Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 53, 2024 - Issue 3
272
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Etiopathogenesis of Psoriasis: Integration of Proposed Theories

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdel-Mawla, M. Y., Nofal, E., Khalifa, N., & Shakoor, N. M. (2013). Role of oxidative stress in psoriasis: An evaluation study. The Journal of American Science, 9(8), 151–155.
  • Abdel-Naser, M. B., Liakou, A. I., Elewa, R., Hippe, S., Knolle, J., & Zouboulis, C. C. (2016). Increased activity and number of epidermal melanocytes in lesional psoriatic skin. Dermatology (Basel, Switzerland), 232(4), 425–430. https://doi.org/10.1159/000447535
  • Adak, A., & Khan, M. R. (2019). An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences: CMLS, 76(3), 473–493. https://doi.org/10.1007/s00018-018-2943-4
  • Adibrad, M., Deyhimi, P., Ganjalikhani Hakemi, M., Behfarnia, P., Shahabuei, M., & Rafiee, L. (2012). Signs of the presence of Th17 cells in chronic periodontal disease. Journal of Periodontal Research, 47(4), 525–531. https://doi.org/10.1111/j.1600-0765.2011.01464.x
  • Agus, Denizot, J., Thévenot, J., Martinez-Medina, M., Massier, S., Sauvanet, P., Bernalier-Donadille, A., Denis, S., Hofman, P., Bonnet, R., Billard, E., & Barnich, N. (2016). Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Scientific Reports, 6(1). https://doi.org/10.1038/srep19032
  • Ahlehoff, O., Gislason, G., Lamberts, M., Folke, F., Lindhardsen, J., Larsen, C. T., Torp-Pedersen, C., & Hansen, P. R. (2015). Risk of thromboembolism and fatal stroke in patients with psoriasis and nonvalvular atrial fibrillation: A Danish nationwide cohort study. Journal of Internal Medicine, 277(4), 447–455. https://doi.org/10.1111/joim.12272
  • Ahlehoff, O., Gislason, G. H., Charlot, M., Jørgensen, C. H., Lindhardsen, J., Olesen, J. B., Abildstrøm, S. Z., Skov, L., Torp-Pedersen, C., & Hansen, P. R. (2011). Psoriasis is associated with clinically significant cardiovascular risk: A Danish nationwide cohort study. Journal of Internal Medicine, 270(2), 147–157. https://doi.org/10.1111/j.1365-2796.2010.02310.x
  • Ahlehoff, O., Gislason, G. H., Jørgensen, C. H., Lindhardsen, J., Charlot, M., Olesen, J. B., Abildstrøm, S. Z., Skov, L., Torp-Pedersen, C., & Hansen, P. R. (2012). Psoriasis and risk of atrial fibrillation and ischaemic stroke: A Danish nationwide cohort study. European Heart Journal, 33(16), 2054–2064. https://doi.org/10.1093/eurheartj/ehr285
  • Ahlehoff, O., Gislason, G. H., Lindhardsen, J., Olesen, J. B., Charlot, M., Skov, L., Torp-Pedersen, C., & Hansen, P. R. (2011). Prognosis following first-time myocardial infarction in patients with psoriasis: A Danish nationwide cohort study. Journal of Internal Medicine, 270(3), 237–244. https://doi.org/10.1111/j.1365-2796.2011.02368.x
  • Ahlehoff, O., Skov, L., Gislason, G., Lindhardsen, J., Kristensen, S. L., Iversen, L., Lasthein, S., Gniadecki, R., Dam, T. N., Torp-Pedersen, C., & Hansen, P. R. (2013). Cardiovascular disease event rates in patients with severe psoriasis treated with systemic anti-inflammatory drugs: A Danish real-world cohort study. Journal of Internal Medicine, 273(2), 197–204. https://doi.org/10.1111/j.1365-2796.2012.02593.x
  • Akbarzadeh, A., Alirezaei, P., Doosti-Irani, A., Mehrpooya, M., & Nouri, F. (2022). The efficacy of lactocare® synbiotic on the clinical symptoms in patients with psoriasis: A randomized, double-blind, placebo-controlled clinical trial. Dermatology Research and Practice, 2022, 4549134. https://doi.org/10.1155/2022/4549134
  • Akbarzadeh, A., Taheri, M., Ebrahimi, B., Alirezaei, P., Doosti-Irani, A., Soleimani, M., & Nouri, F. (2022). Evaluation of lactocare® synbiotic administration on the Serum electrolytes and trace elements levels in psoriasis patients: A randomized, double-blind, placebo-controlled clinical trial study. Biological Trace Element Research, 200(10), 4230–4237. https://doi.org/10.1007/s12011-021-03020-6
