226
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Metal Nanoparticles in Infection and Immunity

References

  • Ahmed KBA, Raman T, Veerappan A. 2018. Jacalin capped platinum nanoparticles confer persistent immunity against multiple Aeromonas infection in zebrafish. Sci Rep. 8:1–10.
  • Ansari MA, Khan HM, Khan AA, Sultan A, Azam A. 2012. Synthesis and characterization of the antibacterial potential of ZnO nanoparticles against extended-spectrum beta-lactamases-producing Escherichia coli and Klebsiella pneumoniae isolated from a tertiary care hospital of North India. Appl Microbiol Biotechnol. 94:467–77.
  • Arakha M, Pal S, Samantarrai D, Panigrahi TK, Mallick BC, Pramanik K, Mallick B, Jha S. 2015. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep. 5:14813.
  • Babushkina IV, Gladkova EV, Belova SV, Norkin IA. 2017. Application of preparations containing copper nanoparticles for the treatment of experimental septic wounds. Bull Exp Biol Med. 164:162–64.
  • Bellinger DC. 2016. Lead contamination in Flint—an abject failure to protect public health. N Engl J Med. 374:1101–03.
  • Boman HG, Agerberth B, Boman A. 1993. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. 61:2978–84.
  • Chernousova S, Epple M. 2013. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed. 52:1636–53.
  • Chithrani BD, Ghazani AA, Chan WC. 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6:662–68.
  • Cho W-S, Duffin R, Howie SE, Scotton CJ, Wallace WA, MacNee W, Bradley M, Megson IL, Donaldson K. 2011. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn 2+ dissolution inside lysosomes. Part Fibre Toxicol. 8:27.
  • Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, Bawendi MG, Semmler-Behnke M, Frangioni JV, Tsuda A. 2010. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol. 28:1300–03.
  • Coates AL. 2008. Guiding aerosol deposition in the lung. N Engl J Med. 358:304–05.
  • Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE. 2000. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 356:1000–01.
  • Dakterzada F, Mohabati Mobarez A, Habibi Roudkenar M, Mohsenifar A. 2016. Induction of humoral immune response against Pseudomonas aeruginosa flagellin(1-161) using gold nanoparticles as an adjuvant. Vaccine. 34:1472–79.
  • Dong J, Vylkova S, Li X, Edgerton M. 2003. Calcium blocks fungicidal activity of human salivary histatin 5 through disruption of binding with Candida albicans. J Dent Res. 82:748–52.
  • Elbehiry A, Al-Dubaib M, Marzouk E, Moussa I. 2019. Antibacterial effects and resistance induction of silver and gold nanoparticles against Staphylococcus aureus-induced mastitis and the potential toxicity in rats. MicrobiologyOpen. 8:e00698.
  • Falconer JL, Alt JA, Grainger DW. 2018. Comparing ex vivo and in vitro translocation of silver nanoparticles and ions through human nasal epithelium. Biomaterials. 171:97–106.
  • Falconer JL, Grainger DW. 2018. In vivo comparisons of silver nanoparticle and silver ion transport after intranasal delivery in mice. J Controlled Release. 269:1–9.
  • Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, McKenzie IF, Plebanski M. 2004. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol. 173:3148–54.
  • Frawley ER, Karlinsey JE, Singhal A, Libby SJ, Doulias PT, Ischiropoulos H, Fang FC. 2018. Nitric oxide disrupts zinc homeostasis in salmonella enterica serovar typhimurium. mBio. 9:14.
  • Furchgott RF. 1996. The discovery of endothelium-derived relaxing factor and its importance in the identification of nitric oxide. Jama. 276:1186–88.
  • Gause KT, Wheatley AK, Cui J, Yan Y, Kent SJ, Caruso F. 2017. Immunological principles guiding the rational design of particles for vaccine delivery. ACS Nano. 11:54–68.
  • Gregory A, Williamson D, Titball R. 2013. Vaccine delivery using nanoparticles. Front Cell Infect Microbiol. 3:13.
  • Grobner T. 2006. Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dialysis Transplant. 21:1104–08.
  • Habash MB, Goodyear MC, Park AJ, Surette MD, Vis EC, Harris RJ, Khursigara CM. 2017. Potentiation of tobramycin by silver nanoparticles against Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 61:e00415–00417.
  • Habash MB, Park AJ, Vis EC, Harris RJ, Khursigara CM. 2014. Synergy of silver nanoparticles and aztreonam against Pseudomonas aeruginosa PAO1 biofilms. Antimicrob Agents Chemother. 58:5818–30.
  • Hau SJ, Frana T, Sun J, Davies PR, Nicholson TL. 2017. Zinc resistance within swine-associated methicillin-resistant staphylococcus aureus isolates in the United States is associated with multilocus sequence type lineage. Appl Environ Microbiol. 83:01.
  • Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, Diaz D, Zumeta-Dube I, Arevalo-Nino K, Cabral-Romero C. 2013. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomedicine. 8:1645–52.
