Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 53, 2024 - Issue 3
58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Hydrogel Based Allergen-Coated Gold Nanoparticles for Topical Administration: A Possible Epicutaneous Immunotherapy in Pollen-Sensitized Mice?

, , & ORCID Icon

References

  • Agostinis, F., Forti, S., & DiBerardino, F. (2010). Grass transcutaneous immunotherapy in children with seasonal rhinoconjunctivitis. Allergy, 65(3), 410. https://doi.org/10.1111/j.1398-9995.2009.02189.x
  • Alvaro‐Lozano, M., Akdis, C. A., Akdis, M., Alviani, C., Angier, E., Arasi, S., Arzt‐Gradwohl, L., Barber, D., Bazire, R., Cavkaytar, O., Comberiati, P., Dramburg, S., Durham, S. R., Eifan, A. O., Forchert, L., Halken, S., Kirtland, M., Kucuksezer, U. C., Layhadi, J. A., … Sturm, G. J. (2020). Allergen immunotherapy in children user’s guide. Pediatric Allergy and Immunology, 31(S25), 1–101. https://doi.org/10.1111/pai.13189
  • Asher, M. I., Montefort, S., Björkstén, B., Lai, C. K., Strachan, D. P., Weiland, S. K., & Williams, H. (2006). Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. The Lancet, 368(9537), 733–743. https://doi.org/10.1016/S0140-6736(06)69283-0
  • Bastús, N. G., Sánchez-Tilló, E., Pujals, S., Farrera, C., Kogan, M. J., Giralt, E., Celada, A., Lloberas, J., & Puntes, V. (2009). Peptides conjugated to gold nanoparticles induce macrophage activation. Molecular Immunology, 46(4), 743–748. https://doi.org/10.1016/j.molimm.2008.08.277
  • Bessar, H., Venditti, I., Benassi, L., Vaschieri, C., Azzoni, P., Pellacani, G., Magnoni, C., Botti, E., Casagrande, V., Federici, M., Costanzo, A., Fontana, L., Testa, G., Mostafa, F. F., Ibrahim, S. A., Russo, M. V., & Fratoddi, I. (2016). Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis. Colloids and Surfaces B: Biointerfaces, 141, 141–147. https://doi.org/10.1016/j.colsurfb.2016.01.021
  • Chen, Y., Hu, Y., Chen, H., Li, X., & Qian, P. (2020). A ferritin nanoparticle vaccine for foot-and-mouth disease virus elicited partial protection in mice. Vaccine: X, 38(35), 5647–52. https://doi.org/10.1016/j.vaccine.2020.06.063
  • Cox, L., & Calderon, M. A. (2010). Subcutaneous specific immunotherapy for seasonal allergic rhinitis: A review of treatment practices in the US and Europe. Current Medical Research and Opinion, 26(12), 2723–33. https://doi.org/10.1185/03007995.2010.528647
  • Cox, L. S., Linnemann, D. L., Nolte, H., Weldon, D., Finegold, I., & Nelson, H. S. (2006). Sublingual immunotherapy: A comprehensive review. Journal of Allergy and Clinical Immunology, 117(5), 1021–35. https://doi.org/10.1016/j.jaci.2006.02.040
  • Dioszeghy, V., Mondoulet, L., Dhelft, V., Ligouis, M., Puteaux, E., Benhamou, P.-H., & Dupont, C. (2011). Epicutaneous immunotherapy results in rapid allergen uptake by dendritic cells through intact skin and downregulates the allergen-specific response in sensitized mice. Journal of Immunology, 186(10), 5629–5637. https://doi.org/10.4049/jimmunol.1003134
  • Dioszeghy, V., Mondoulet, L., Laoubi, L., Dhelft, V., Plaquet, C., Bouzereau, A., Dupont, C., & Sampson, H. (2018). Antigen uptake by Langerhans cells is required for the induction of regulatory T cells and the acquisition of tolerance during epicutaneous immunotherapy in OVA-sensitized mice. Frontiers in Immunology, 9, 1951. https://doi.org/10.3389/fimmu.2018.01951
  • Dupont, C., Kalach, N., Soulaines, P., Legoué-Morillon, S., Piloquet, H., & Benhamou, P.-H. (2010). Cow’s milk epicutaneous immunotherapy in children: a pilot trial of safety, acceptability, and impact on allergic reactivity. Journal of Allergy and Clinical Immunology, 125(5), 1165–1167. https://doi.org/10.1016/j.jaci.2010.02.029
