181
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Evolutionary Underpinnings of Innate-Like T Cell Interactions with Cancer

&

References

  • Adams EJ, Luoma AM. (2013). The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol, 31, 529–561. doi:10.1146/annurev-immunol-032712-095912.
  • Bagchi S, Li S, Wang CR. (2016). CD1b-autoreactive T cells recognize phospholipid antigens and contribute to antitumor immunity against a CD1b(+) T cell lymphoma. Oncoimmunology, 5, e1213932. doi:10.1080/2162402X.2016.1213932.
  • Balls M, Clothier RH, Knowles KR (1983). Tumor incidence in NMU-treated Xenopus laevis. Proceedings of the First International Colloquium on Pathology of Reptiles and Amphibians. University of Angers; France, 163–172.
  • Balls M, Clothier RH, Ruben LN, Harshbarger JC. (1989). The incidence and significance of malignant neoplasia in amphibians. Herpetopathologia, 1(2), 97–104.
  • Banach M, Edholm ES,Robert J. (2017). Exploring the functions of nonclassical mhc class ib genes in xenopus laevis by the crispr/cas9 system. Dev Biol, 426(2): 261–269.
  • Banach M, Edholm ES, Gonzales X, Benraiss A, Robert J. (2019). Impact of the MHC class I-like XNC10.1 and innate-like T cells on tumor tolerance and rejection in the amphibian Xenopus. (In press) doi:10.1093/carcin/bgz100.
  • Bedel R, Matsuda J, Brigl M, et al. (2012). Lower TCR repertoire diversity in TRAJ18-deficient mice. Nat Immunol, 13, 705–706. doi:10.1038/ni.2347.
  • Bendelac A, Savage PB, Teyton L. (2007). The biology of NKT cells. Annu Rev Immunol, 25, 297–336. doi:10.1146/annurev.immunol.25.022106.141711.
  • Berzins SP, Kyparissoudis K, Pellicci DG, et al. (2004). Systemic NKT cell deficiency in NOD mice is not detected in peripheral blood: implications for human studies. Immunol Cell Biol, 82, 247–252. doi:10.1046/j.1440-1711.2004.01238.x.
  • Berzins SP, Ritchie DS. (2014). Natural killer T cells: drivers or passengers in preventing human disease? Nature reviews. Immunology, 14, 640–646. doi:10.1038/nri3725.
  • Berzins SP, Smyth MJ, Baxter AG. (2011). Presumed guilty: natural killer T cell defects and human disease. Nature reviews. Immunology, 11, 131–142. doi:10.1038/nri2904.
  • Biswas SK. (2015). metabolic reprogramming of immune cells in cancer progression. Immunity, 43, 435–449. doi:10.1016/j.immuni.2015.09.001.
  • Bjordahl RL, Gapin L, Marrack P, Refaeli Y. (2012). iNKT cells suppress the CD8+ T cell response to a murine Burkitt’s-like B cell lymphoma. PLoS One, 7, e42635. doi:10.1371/journal.pone.0042635.
  • Bjorkman PJ, Saper MA, Samraoui B, et al. (1987). Structure of the human class I histocompatibility antigen, HLA-A2. Nature, 329, 506–512. doi:10.1038/329506a0.
  • Bojarska-Junak A, Hus I, Chocholska S, et al. (2014). CD1d expression is higher in chronic lymphocytic leukemia patients with unfavorable prognosis. Leuk Res, 38, 435–442. doi:10.1016/j.leukres.2013.12.015.
  • Bonish B, Jullien D, Dutronc Y, et al. (2000). Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-gamma production by NK-T cells. J Immunol, 165, 4076–4085. doi:10.4049/jimmunol.165.7.4076.
  • Bradbury A, Belt KT, Neri TM, et al. (1988). Mouse CD1 is distinct from and co-exists with TL in the same thymus. Embo J, 7, 3081–3086.
  • Braud VM, Allan DS, O’Callaghan CA, et al. (1998). HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature, 391, 795–799. doi:10.1038/35869.
  • Bricard G, Cesson V, Devevre E, et al. (2009). Enrichment of human CD4+ V(alpha)24/Vbeta11 invariant NKT cells in intrahepatic malignant tumors. J Immunol, 182, 5140–5151. doi:10.4049/jimmunol.0711086.