  • Aksoy, M., & Kirmit, A. (2020). Thiol/Disulphide balance in patients with psoriasis. Advances in Dermatology and Allergology, 37(1), 52–55. https://doi.org/10.5114/ada.2018.77767
  • Al-Mutairi, N., & Nour, T. (2014). The effect of weight reduction on treatment outcomes in obese patients with psoriasis on biologic therapy: A randomized controlled prospective trial. Expert Opinion on Biological Therapy, 14(6), 749–756. https://doi.org/10.1517/14712598.2014.900541
  • Alekseyenko, A. V., Perez-Perez, G. I., De Souza, A., Strober, B., Gao, Z., Bihan, M., Li, K., Methé, B. A., & Blaser, M. J. (2013). Community differentiation of the cutaneous microbiota in psoriasis. Microbiome, 1(1), 31. https://doi.org/10.1186/2049-2618-1-31
  • Alexopoulos, A., & Chrousos, G. (2016). Stress-related skin disorders. Reviews in Endocrine & Metabolic Disorders, 17(3), 295–304. https://doi.org/10.1007/s11154-016-9367-y
  • Ali, R. S., Falconer, A., Ikram, M., Bissett, C. E., Cerio, R., & Quinn, A. G. (2001). Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. The Journal of Investigative Dermatology, 117(1), 106–111. https://doi.org/10.1046/j.0022-202x.2001.01401.x
  • Alinaghi, F., Calov, M., Kristensen, L. E., Gladman, D. D., Coates, L. C., Jullien, D., Gottlieb, A. B., Gisondi, P., Wu, J. J., Thyssen, J. P., & Egeberg, A. (2019). Prevalence of psoriatic arthritis in patients with psoriasis: A systematic review and meta-analysis of observational and clinical studies. Journal of the American Academy of Dermatology, 80(1), 251–265.e19. https://doi.org/10.1016/j.jaad.2018.06.027
  • AlQassimi, S., AlBrashdi, S., Galadari, H., & Hashim, M. J. (2020). Global burden of psoriasis – Comparison of regional and global epidemiology, 1990 to 2017. International Journal of Dermatology, 59(5), 566–571. https://doi.org/10.1111/ijd.14864
  • Alwan, W., & Nestle, F. O. (2015). Pathogenesis and treatment of psoriasis: Exploiting pathophysiological pathways for precision medicine. Clinical and Experimental Rheumatology, 33(5 Suppl 93), S2–6.
  • Ammar, M., Bouchlaka-Souissi, C., Soumaya, K., Bouhaha, R., Ines, Z., Bouazizi, F., Doss, N., Dhaoui, R., Ben Osman, A., Ben Ammar-El Gaaïed, A., Mokni, M., & Marrakchi, R. (2014). Failure to find evidence for deletion of LCE3C and LCE3B genes at PSORS4 contributing to psoriasis susceptibility in Tunisian families. Pathologie Biologie, 62(1), 34–37. https://doi.org/10.1016/j.patbio.2013.10.003
  • Arafa, A., & Mostafa, A. (2020). Association of hepatitis B virus infection and psoriasis: A meta-analysis. Australasian Journal of Dermatology, 61(4), 382–384. https://doi.org/10.1111/ajd.13320
  • Arakawa, A., Siewert, K., Stöhr, J., Besgen, P., Kim, S.-M., Rühl, G., Nickel, J., Vollmer, S., Thomas, P., Krebs, S., Pinkert, S., Spannagl, M., Held, K., Kammerbauer, C., Besch, R., Dornmair, K., & Prinz, J. C. (2015). Melanocyte antigen triggers autoimmunity in human psoriasis. The Journal of Experimental Medicine, 212(13), 2203–2212. https://doi.org/10.1084/jem.20151093
  • Armstrong, A., Armstrong, E., Fuller, E., Sockolov, M., & Voyles, S. (2011). Smoking and pathogenesis of psoriasis: A review of oxidative, inflammatory and genetic mechanisms. The British Journal of Dermatology, 165(6), 1162–1168. https://doi.org/10.1111/j.1365-2133.2011.10526.x
  • Armstrong, A., Harskamp, C., Dhillon, J., & Armstrong, E. (2014). Psoriasis and smoking: A systematic review and meta-analysis. The British Journal of Dermatology, 170(2), 304–314. https://doi.org/10.1111/bjd.12670
  • Armstrong, A. W., & Read, C. (2020). Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA, 323(19), 1945. https://doi.org/10.1001/jama.2020.4006
  • Armstrong, A. W., Voyles, S. V., Armstrong, E. J., Fuller, E. N., & Rutledge, J. C. (2011). Angiogenesis and oxidative stress: Common mechanisms linking psoriasis with atherosclerosis. Journal of Dermatological Science, 63(1), 1–9. https://doi.org/10.1016/j.jdermsci.2011.04.007