  • Hirai T, Yoshioka Y, Izumi N, Ichihashi K-I, Handa T, Nishijima N, Uemura E, Sagami K-I, Takahashi H, Yamaguchi M. 2016. Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice. Nat Nanotechnol. 11:808.
  • Hou J, Liu H, Wang L, Duan L, Li S, Wang X. 2018. Molecular toxicity of metal oxide nanoparticles in danio rerio. Environ Sci Technol. 52:7996–8004.
  • Huang L, Dai T, Xuan Y, Tegos GP, Hamblin MR. 2011. Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections. Antimicrob Agents Chemother. 55:3432–38.
  • Iwalokun BA, Akinloye O, Udoh BE, Akinyemi KO. 2019. Efficacy of silver nanoparticles against multidrug resistant clinical Staphylococcus aureus isolates from Nigeria. J Immunoassay Immunochem. 40:214–36.
  • Jasim R, Schneider EK, Han M, Azad MA, Hussein M, Nowell C, Baker MA, Wang J, Li J, Velkov T. 2017. A fresh shine on cystic fibrosis inhalation therapy: antimicrobial synergy of polymyxin B in combination with silver nanoparticles. J Biomed Nanotechnol. 13:447–57.
  • Koshlukova SE, Lloyd TL, Araujo MW, Edgerton M. 1999. Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem. 274:18872–79.
  • Lai X, Zhao H, Zhang Y, Guo K, Xu Y, Chen S, Zhang J. 2018. Intranasal delivery of copper oxide nanoparticles induces pulmonary toxicity and fibrosis in C57BL/6 mice. Sci Rep. 8:1–12.
  • Larson KN, Gagnon AL, Darling MD, Patterson JW, Cropley TG. 2015. Nephrogenic systemic fibrosis manifesting a decade after exposure to gadolinium. JAMA Dermatol. 151:1117–20.
  • Lee J-Y, Boman A, Sun C, Andersson M, Jörnvall H, Mutt V, Boman HG. 1989. Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc Natl Acad Sci USA. 86:9159–62.
  • Liao S, Zhang Y, Pan X, Zhu F, Jiang C, Liu Q, Cheng Z, Dai G, Wu G, Wang L, et al. 2019. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int J Nanomedicine. 14:1469–87.
  • Lozano T, Rey M, Rojas E, Moya S, Fleddermann J, Estrela-Lopis I, Donath E, Wang B, Mao Z, Gao C. 2011. Cytotoxicity effects of metal oxide nanoparticles in human tumor cell lines. Journal of Physics: Conference Series. Vol. 304. IOP Publishing. p. 012046.
  • Mchugh GL, Moellering R, Hopkins C, Swartz M. 1975. Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin: A new threat in burn units? Lancet. 305:235–40.
  • Mohan P, Mala R. 2019. Comparative antibacterial activity of magnetic iron oxide nanoparticles synthesized by biological and chemical methods against poultry feed pathogens. Mater Res Express. 6:115077.
  • Moore AJ, Beazley WD, Bibby MC, Devine DA. 1996. Antimicrobial activity of cecropins. J Antimicrob Chemother. 37:1077–89.
  • Murad F. 2006. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med. 355:2003–11.
  • Orlowski P, Tomaszewska E, Gniadek M, Baska P, Nowakowska J, Sokolowska J, Nowak Z, Donten M, Celichowski G, Grobelny J, et al. 2014. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS ONE [Electronic Resource]. 9:e104113.
  • Outten C, O’Halloran T. 2001. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science. 292:2488–91.
  • Pant J, Goudie MJ, Hopkins SP, Brisbois EJ, Handa H. 2017. Tunable nitric oxide release from S-nitroso-N-acetylpenicillamine via catalytic copper nanoparticles for biomedical applications. ACS Appl Mater Interfaces. 9:15254–64.
  • Paukkeri E-L, Korhonen R, Hämäläinen M, Pesu M, Eskelinen A, Moilanen T, Moilanen E. 2016. The inflammatory phenotype in failed metal-on-metal hip arthroplasty correlates with blood metal concentrations. PLoS One. 11:5.
  • Poon WL, Alenius H, Ndika J, Fortino V, Kolhinen V, Mesceriakovas A, Wang M, Greco D, Lahde A, Jokiniemi J, et al. 2017. Nano-sized zinc oxide and silver, but not titanium dioxide, induce innate and adaptive immunity and antiviral response in differentiated THP-1 cells. Nanotoxicology. 11:936–51.
  • Rolim WR, Pieretti JC, Reno DLS, Lima BA, Nascimento MHM, Ambrosio FN, Lombello CB, Brocchi M, de Souza ACS, Seabra AB. 2019. Antimicrobial activity and cytotoxicity to tumor cells of nitric oxide donor and silver nanoparticles containing PVA/PEG films for topical applications. ACS Appl Mater Interfaces. 11:6589–604.