  • Brossay L, Chioda M, Burdin N, et al. (1998). CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med, 188, 1521–1528. doi:10.1084/jem.188.8.1521.
  • Brossay L, Jullien D, Cardell S, et al. (1997). Mouse CD1 is mainly expressed on hemopoietic-derived cells. J Immunol, 159, 1216–1224.
  • Brutkiewicz RR. (2006). CD1d ligands: the good, the bad, and the ugly. J Immunol, 177, 769–775. doi:10.4049/jimmunol.177.2.769.
  • Chang CC, Campoli M, Ferrone S. (2003). HLA class I defects in malignant lesions: what have we learned? Keio J Med, 52, 220–229.
  • Chong TW, Goh FY, Sim MY, et al. (2015). CD1d expression in renal cell carcinoma is associated with higher relapse rates, poorer cancer-specific and overall survival. J Clin Pathol, 68, 200–205. doi:10.1136/jclinpath-2014-202735.
  • Coquet JM, Chakravarti S, Kyparissoudis K, et al. (2008). Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci USA, 105, 11287–11292.
  • Crowe NY, Smyth MJ, Godfrey DI. (2002). A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med, 196, 119–127. doi:10.1084/jem.20020092.
  • Crowe NY, Uldrich AP, Kyparissoudis K, et al. (2003). Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J Immunol, 171, 4020–4027. doi:10.4049/jimmunol.171.8.4020.
  • Cui J, Shin T, Kawano T, et al. (1997). Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science, 278, 1623–1626.
  • Dascher CC. (2007). Evolutionary biology of CD1. Curr Top Microbiol Immunol, 314, 3–26.
  • Dhodapkar MV, Kumar V. (2017). Type II NKT cells and their emerging role in health and disease. J Immunol, 198, 1015–1021. doi:10.4049/jimmunol.1601399.
  • Doolittle RF. (1994). Convergent evolution: the need to be explicit. Trends Biochem Sci, 19, 15–18.
  • Du Pasquier L, Chardonnens X. (1975). Genetic aspects of the tolerance to allografts induced at metamorphosis in the toad Xenopus laevis. Immunogenetics, 2, 431–440. doi:10.1007/BF01572313.
  • Edholm EI, De Jesus Andino F, Yim J, et al. (2019). Critical role of an MHC class I-like/innate-like T cell immune surveillance system in host defense against ranavirus (frog virus 3) infection. Viruses, 11. doi:10.3390/v11040330.
  • Edholm ES, Albertorio Saez LM, Gill AL, et al. (2013). Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians. Proc Natl Acad Sci U S A, 110, 14342–14347. doi:10.1073/pnas.1309840110.
  • Edholm ES, Banach M, Hyoe Rhoo K, et al. (2018). Distinct MHC class I-like interacting invariant T cell lineage at the forefront of mycobacterial immunity uncovered in Xenopus. Proc Natl Acad Sci USA. doi:10.1073/pnas.1722129115.
  • Edholm ES, Banach M, Robert J. (2016). Evolution of innate-like T cells and their selection by MHC class I-like molecules. Immunogenetics, 68, 525–536. doi:10.1007/s00251-016-0929-7.
  • Edholm ES, Goyos A, Taran J, et al. (2014). Unusual evolutionary conservation and further species-specific adaptations of a large family of nonclassical MHC class Ib genes across different degrees of genome ploidy in the amphibian subfamily Xenopodinae. Immunogenetics, 66, 411–426. doi:10.1007/s00251-014-0774-5.
  • Edholm ES, Grayfer L, De Jesus Andino F, Robert J. (2015). Nonclassical MHC-restricted invariant Valpha6 T cells are critical for efficient early innate antiviral immunity in the amphibian Xenopus laevis. J Immunol, 195, 576–586.
  • Exley MA, Tahir SM, Cheng O, et al. (2001). A major fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. J Immunol, 167, 5531–5534. doi:10.4049/jimmunol.167.10.5531.
  • Farkona S, Diamandis EP, Blasutig IM. (2016). Cancer immunotherapy: the beginning of the end of cancer? BMC Med, 14, 73. doi:10.1186/s12916-016-0623-5.
  • Flajnik MF. (2018). A cold-blooded view of adaptive immunity. Nat Rev Immunol, 18(7), 438–453.
  • Flajnik MF, Kasahara M, Shum BP, et al. (1993). A novel type of class I gene organization in vertebrates: a large family of non-MHC-linked class I genes is expressed at the RNA level in the amphibian Xenopus. Embo J, 12, 4385–4396.