  • Arnett, F. C., Reveille, J. D., & Duvic, M. (1991). Psoriasis and psoriatic arthritis associated with human immunodeficiency virus infection. Rheumatic Diseases Clinics of North America, 17(1), 59–78. https://doi.org/10.1016/S0889-857X(21)00088-0
  • Assarsson, M., Söderman, J., Dienus, O., & Seifert, O. (2020). Significant differences in the bacterial microbiome of the pharynx and skin in patients with psoriasis compared with healthy controls. Acta Dermato Venereologica, 100(16), adv00273. https://doi.org/10.2340/00015555-3619
  • Asumalahti, K. (2002). Coding haplotype analysis supports HCR as the putative susceptibility gene for psoriasis at the MHC PSORS1 locus. Human Molecular Genetics, 11(5), 589–597. https://doi.org/10.1093/hmg/11.5.589
  • Au Yeung, S., Jiang, C., Cheng, K., Liu, B., Zhang, W., Lam, T., Leung, G., & Schooling, C. (2013). Is aldehyde dehydrogenase 2 a credible genetic instrument for alcohol use in mendelian randomization analysis in Southern Chinese men? International Journal of Epidemiology, 42(1), 318–328. https://doi.org/10.1093/ije/dys221
  • Awad, V. M., Sakhamuru, S., Kambampati, S., Wasim, S., & Malik, B. H. (2020). Mechanisms of beta-blocker induced psoriasis, and psoriasis De Novo at the cellular level. Cureus, 12(7), e8964. https://doi.org/10.7759/cureus.8964
  • Ayala-Fontánez, N., Soler, D. C., & McCormick, T. S. (2016). Current knowledge on psoriasis and autoimmune diseases. Psoriasis (Auckland, NZ), 6, 7–32. https://doi.org/10.2147/PTT.S64950
  • Azzouz, B., De Guizelin, A., Lambert, A., Fresse, A., Morel, A., & Trenque, T. (2022). Psoriasis risk after beta-blocker exposure: Description of a pharmacovigilance signal. British Journal of Clinical Pharmacology, 88(8), 3813–3818. https://doi.org/10.1111/bcp.15330
  • Bader, H. L., Wang, L. W., Ho, J. C., Tran, T., Holden, P., Fitzgerald, J., Atit, R. P., Reinhardt, D. P., & Apte, S. S. (2012). A disintegrin-like and metalloprotease domain containing thrombospondin type 1 motif-like 5 (ADAMTSL5) is a novel fibrillin-1-, fibrillin-2-, and heparin-binding member of the ADAMTS superfamily containing a netrin-like module. Matrix Biology: Journal of the International Society for Matrix Biology, 31(7–8), 398–411. https://doi.org/10.1016/j.matbio.2012.09.003
  • Baek, J.-O., Byamba, D., Wu, W. H., Kim, T.-G., & Lee, M.-G. (2012). Assessment of an imiquimod-induced psoriatic mouse model in relation to oxidative stress. Archives of Dermatological Research, 304(9), 699–706. https://doi.org/10.1007/s00403-012-1272-y
  • Baek, Y. S., Kwak, E.-J., Kim, Y. C., Kim, K. E., Song, H. J., & Jeon, J. (2023). Periodontal disease does not increase the risk of subsequent psoriasis. Scientific Reports, 13(1), 5942. https://doi.org/10.1038/s41598-023-32907-8
  • Bagood, M. D., & Isseroff, R. R. (2021). TRPV1: Role in skin and skin diseases and potential target for improving wound healing. International Journal of Molecular Sciences, 22(11), 6135. https://doi.org/10.3390/ijms22116135
  • Baker, B. S., Ovigne, J.-M., Powles, A. V., Corcoran, S., & Fry, L. (2003). Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: Modulation of TLR expression in chronic plaque psoriasis. British Journal of Dermatology, 148(4), 670–679. https://doi.org/10.1046/j.1365-2133.2003.05287.x
  • Baker, B. S., Powles, A., Garioch, J. J., Hardman, C., & Fry, L. (1997). Differential T-cell reactivity to the round and oval forms of Pityrosporum in the skin of patients with psoriasis. The British Journal of Dermatology, 136(3), 319–325. https://doi.org/10.1046/j.1365-2133.1997.d01-1192.x
  • Baker, B. S., Swain, A. F., Fry, L., & Valdimarsson, H. (2006). Epidermal T lymphocytes and HLA-DR expression in psoriasis. British Journal of Dermatology, 110(5), 555–564. https://doi.org/10.1111/j.1365-2133.1984.tb04678.x
  • Baker, B. S., Swain, A. F., Valdimarsson, H., & Fry, L. (1984). T-cell subpopulations in the blood and skin of patients with psoriasis. British Journal of Dermatology, 110(1), 37–44. https://doi.org/10.1111/j.1365-2133.1984.tb07309.x