  • Hajavi, J., Hashemi, M., & Sankian, M. (2019). Evaluation of size and dose effects of rChe a 3 allergen loaded PLGA nanoparticles on modulation of Th2 immune responses by sublingual immunotherapy in mouse model of rhinitis allergic. International Journal of Pharmaceutics, 563, 282–92. https://doi.org/10.1016/j.ijpharm.2019.03.040
  • Hankin, C. S., Cox, L., Lang, D., Bronstone, A., Fass, P., Leatherman, B., & Wang, Z. (2010). Allergen immunotherapy and health care cost benefits for children with allergic rhinitis: A large-scale, retrospective, matched cohort study. Annals of Allergy, Asthma & Immunology, 104(1), 79–85. https://doi.org/10.1016/j.anai.2009.11.010
  • He, Y. Q., Liu, S. P., Kong, L., & Liu, Z. F. (2005). A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(13–14), 2861–6. https://doi.org/10.1016/j.saa.2004.10.035
  • Kang, S., Ahn, S., Lee, J., Kim, J. Y., Choi, M., Gujrati, V., Kim, H., Kim, J., Shin, E.-C., & Jon, S. (2017). Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. Journal of Controlled Release, 256, 56–67. https://doi.org/10.1016/j.jconrel.2017.04.024
  • Korotchenko, E., Schießl, V., Scheiblhofer, S., Schubert, M., Dall, E., Joubert, I. A., Strandt, H., Neuper, T., Sarajlic, M., Bauer, R., Geppert, M., Joedicke, D., Wildner, S., Schaller, S., Winkler, S., Gadermaier, G., Horejs‐Hoeck, J., & Weiss, R. (2021). Laser‐facilitated epicutaneous immunotherapy with hypoallergenic beta‐glucan neoglycoconjugates suppresses lung inflammation and avoids local side effects in a mouse model of allergic asthma. Allergy, 76(1), 210–222. https://doi.org/10.1111/all.14481
  • Koushki, K., Varasteh, A.-R., Shahbaz, S. K., Sadeghi, M., Mashayekhi, K., Ayati, S. H., Moghadam, M., & Sankian, M. (2020). Dc-specific aptamer decorated gold nanoparticles: A new attractive insight into the nanocarriers for allergy epicutaneous immunotherapy. International Journal of Pharmaceutics, 584, 119403. https://doi.org/10.1016/j.ijpharm.2020.119403
  • Landers, J. J., Janczak, K. W., Shakya, A. K., Zarnitsyn, V., Patel, S. R., Baker, J. R., Gill, H. S., & O’Konek, J. J. (2022). Targeted allergen-specific immunotherapy within the skin improves allergen delivery to induce desensitization to peanut. Immunotherapy, 14(7), 539–552. https://doi.org/10.2217/imt-2021-0206
  • Mondoulet, L., Dioszeghy, V., Ligouis, M., Dhelft, V., Puteaux, E., Dupont, C., & Benhamou, P.-H. (2012). Epicutaneous immunotherapy compared with sublingual immunotherapy in mice sensitized to pollen (Phleum pratense). International Scholarly Research Notices, 2012, 1–8. https://doi.org/10.5402/2012/375735
  • Mondoulet, L., Dioszeghy, V., Puteaux, E., Ligouis, M., Dhelft, V., Letourneur, F., Dupont, C., & Benhamou, P.-H. (2012). Intact skin and not stripped skin is crucial for the safety and efficacy of peanut epicutaneous immunotherapy (EPIT) in mice. Clinical and Translational Allergy, 2(1), 1–12. https://doi.org/10.1186/2045-7022-2-22
  • Mondoulet, L., Dioszeghy, V., Puteaux, E., Ligouis, M., Dhelft, V., Plaquet, C., Dupont, C., & Benhamou, P.-H. (2015). Specific epicutaneous immunotherapy prevents sensitization to new allergens in a murine model. Journal of Allergy and Clinical Immunology, 135(6), 1546–57. e4. https://doi.org/10.1016/j.jaci.2014.11.028
  • Nesovic, L. D., Shakya, A. K., & Gill, H. S. (2022). Treating allergies via skin–recent advances in cutaneous allergen immunotherapy. Advanced Drug Delivery Reviews, 190, 114458. https://doi.org/10.1016/j.addr.2022.114458