  • Flajnik MF, Kaufman JF, Hsu E, et al. (1986). Major histocompatibility complex-encoded class I molecules are absent in immunologically competent Xenopus before metamorphosis. J Immunol, 137, 3891–3899.
  • Foulkrod AM, Geibel GM, Kongprachaya Y, Appasamy PM. (2016). Expression of T cell genes in adult Xenopus laevis and TCR gene expression in the Xenopus tadpole tail. J Immunol, 196, 216.213.
  • Garcia-Lora A, Algarra I, Garrido F. (2003). MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol, 195, 346–355. doi:10.1002/jcp.10290.
  • Gleimer M, Parham P. (2003). Stress management: MHC class I and class I-like molecules as reporters of cellular stress. Immunity, 19, 469–477.
  • Godfrey DI, Le Nours J, Andrews DM, et al. (2018). Unconventional T cell targets for cancer immunotherapy. Immunity, 48, 453–473. doi:10.1016/j.immuni.2018.03.009.
  • Godfrey DI, Stankovic S, Baxter AG. (2010). Raising the NKT cell family. Nat Immunol, 11, 197–206. doi:10.1038/ni.1841.
  • Gorini F, Azzimonti L, Delfanti G, et al. (2017). Invariant NKT cells contribute to chronic lymphocytic leukemia surveillance and prognosis. Blood, 129, 3440–3451. doi:10.1182/blood-2016-11-751065.
  • Goyos A, Guselnikov S, Chida AS, et al. (2007). Involvement of nonclassical MHC class Ib molecules in heat shock protein-mediated anti-tumor responses. Eur J Immunol, 37, 1494–1501. doi:10.1002/eji.200636570.
  • Goyos A, Sowa J, Ohta Y, Robert J. (2011). Remarkable conservation of distinct nonclassical MHC class I lineages in divergent amphibian species. J Immunol (Baltimore Md.), 1950)(186), 372–381.
  • Grayfer L, Robert J. (2013). Colony-stimulating factor-1-responsive macrophage precursors reside in the amphibian (Xenopus laevis) bone marrow rather than the hematopoietic subcapsular liver. J Innate Immun, 5, 531–542. doi:10.1159/000346928.
  • Guselnikov SV, Ramanayake T, Erilova AY, et al. (2008). The Xenopus FcR family demonstrates continually high diversification of paired receptors in vertebrate evolution. BMC Evol Biol, 8, 148. doi:10.1186/1471-2148-8-148.
  • Guselnikov SV, Reshetnikova ES, Najakshin AM, et al. (2010). The amphibians Xenopus laevis and Silurana tropicalis possess a family of activating KIR-related Immunoglobulin-like receptors. Dev Comp Immunol, 34, 308–315. doi:10.1016/j.dci.2009.10.010.
  • Gyorffy B, Lanczky A, Eklund AC, et al. (2010). An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat, 123, 725–731. doi:10.1007/s10549-009-0674-9.
  • Gyorffy B, Lanczky A, Szallasi Z. (2012). Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer, 19, 197–208. doi:10.1530/ERC-11-0329.
  • Gyorffy B, Surowiak P, Budczies J, Lanczky A. (2013). Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One, 8, e82241. doi:10.1371/journal.pone.0082241.
  • Hadji-Azimi I, Coosemans V, Canicatti C. (1987). Atlas of adult Xenopus laevis laevis hematology. Dev Comp Immunol, 11, 807–874.
  • Haynes-Gilmore N, Banach M, Edholm ES, et al. (2014). A critical role of non-classical MHC in tumor immune evasion in the amphibian Xenopus model. Carcinogenesis, 35, 1807–1813. doi:10.1093/carcin/bgu100.
  • Haynes-Gimore N, Banach M, Brown E, et al. (2015). Semi-solid tumsor model in Xenopus laevis/gilli cloned tadpoles for intravital study of neovascularization, immune cells and melanophore infiltration. Dev Biol, doi:10.1016/j.ydbio.2015.01.003.
  • Hellsten U, Harland RM, Gilchrist MJ, et al. (2010). The genome of the Western clawed frog Xenopus tropicalis. Science, 328, 633–636. doi:10.1126/science.1183670.