  • Balak, D., & Hajdarbegovic, E. (2017). Drug-induced psoriasis: Clinical perspectives. Psoriasis: Targets and Therapy, 7, 87–94. https://doi.org/10.2147/PTT.S126727
  • Balci, D. D., Duran, N., Ozer, B., Gunesacar, R., Onlen, Y., & Yenin, J. Z. (2009). High prevalence of Staphylococcus aureus cultivation and superantigen production in patients with psoriasis. European Journal of Dermatology, 19(3), 238–242. https://doi.org/10.1684/ejd.2009.0663
  • Baroni, A., Orlando, M., Donnarumma, G., Farro, P., Iovene, M. R., Tufano, M. A., & Buommino, E. (2006). Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Archives of Dermatological Research, 297(7), 280–288. https://doi.org/10.1007/s00403-005-0594-4
  • Baroni, A., Paoletti, I., Ruocco, E., Agozzino, M., Tufano, M. A., & Donnarumma, G. (2004). Possible role of malassezia furfur in psoriasis: Modulation of TGF-β1, integrin, and HSP70 expression in human keratinocytes and in the skin of psoriasis-affected patients: Psoriasis and M. Furfur. Journal of Cutaneous Pathology, 31(1), 35–42. https://doi.org/10.1046/j.0303-6987.2004.0135.x
  • Barrea, L., Macchia, P., Tarantino, G., DiSomma, C., Pane, E., Balato, N., Napolitano, M., Colao, A., & Savastano, S. (2015). Nutrition: A key environmental dietary factor in clinical severity and cardio-metabolic risk in psoriatic male patients evaluated by 7-day food-frequency questionnaire. Journal of Translational Medicine, 13(303). https://doi.org/10.1186/s12967-015-0658-y
  • Barrea, L., Nappi, F., DiSomma, C., Savanelli, M., Falco, A., Balato, A., Balato, N., & Savastano, S. (2016). Environmental risk factors in psoriasis: The point of view of the Nutritionist. International Journal of Environmental Research and Public Health, 13(7), 743. https://doi.org/10.3390/ijerph13070743
  • Barygina, B., Becatti, B., Prignano, P., Lotti, L., Taddei, T., & Fiorillo, F. (2019). Fibroblasts to Keratinocytes redox signaling: The possible role of ROS in psoriatic plaque formation. Antioxidants, 8(11), 566. https://doi.org/10.3390/antiox8110566
  • Basavaraj, K., Navya, M., & Rashmi, R. (2011). Stress and quality of life in psoriasis: An update. International Journal of Dermatology, 50(7), 783–792. https://doi.org/10.1111/j.1365-4632.2010.04844.x
  • Baurecht, H., Freuer, D., Welker, C., Tsoi, L. C., Elder, J. T., Ehmke, B., Leitzmann, M. F., Holtfreter, B., & Baumeister, S. (2022). Relationship between periodontitis and psoriasis: A two-sample mendelian randomization study. Journal of Clinical Periodontology, 49(6), 573–579. https://doi.org/10.1111/jcpe.13620
  • Becatti, M., Barygina, V., Mannucci, A., Emmi, G., Prisco, D., Lotti, T., Fiorillo, C., & Taddei, N. (2018). Sirt1 protects against oxidative stress-induced apoptosis in fibroblasts from psoriatic patients: A new insight into the pathogenetic mechanisms of psoriasis. International Journal of Molecular Sciences, 19(6), 1572. https://doi.org/10.3390/ijms19061572
  • Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141. https://doi.org/10.1016/j.cell.2014.03.011
  • Belkaid, Y., & Segre, J. A. (2014). Dialogue between skin microbiota and immunity. Science, 346(6212), 954–959. https://doi.org/10.1126/science.1260144
  • Belstrøm, D., Eiberg, J. M., Enevold, C., Grande, M. A., Jensen, C. A. J., Skov, L., & Hansen, P. R. (2020). Salivary microbiota and inflammation-related proteins in patients with psoriasis. Oral Diseases, 26(3), 677–687. https://doi.org/10.1111/odi.13277
  • Berryman, M., Franck, Z., & Bretscher, A. (1993). Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. Journal of Cell Science, 105(Pt 4), 1025–1043. https://doi.org/10.1242/jcs.105.4.1025
  • Besgen, P., Trommler, P., Vollmer, S., & Prinz, J. C. (2010). Ezrin, Maspin, peroxiredoxin 2, and heat shock protein 27: Potential targets of a streptococcal-induced autoimmune response in psoriasis. Journal of Immunology, 184(9), 5392–5402. https://doi.org/10.4049/jimmunol.0903520