  • Roy R, Kumar S, Verma AK, Sharma A, Chaudhari BP, Tripathi A, Das M, Dwivedi PD. 2014. Zinc oxide nanoparticles provide an adjuvant effect to ovalbumin via a Th2 response in Balb/c mice. Int Immunol. 26:159–72.
  • Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS. 2009. Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Agents Chemother. 53:3538–40.
  • Selim A, Elhaig MM, Taha SA, Nasr EA. 2018. Antibacterial activity of silver nanoparticles against field and reference strains of Mycobacterium tuberculosis, Mycobacterium bovis and multiple-drug-resistant tuberculosis strains. Revue Scientifique Et Technique. 37:823–30.
  • Shaikh S, Nazam N, Rizvi SMD, Ahmad K, Baig MH, Lee EJ, Choi I. 2019. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci. 20:18.
  • Shakibaie M, Forootanfar H, Ameri A, Adeli-Sardou M, Jafari M, Rahimi HR. 2018. Cytotoxicity of biologically synthesised bismuth nanoparticles against HT-29 cell line. IET Nanobiotechnol IET. 12:653–57.
  • Singh M, Kumar M, Kalaivani R, Manikandan S, Kumaraguru AK. 2013. Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng. 36:407–15.
  • Singh R, Vora J, Nadhe SB, Wadhwani SA, Shedbalkar UU, Chopade BA. 2018. Antibacterial activities of bacteriagenic silver nanoparticles against nosocomial acinetobacter baumannii. J Nanosci Nanotechnol. 18:3806–15.
  • Singha S, Shao K, Ellestad KK, Yang Y, Santamaria P. 2018. Nanoparticles for immune stimulation against infection, cancer, and autoimmunity. ACS Nano. 12:10621–35.
  • St Croix CM, Wasserloos KJ, Dineley KE, Reynolds IJ, Levitan ES, Pitt BR. 2002. Nitric oxide-induced changes in intracellular zinc homeostasis are mediated by metallothionein/thionein. Am J Physiol Lung Cell Mol Physiol. 282:L185–192.
  • Swaminathan S, Horn TD, Pellowski D, Abul-Ezz S, Bornhorst JA, Viswamitra S, Shah SV. 2007. Nephrogenic systemic fibrosis, gadolinium, and iron mobilization. N Engl J Med. 357:720–22.
  • Szymanska E, Orlowski P, Winnicka K, Tomaszewska E, Baska P, Celichowski G, Grobelny J, Basa A, Krzyzowska M. 2018. Multifunctional tannic acid/silver nanoparticle-based mucoadhesive hydrogel for improved local treatment of HSV infection: in vitro and in vivo studies. Int J Mol Sci. 19:28.
  • Talukder P, Satho T, Irie K, Sharmin T, Hamady D, Nakashima Y, Kashige N, Miake F. 2011. Trace metal zinc stimulates secretion of antimicrobial peptide LL-37 from Caco-2 cells through ERK and p38 MAP kinase. Int Immunopharmacol. 11:141–44.
  • Thompson EA, Sayers BC, Glista-Baker EE, Shipkowski KA, Taylor AJ, Bonner JC. 2014. Innate immune responses to nanoparticle exposure in the lung. J Environ Immunol Toxicol. 1:150.
  • Vadalasetty KP, Lauridsen C, Engberg RM, Vadalasetty R, Kutwin M, Chwalibog A, Sawosz E. 2018. Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. BMC Vet Res [Electronic Resource]. 14:1.
  • Vega-Jimenez AL, Almaguer-Flores A, Flores-Castaneda M, Camps E, Uribe-Ramirez M, Aztatzi-Aguilar OG, De Vizcaya-Ruiz A. 2017. Bismuth subsalicylate nanoparticles with anaerobic antibacterial activity for dental applications. Nanotechnology. 28:435101.
  • Vila L, Garcia-Rodriguez A, Marcos R, Hernandez A. 2018. Titanium dioxide nanoparticles translocate through differentiated Caco-2 cell monolayers, without disrupting the barrier functionality or inducing genotoxic damage. J Appl Toxicol. 38:1195–205.
  • Wang C, Liu X, Han Z, Zhang X, Wang J, Wang K, Yang Z, Wei Z. 2019. Nanosilver induces the formation of neutrophil extracellular traps in mouse neutrophil granulocytes. Ecotoxicol Environ Saf. 183:109508.
  • Wikipedia_contributors. 2019 October 14. Iron oxide nanoparticle. Vol. 2019, Wikipedia, The Free Encyclopedia.
  • Xie Y, He Y, Irwin PL, Jin T, Shi X. 2011. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 77:2325–31.
  • Xu Y, Wei MT, Ou-Yang HD, Walker SG, Wang HZ, Gordon CR, Guterman S, Zawacki E, Applebaum E, Brink PR, et al. 2016. Exposure to TiO2 nanoparticles increases Staphylococcus aureus infection of HeLa cells. J Nanobiotechnology. 14:34.
  • Zasloff M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA. 84:5449–53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.