  • Holzapfel KL, Tyznik AJ, Kronenberg M, Hogquist KA. (2014). Antigen-dependent versus -independent activation of invariant NKT cells during infection. J Immunol, 192, 5490–5498. doi:10.4049/jimmunol.1400722.
  • Horton JD, Horton TL, Dzialo R, et al. (1998). T-cell and natural killer cell development in thymectomized Xenopus. Immunol Rev, 166, 245–258.
  • Jiang X, Kojo S, Harada M, et al. (2007). Mechanism of NKT cell-mediated transplant tolerance. Am Jtrans, 7, 1482–1490. doi:10.1111/j.1600-6143.2007.01827.x.
  • Kawano T, Cui J, Koezuka Y, et al. (1997). CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science, 278, 1626–1629.
  • Kitamura H, Iwakabe K, Yahata T, et al. (1999). The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med, 189, 1121–1128. doi:10.1084/jem.189.7.1121.
  • Kobayashi E, Motoki K, Uchida T, et al. (1995). KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res, 7, 529–534.
  • Kobel HR, Du Pasquier L. (1975). Production of large clones of histocompatible, fully identical clawed toads (Xenopus). Immunogenetics, 2, 7–91. doi:10.1007/BF01572278.
  • Kochan G, Escors D, Breckpot K, Guerrero-Setas D. (2013). Role of non-classical MHC class I molecules in cancer immunosuppression. Oncoimmunology, 2, e26491. doi:10.4161/onci.26491.
  • Lepore M, de Lalla C, Gundimeda SR, et al. (2014). A novel self-lipid antigen targets human T cells against CD1c(+) leukemias. J Exp Med, 211, 1363–1377. doi:10.1084/jem.20140410.
  • Lin A, Yan W-H. (2015). Human leukocyte antigen-G (HLA-G) expression in cancers: roles in immune evasion, metastasis and target for therapy. Mol Med, 21, 782–791. doi:10.2119/molmed.2015.00083.
  • Liu J, Gallo RM, Khan MA, et al. (2017). Neurofibromin 1 impairs natural killer T-cell-dependent antitumor immunity against a T-cell lymphoma. Front Immunol, 8, 1901. doi:10.3389/fimmu.2017.01901.
  • Mattarollo SR, Rahimpour A, Choyce A, et al. (2010). Invariant NKT cells in hyperplastic skin induce a local immune suppressive environment by IFN-gamma production. J Immunol, 184, 1242–1250. doi:10.4049/jimmunol.0902191.
  • McEwen-Smith RM, Salio M, Cerundolo V. (2015). The regulatory role of invariant NKT cells in tumor immunity. Cancer Immunol Res, 3, 425–435. doi:10.1158/2326-6066.CIR-15-0062.
  • Menyhárt O, Nagy Á, Győrffy B. (2018). Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. R Soc Open Sci, 5, 181006. doi:10.1098/rsos.181006.
  • Michot JM, Bigenwald C, Champiat S, et al. (2016). Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer, 54, 139–148. doi:10.1016/j.ejca.2015.11.016.
  • Miller MM, Wang C, Parisini E, et al. (2005). Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proc Natl Acad Sci USA, 102, 8674–8679. doi:10.1073/pnas.0500105102.
  • Moody DB, Suliman S. (2017). CD1: from molecules to diseases. F1000Res, 6, 1909. doi:10.12688/f1000research.10493.2.
  • Naert T, Colpaert R, Van Nieuwenhuysen T, et al. (2016). CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Sci Rep, 6, 35264. doi:10.1038/srep35264.
  • Nair S, Dhodapkar MV. (2017). Natural killer T cells in cancer immunotherapy. Front Immunol, 8, 1178. doi:10.3389/fimmu.2017.01178.
  • Ohta Y, Flajnik MF. (2015). Coevolution of MHC genes (LMP/TAP/class Ia; NKT-class Ib; NKp30-B7H6): lessons from cold-blooded vertebrates. Immunol Rev, 267, 6–15. doi:10.1111/imr.12324.
  • Ohta Y, Goetz W, Hossain MZ, et al. (2006). Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol, 176, 3674–3685. doi:10.4049/jimmunol.176.6.3674.
  • Ostrand-Rosenberg S, Clements VK, Terabe M, et al. (2002). Resistance to metastatic disease in STAT6-deficient mice requires hemopoietic and nonhemopoietic cells and is IFN-γ dependent. J Immunol, 169, 5796–5804. doi:10.4049/jimmunol.169.10.5796.