  • Bickers, D. R., & Athar, M. (2006). Oxidative stress in the pathogenesis of skin disease. Journal of Investigative Dermatology, 126(12), 2565–2575. https://doi.org/10.1038/sj.jid.5700340
  • Bjerke, J. R. (1982). In situ characterization and counting of mononuclear cells in lesions of different clinical forms of psoriasis. Acta Dermato-Venereologica, 62(2), 93–100. https://doi.org/10.2340/000155556293100
  • Blackstock, W. P., & Weir, M. P. (1999). Proteomics: Quantitative and physical mapping of cellular proteins. Trends in Biotechnology, 17(3), 121–127. https://doi.org/10.1016/s0167-7799(98)01245-1
  • Blake, K., Jiang, X., & Chiu, I. (2019). Neuronal regulation of immunity in the skin and lungs. Trends in Neurosciences, 42(8), 537–551. https://doi.org/10.1016/j.tins.2019.05.005
  • Blake, T., Gullick, N. J., Hutchinson, C. E., Barber, T. M., & Nurmohamed, M. (2020). Psoriatic disease and body composition: A systematic review and narrative synthesis. PLoS One, 15(8), e0237598. https://doi.org/10.1371/journal.pone.0237598
  • Blegvad, C., Egeberg, A., Tind Nielsen, T. E., Gislason, G. H., Zachariae, C., Nybo Andersen, A.-M., & Skov, L. (2017). Autoimmune disease in children and adolescents with psoriasis: A cross-sectional study in Denmark. Acta Dermato-Venereologica, 97(10), 1225–1229. https://doi.org/10.2340/00015555-2743
  • Boehncke, W., & Schon, M. (2015). Psoriasis. The Lancet, 386(9997), 983–994. https://doi.org/10.1016/S0140-6736(14)61909-7
  • Boehncke, W. H., Dahlke, A., Zollner, T. M., & Sterry, W. (1994). Differential expression of heat shock protein 70 (HSP70) and heat shock cognate protein 70 (HSC70) in human epidermis. Archives of Dermatological Research, 287(1), 68–71. https://doi.org/10.1007/BF00370721
  • Bonifacio, K. M., Kunjravia, N., Krueger, J. G., & Fuentes-Duculan, J. (2016). Cutaneous expression of a disintegrin-like and metalloprotease domain containing thrombospondin type 1 motif-like 5 (ADAMTSL5) in psoriasis goes beyond melanocytes. Journal of Pigmentary Disorders, 3(3), 244. https://doi.org/10.4172/2376-0427.1000244
  • Boyce, S., & Ham, R. (1983). Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. The Journal of Investigative Dermatology, 81(1), S33–S40. https://doi.org/10.1111/1523-1747.ep12540422
  • Brandrup, F., Holm, N., Grunnet, N., Henningsen, K., & Hansen, H. E. (1982). Psoriasis in monozygotic twins: Variations in expression in individuals with identical genetic constitution. Acta dermato-venereologica, 62(3), 229–236. https://doi.org/10.2340/0001555562229236
  • Brazzini, B., & Pimpinelli, N. (2002). New and established topical corticosteroids in dermatology: Clinical pharmacology and therapeutic use. American Journal of Clinical Dermatology, 3(1), 47–58. https://doi.org/10.2165/00128071-200203010-00005
  • Brenaut, E., Horreau, C., Pouplard, C., Barnetche, T., Paul, C., Richard, M., Joly, P., Le Maître, M., Aractingi, S., Aubin, F., Cribier, B., Jullien, D., Ortonne, J., & Misery, L. (2013). Alcohol consumption and psoriasis: A systematic literature review. Journal of the European Academy of Dermatology, 27(Suppl. 3), 30–35. https://doi.org/10.1111/jdv.12164
  • Breuer, K., Goldner, F., Jager, B., Werfel, T., & Schmid-Ott, G. (2015). Chronic stress experience and burnout syndrome have appreciable influence on health-related quality of life in patients with psoriasis. Journal of the European Academy of Dermatology and Venereology, 29(10), 1898–1904. https://doi.org/10.1111/jdv.12999
  • Briganti, S., & Picardo, M. (2003). Antioxidant activity, lipid peroxidation and skin diseases. What’s new. Journal of the European Academy of Dermatology and Venereology, 17(6), 663–669. https://doi.org/10.1046/j.1468-3083.2003.00751.x
  • Brophy, S., Pavy, S., Lewis, P., Taylor, G., Bradbury, L., Robertson, D., Lovell, C., & Calin, A. (2001). Inflammatory eye, skin, and bowel disease in spondyloarthritis: Genetic, phenotypic, and environmental factors. The Journal of Rheumatology, 28(12), 2667–2673.