  • Pazouki, N., Sankian, M., Nejadsattari, T., Khavari-Nejad, R.-A., Varasteh, A.-R. (2008). Oriental plane pollen allergy: Identification of allergens and cross-reactivity between relevant species. Allergy and Asthma Proceedings, 29(6), 622–8. https://doi.org/10.2500/aap.2008.29.3178
  • Pohlit, H., Bellinghausen, I., Frey, H., & Saloga, J. (2017). Recent advances in the use of nanoparticles for allergen‐specific immunotherapy. Allergy, 72(10), 1461–74. https://doi.org/10.1111/all.13199
  • Pordel, S., Haghnavaz, N., Rezaee, M., Shobeiri, S. S., Ansari, B., Dashti, M., Moghadam, M., Khorrami, M., & Sankian, M. (2023). An epicutaneous therapeutic pollen-allergen extract delivery system in an allergic rhinitis mouse model: Based on allergen loading on DC-specific aptamers conjugated nanogolds. Immunologic Research, 1–16. https://doi.org/10.1007/s12026-023-09445-6
  • Raju, G., Katiyar, N., Vadukumpully, S., & Shankarappa, S. A. (2018). Penetration of gold nanoparticles across the stratum corneum layer of thick-skin. Journal of Dermatological Science, 89(2), 146–54. https://doi.org/10.1016/j.jdermsci.2017.11.001
  • Scheurer, S., & Toda, M. (2017). Epicutaneous immunotherapy. Allergologia et immunopathologia, 45, 25–9. https://doi.org/10.1016/j.aller.2017.09.007
  • Schöll, I., Weissenböck, A., Förster‐Waldl, E., Untersmayr, E., Walter, F., Willheim, M., Boltz‐Nitulescu, G., Scheiner, O., Gabor, F., & Jensen‐Jarolim, E. (2004). Allergen-loaded biodegradable poly(d, l-lactic-co-glycolic) acid nanoparticles down-regulate an ongoing Th2 response in the BALB/c mouse model. Clinical and Experimental Allergy, 34(2), 315–321. https://doi.org/10.1111/j.1365-2222.2004.01884.x
  • Senti, G., Graf, N., Haug, S., Rüedi, N., von Moos, S., Sonderegger, T., Johansen, P., & Kündig, T. M. (2009). Epicutaneous allergen administration as a novel method of allergen-specific immunotherapy. Journal of Allergy and Clinical Immunology, 124(5), 997–1002. https://doi.org/10.1016/j.jaci.2009.07.019
  • Senti, G., von Moos, S., & Kündig, T. M. (2014). Epicutaneous immunotherapy for aeroallergen and food allergy. Current Treatment Options in Allergy, 1(1), 68–78. https://doi.org/10.1007/s40521-013-0003-8
  • Senti, G., von Moos, S., Tay, F., Graf, N., Sonderegger, T., Johansen, P., & Kündig, T. M. (2012). Epicutaneous allergen-specific immunotherapy ameliorates grass pollen–induced rhinoconjunctivitis: A double-blind, placebo-controlled dose escalation study. Journal of Allergy and Clinical Immunology, 129(1), 128–135. https://doi.org/10.1016/j.jaci.2011.08.036
  • Shobeiri, S. S., Rezaee, M., Pordel, S., Haghnnavaz, N., Dashti, M., Moghadam, M., & Sankian, M. (2022). Anti-IL-17A ssDNA aptamer ameliorated psoriasis skin lesions in the imiquimod-induced psoriasis mouse model. International Immunopharmacology, 110, 108963. https://doi.org/10.1016/j.intimp.2022.108963
  • Sonavane, G., Tomoda, K., Sano, A., Ohshima, H., Terada, H., & Makino, K. (2008). In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size. Colloids and Surfaces B: Biointerfaces, 65(1), 1–10. https://doi.org/10.1016/j.colsurfb.2008.02.013
  • Tordesillas, L., Lozano-Ojalvo, D., Dunkin, D., Mondoulet, L., Agudo, J., Merad, M., Sampson, H. A., & Berin, M. C. (2018). PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ tregs. Nature Communications, 9(1), 5238. https://doi.org/10.1038/s41467-018-07716-7
  • Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55–75. https://doi.org/10.1039/df9511100055
  • Xiao, X., Zeng, X., Zhang, X., Ma, L., Liu, X., Yu, H., Liu, X., & Yu, H. (2013). Effects of caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma. International Journal of Nanomedicine, 4553–4562. https://doi.org/10.2147/IJN.S51633

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.