  • Pardoll DM. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 12, 252–264. doi:10.1038/nrc3239.
  • Pellicci DG, Hammond KJL, Uldrich AP, et al. (2002). A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1(−)CD4(+) CD1d-dependent precursor stage. J Exp Med, 195, 835–844.
  • Pilones KA, Aryankalayil J, Demaria S. (2012). Invariant NKT cells as novel targets for immunotherapy in solid tumors. Clin Dev Immunol, 2012, 720803.
  • Porcelli SA, Modlin RL. (1999). The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol, 17, 297–329. doi:10.1146/annurev.immunol.17.1.297.
  • Reilly EC, Wands JR, Brossay L. (2010). Cytokine dependent and independent iNKT cell activation. Cytokine, 51, 227–231. doi:10.1016/j.cyto.2010.04.016.
  • Renukaradhya GJ, Sriram V, Du W, et al. (2006). Inhibition of antitumor immunity by invariant natural killer T cells in a T-cell lymphoma model in vivo. Int J Cancer, 118, 3045–3053. doi:10.1002/ijc.21764.
  • Robert J. (2010). Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. Dev Comp Immunol, 34, 915–925. doi:10.1016/j.dci.2010.05.011.
  • Robert J, Cohen N. (1998). Evolution of immune surveillance and tumor immunity: studies in Xenopus. Immunol Rev, 166, 231–243.
  • Robert J, Edholm ES. (2014). A prominent role for invariant T cells in the amphibian Xenopus laevis tadpoles. Immunogenetics, 66, 513–523. doi:10.1007/s00251-014-0781-6.
  • Robert J, Guiet C, Du Pasquier L. (1994). Lymphoid tumors of Xenopus laevis with different capacities for growth in larvae and adults. Dev Immunol, 3, 297–307.
  • Robert J, Guiet C, Du Pasquier L. (1995). Ontogeny of the alloimmune response against a transplanted tumor in Xenopus laevis. Differentiation, 59, 135–144.
  • Robert J, Ohta Y. (2009). Comparative and developmental study of the immune system in Xenopus. Dev Dynam, 238, 1249–1270. doi:10.1002/dvdy.21891.
  • Robertson FC, Berzofsky JA, Terabe M. (2014). NKT cell networks in the regulation of tumor immunity. Front Immunol, 5, 543. doi:10.3389/fimmu.2014.00543.
  • Rodgers JR, Cook RG. (2005). MHC class Ib molecules bridge innate and acquired immunity. Nature reviews. Immunology, 5, 459–471. doi:10.1038/nri1635.
  • Rogers SL, Kaufman J. (2016). Location, location, location: the evolutionary history of CD1 genes and the NKR-P1/ligand systems. Immunogenetics, 68, 499–513. doi:10.1007/s00251-016-0938-6.
  • Rossjohn J, Pellicci DG, Patel O, et al. (2012). Recognition of CD1d-restricted antigens by natural killer T cells. Nature reviews. Immunology, 12, 845–857. doi:10.1038/nri3328.
  • Salomonsen J, Sorensen MR, Marston DA, et al. (2005). Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proc Natl Acad Sci U S A, 102, 8668–8673. doi:10.1073/pnas.0409213102.
  • Salter-Cid L, Nonaka M, Flajnik MF. (1998). Expression of MHC class Ia and class Ib during ontogeny: high expression in epithelia and coregulation of class Ia and lmp7 genes. J Immunol, 160, 2853–2861.
  • Sammut B, Du Pasquier L, Ducoroy P, et al. (1999). Axolotl MHC architecture and polymorphism. Eur J Immunol, 29, 2897–2907. doi:10.1002/(SICI)1521-4141(199909)29:09<2897::AID-IMMU2897>3.0.CO;2-2.
  • Scott-Browne JP, Crawford F, Young MH, et al. (2011). Evolutionarily conserved features contribute to alphabeta T cell receptor specificity. Immunity, 35, 526–535. doi:10.1016/j.immuni.2011.09.005.
  • Seino KI, Fukao K, Muramoto K, et al. (2001). Requirement for natural killer T (NKT) cells in the induction of allograft tolerance. Proc Natl Acad Sci USA 98, 2577–2581. doi:10.1073/pnas.041608298
  • Session AM, Uno Y, Kwon T, et al. (2016). Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 538, 336–343. doi:10.1038/nature19840.