  • Brown, K., DeCoffe, D., Molcan, E., & Gibson, D. L. (2012). Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients, 4(8), 1095–1119. https://doi.org/10.3390/nu4081095
  • Büchau, A. S., & Gallo, R. L. (2007). Innate immunity and antimicrobial defense systems in psoriasis. Clinics in Dermatology, 25(6), 616–624. https://doi.org/10.1016/j.clindermatol.2007.08.016
  • Buhaș, M. C., Candrea, R., Gavrilaș, L. I., Miere, D., Tătaru, A., Boca, A., & Cătinean, A. (2023). Transforming psoriasis care: Probiotics and prebiotics as novel therapeutic approaches. International Journal of Molecular Sciences, 24(13), 11225. https://doi.org/10.3390/ijms241311225
  • Bunker, V. W. (1992). Free radicals, antioxidants and ageing. Medical Laboratory Sciences, 49(4), 299–312.
  • Bunte, K., & Beikler, T. (2019). Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases. International Journal of Molecular Sciences, 20(14), 3394. https://doi.org/10.3390/ijms20143394
  • Cai, Y., Shen, X., Ding, C., Qi, C., Li, K., Li, X., Jala, V. R., Zhang, H., Wang, T., Zheng, J., & Yan, J. (2011). Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity, 35(4), 596–610. https://doi.org/10.1016/j.immuni.2011.08.001
  • Cannavò, S. P., Riso, G., Casciaro, M., DiSalvo, E., & Gangemi, S. (2019). Oxidative stress involvement in psoriasis: A systematic review. Free Radical Research, 53(8), 829–840. https://doi.org/10.1080/10715762.2019.1648800
  • Capon, F., Burden, A. D., Trembath, R. C., & Barker, J. N. (2012). Psoriasis and other complex trait dermatoses: From loci to functional pathways. Journal of Investigative Dermatology, 132(3), 915–922. https://doi.org/10.1038/jid.2011.395
  • Capon, F., Novelli, G., Semprini, S., Clementi, M., Nudo, M., Vultaggio, P., Mazzanti, C., Gobello, T., Botta, A., Fabrizi, G., & Dallapiccola, B. (1999). Searching for psoriasis susceptibility genes in Italy: Genome scan and evidence for a new locus on chromosome 1. Journal of Investigative Dermatology, 112(1), 32–35. https://doi.org/10.1046/j.1523-1747.1999.00471.x
  • Carlén, L. M., Sánchez, F., Bergman, A.-C., Becker, S., Hirschberg, D., Franzén, B., Coffey, J., Jörnvall, H., Auer, G., Alaiya, A. A., & Ståhle, M. (2005). Proteome analysis of skin distinguishes acute guttate from chronic plaque psoriasis. The Journal of Investigative Dermatology, 124(1), 63–69. https://doi.org/10.1111/j.0022-202X.2004.23501.x
  • Carrascosa, J. M., Carrascosa, M., Garcia-Doval, I., Carretero, G., Vanaclocha, F., Daudén, E., Gómez-García, F., Herrera-Ceballos, E., De la Cueva Dobao, P., Belinchón, I., Sánchez-Carazo, J., Alsina, M., López-Estebaranz, J., Ferrán, M., Peral, F., Torrado, R., Rivera, R., Jiménez-Puya, R., Mendiola, M., & Ferrándiz, C. (2014). Body mass index in patients with moderate-to-severe psoriasis in Spain and its impact as an independent risk factor for therapy withdrawal: Results of the Biobadaderm Registry. Journal of the European Academy of Dermatology and Venereology, 28(7), 907–914. https://doi.org/10.1111/jdv.12208
  • Cekici, A., Kantarci, A., Hasturk, H., & Van Dyke, T. E. (2014). Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000, 64(1), 57–80. https://doi.org/10.1111/prd.12002
  • Chambers, E. S., & Vukmanovic-Stejic, M. (2020). Skin barrier immunity and ageing. Immunology, 160(2), 116–125. https://doi.org/10.1111/imm.13152
