  • Seldeen KL, Lasky G, Leiker MM, et al. (2018). High intensity interval training improves physical performance and frailty in aged mice. J Gerontol A Biol Sci Med Sci, 73, 429–437. doi:10.1093/gerona/glx120
  • Steinkamp HM, Hathaway-Schrader JD, Chavez MB, et al. (2018). Tristetraprolin is required for alveolar bone homeostasis. J Dent Res, 97(8), 946–953.
  • Sudo K, Ema H, Morita Y, Nakauchi H. (2000). Age-associated characteristics of murine hematopoietic stem cells. J Exp Med, 192, 1273–1280.
  • Thevaranjan N, Puchta A, Schulz C, et al. (2017). Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe, 21(455–66), e4. doi:10.1016/j.chom.2017.03.002
  • Thomas-John M, Codd MB, Manne S, et al. (2009). Risk factors for the development of osteoporosis and osteoporotic fractures among older men. J Rheumatol, 36, 1947–1952. doi:10.3899/jrheum.080527
  • Troen BR. (2003). Molecular mechanisms underlying osteoclast formation and activation. Exp Gerontol, 38, 605–614.
  • Ugel S, Delpozzo F, Desantis G, et al. (2009). Therapeutic targeting of myeloid-derived suppressor cells. Curr Opin Pharmacol, 9, 470–481. doi:10.1016/j.coph.2009.06.014
  • Valerio MS, Herbert BA, Basilakos DS, et al. (2015). Critical role of MKP-1 in lipopolysaccharide-induced osteoclast formation through CXCL1 and CXCL2. Cytokine, 71, 71–80. doi:10.1016/j.cyto.2014.08.007
  • Valerio MS, Herbert BA, Griffin 3rd AC, et al. (2014). MKP-1 signaling events are required for early osteoclastogenesis in lineage defined progenitor populations by disrupting RANKL-induced NFATc1 nuclear translocation. Bone, 60, 16–25. doi:10.1016/j.bone.2013.11.012
  • Valerio MS, Kirkwood KL. (2018). Sexual dimorphism in immunity to oral bacterial diseases: intersection of neutrophil and osteoclast pathobiology. J Dent Res, 97(13), 1416–1423. doi:10.1177/0022034518798825
  • Verschoor CP, Johnstone J, Millar J, et al. (2013). Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol, 93, 633–637. doi:10.1189/jlb.0912461
  • Wainwright SA, Marshall LM, Ensrud KE, et al. (2005). Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 90, 2787–2793. doi:10.1210/jc.2004-1568
  • Wesolowski R, Markowitz J, Carson 3rd. WE. (2013). Myeloid derived suppressor cells – a new therapeutic target in the treatment of cancer. J Immunother Cancer, 1, 10. doi:10.1186/2051-1426-1-10
  • Youn JI, Gabrilovich DI. (2010). The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol, 40, 2969–2975. doi:10.1002/eji.201040895

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.