  • Sharma P, Wagner K, Wolchok JD, Allison JP. (2011). Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nature reviews. Cancer, 11, 805–812. doi:10.1038/nrc3153.
  • Sonoda KH, Taniguchi M, Stein-Streilein J. (2002). Long-term survival of corneal allografts is dependent on intact CD1d-reactive NKT cells. J Immunol, 168, 2028–2034. doi:10.4049/jimmunol.168.4.2028.
  • Spada FM, Borriello F, Sugita M, et al. (2000). Low expression level but potent antigen presenting function of CD1d on monocyte lineage cells. Eur J Immunol, 30, 3468–3477. doi:10.1002/1521-4141(2000012)30:12<3468::AID-IMMU3468>3.0.CO;2-C.
  • Sriram V, Cho S, Li P, et al. (2002). Inhibition of glycolipid shedding rescues recognition of a CD1+ T cell lymphoma by natural killer T (NKT) cells. Proc Natl Acad Sci U S A, 99, 8197–8202. doi:10.1073/pnas.122636199.
  • Star B, Nederbragt AJ, Jentoft S, et al. (2011). The genome sequence of Atlantic cod reveals a unique immune system. Nature, 477, 207–210. doi:10.1038/nature10342.
  • Stern AW, Allison SO, Chu C. (2014). Pancreatic carcinoma in an African clawed frog (Xenopus laevis). Comp Med, 64, 421–423.
  • Stetson DB, Mohrs M, Reinhardt RL, et al. (2003). Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med, 198, 1069–1076. doi:10.1084/jem.20030630.
  • Subleski JJ, Jiang Q, Weiss JM, Wiltrout RH. (2011). The split personality of NKT cells in malignancy, autoimmune and allergic disorders. Immunotherapy, 3, 1167–1184. doi:10.2217/imt.11.117.
  • Szasz AM, Lanczky A, Nagy A, et al. (2016). Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget, 7, 49322–49333. doi:10.18632/oncotarget.10337.
  • Tandon P, Conlon F, Furlow JD, Horb ME. (2017). Expanding the genetic toolkit in Xenopus: approaches and opportunities for human disease modeling. Dev Biol, 426, 325–335. doi:10.1016/j.ydbio.2016.04.009.
  • Terabe M, Berzofsky JA. (2008). The role of NKT cells in tumor immunity. Adv Cancer Res, 101, 277–348. doi:10.1016/S0065-230X(08)00408-9.
  • Terabe M, Khanna C, Bose S, et al. (2006). CD1d-restricted natural killer T cells can down-regulate tumor immunosurveillance independent of interleukin-4 receptor-signal transducer and activator of transcription 6 or transforming growth factor-β. Cancer Res, 66, 3869–3875. doi:10.1158/0008-5472.CAN-05-3421.
  • Teyton L. (2017). New directions for natural killer T cells in the immunotherapy of cancer. Front Immunol, 8, 1480. doi:10.3389/fimmu.2017.01480.
  • Van Nieuwenhuysen T, Naert T, Tran HT, et al. (2015). TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis. Oncoscience, 2, 555–566. doi:10.18632/oncoscience.166.
  • Vance RE, Kraft JR, Altman JD, et al. (1998). Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med, 188, 1841–1848. doi:10.1084/jem.188.10.1841.
  • Vivier E, Ugolini S, Blaise D, et al. (2012). Targeting natural killer cells and natural killer T cells in cancer. Nat. Rev. Immunol., 12, 239–252. doi:10.1038/nri3174.
  • Wang Y, Sedimbi S, Lofbom L, et al. (2018). Unique invariant natural killer T cells promote intestinal polyps by suppressing TH1 immunity and promoting regulatory T cells. Mucosal Immunol, 11, 131–143. doi:10.1038/mi.2017.34.
  • Yang Z, Wang C, Wang T, et al. (2015). Analysis of the reptile CD1 genes: evolutionary implications. Immunogenetics, 67, 337–346. doi:10.1007/s00251-015-0837-2.
  • Yoder JA, Litman GW. (2011). The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics, 63, 123–141. doi:10.1007/s00251-010-0506-4.
  • Zimmer J, Andres E, Donato L, et al. (2005). Clinical and immunological aspects of HLA class I deficiency. QJM, 98, 719–727. doi:10.1093/qjmed/hci112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.