  • Chamcheu, J. C., Siddiqui, I. A., Syed, D. N., Adhami, V. M., Liovic, M., & Mukhtar, H. (2011). Keratin gene mutations in disorders of human skin and its appendages. Archives of Biochemistry and Biophysics, 508(2), 123–137. https://doi.org/10.1016/j.abb.2010.12.019
  • Chandran, V., & Raychaudhuri, S. P. (2010). Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. Journal of Autoimmunity, 34(3), J314–J321. https://doi.org/10.1016/j.jaut.2009.12.001
  • Chang, H.-W., Yan, D., Singh, R., Liu, J., Lu, X., Ucmak, D., Lee, K., Afifi, L., Fadrosh, D., Leech, J., Vasquez, K. S., Lowe, M. M., Rosenblum, M. D., Scharschmidt, T. C., Lynch, S. V., & Liao, W. (2018). Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome, 6(1), 154. https://doi.org/10.1186/s40168-018-0533-1
  • Chang, J. C., Smith, L. R., Froning, K. J., Schwabe, B. J., Laxer, J. A., Caralli, L. L., Kurland, H. H., Karasek, M. A., Wilkinson, D. I., & Carlo, D. J. (1994). CD8+ T cells in psoriatic lesions preferentially use T-cell receptor V beta 3 and/or V beta 13.1 genes. Proceedings of the National Academy of Sciences of the United States of America, 91(20), 9282–9286. https://doi.org/10.1073/pnas.91.20.9282
  • Chang, Y., Hsu, L., & Huang, Y. (2022). Alcohol consumption, aldehyde dehydrogenase 2 gene rs671 polymorphism, and psoriasis in Taiwan. Dermatologica Sinica, 40(2), 108–113. https://doi.org/10.4103/ds.ds_21_22
  • Chehoud, C., Rafail, S., Tyldsley, A. S., Seykora, J. T., Lambris, J. D., & Grice, E. A. (2013). Complement modulates the cutaneous microbiome and inflammatory milieu. Proceedings of the National Academy of Sciences, 110(37), 15061–15066. https://doi.org/10.1073/pnas.1307855110
  • Chen, D., He, J., Li, J., Zou, Q., Si, J., Guo, Y., Yu, J., Li, C., Wang, F., Chan, T., & Shi, H. (2021). Microbiome and metabolome analyses reveal novel interplay between the skin microbiota and plasma metabolites in psoriasis. Frontiers in Microbiology, 12, 643449. https://doi.org/10.3389/fmicb.2021.643449
  • Chen, L., Li, J., Zhu, W., Kuang, Y., Liu, T., Zhang, W., Chen, X., & Peng, C. (2020). Skin and gut microbiome in psoriasis: Gaining insight into the pathophysiology of it and finding novel therapeutic strategies. Frontiers in Microbiology, 11, 589726. https://doi.org/10.3389/fmicb.2020.589726
  • Chen, M.-L., Kao, W.-M., Huang, J.-Y., Hung, Y.-M., & Wei, J.-C.-C. (2020). Human papillomavirus infection associated with increased risk of new-onset psoriasis: A nationwide population-based cohort study. International Journal of Epidemiology, 49(3), 786–797. https://doi.org/10.1093/ije/dyaa027
  • Chen, V. L., France, D. S., & Martinelli, G. P. (1986). De Novo synthesis of lysozyme by human epidermal cells. The Journal of Investigative Dermatology, 87(5), 585–587. https://doi.org/10.1111/1523-1747.ep12455834
  • Chen, Y. E., Fischbach, M. A., & Belkaid, Y. (2018). Skin microbiota–host interactions. Nature, 553(7689), 427–436. https://doi.org/10.1038/nature25177
  • Cheuk, S., Schlums, H., Gallais Sérézal, I., Martini, E., Chiang, S. C., Marquardt, N., Gibbs, A., Detlofsson, E., Introini, A., Forkel, M., Höög, C., Tjernlund, A., Michaëlsson, J., Folkersen, L., Mjösberg, J., Blomqvist, L., Ehrström, M., Ståhle, M., Bryceson, Y. T., & Eidsmo, L. (2017). CD49a expression defines Tissue-Resident CD8+ T cells poised for Cytotoxic function in Human Skin. Immunity, 46(2), 287–300. https://doi.org/10.1016/j.immuni.2017.01.009
  • Cheuk, S., Wikén, M., Blomqvist, L., Nylén, S., Talme, T., Ståhle, M., & Eidsmo, L. (2014). Epidermal Th22 and Tc17 Cells form a localized disease memory in Clinically Healed Psoriasis. Journal of Immunology, 192(7), 3111–3120. Article 7. https://doi.org/10.4049/jimmunol.1302313
  • Cheung, K. L., Jarrett, R., Subramaniam, S., Salimi, M., Gutowska-Owsiak, D., Chen, Y.-L., Hardman, C., Xue, L., Cerundolo, V., & Ogg, G. (2016). Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. The Journal of Experimental Medicine, 213(11), 2399–2412. https://doi.org/10.1084/jem.20160258
  • Chiba, H., Michibata, H., Wakimoto, K., Seishima, M., Kawasaki, S., Okubo, K., Mitsui, H., Torii, H., & Imai, Y. (2004). Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, cPla2delta, induced in psoriatic skin. The Journal of Biological Chemistry, 279(13), 12890–12897. https://doi.org/10.1074/jbc.M305801200
  • Chiricozzi, A., Guttman-Yassky, E., Suárez-Fariñas, M., Nograles, K. E., Tian, S., Cardinale, I., Chimenti, S., & Krueger, J. G. (2011). Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. The Journal of Investigative Dermatology, 131(3), 677–687. https://doi.org/10.1038/jid.2010.340
  • Choi, J.-Y., Kim, H., Koo, H.-Y.-R., You, J., Yu, D.-S., Lee, Y.-B., & Lee, M. (2022). Severe scalp psoriasis microbiome has increased biodiversity and relative abundance of pseudomonas compared to mild scalp psoriasis. Journal of Clinical Medicine, 11(23), 7133. https://doi.org/10.3390/jcm11237133
  • Chun, K., Afshar, M., Audish, D., Kabigting, F., Paik, A., Gallo, R., & Hata, T. (2017). Hepatitis C may enhance key amplifiers of psoriasis. Journal of the European Academy of Dermatology and Venereology, 31(4), 672–678. https://doi.org/10.1111/jdv.13578
  • Civatte, J. (1989). Psoriasis and HIV infection. Bulletin De l’Academie Nationale De Medecine, 173(8), 1065–1070. discussion 1070–1071.
  • Collamer, A. N., & Battafarano, D. F. (2010). Psoriatic skin lesions induced by tumor necrosis factor antagonist therapy: Clinical features and possible immunopathogenesis. Seminars in Arthritis and Rheumatism, 40(3), 233–240. https://doi.org/10.1016/j.semarthrit.2010.04.003
  • Conrad, C., Boyman, O., Tonel, G., Tun-Kyi, A., Laggner, U., de Fougerolles, A., Kotelianski, V., Gardner, H., & Nestle, F. O. (2007). Alpha1beta1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nature Medicine, 13(7), 836–842. https://doi.org/10.1038/nm1605
  • Crick, F. (1970). Central dogma of molecular biology. Nature, 227(5258), 561–563. https://doi.org/10.1038/227561a0
  • Damiani, G., Bragazzi, N., Aksut, C., Wu, D., Alicandro, G., McGonagle, D., Guo, C., Dellavalle, R., Grada, A., Wong, P., La Vecchia, C., Lai-Shan, T., Cooper, K. D., & Naghavi, M. (2021). The global, regionaL, and national burden of psoriasis: Results and insights from the global burden of disease 2019 Study. Frontiers in Medicine, 8(743180). https://doi.org/10.3389/fmed.2021.743180
  • Daugaard, C., Iversen, L., & Hjuler, K. F. (2022). Comorbidity in adult Psoriasis: Considerations for the clinician. Psoriasis: Targets and Therapy, 12, 139–150. https://doi.org/10.2147/PTT.S328572
  • Davison, S. C., Allen, M. H., Mallon, E., & Barker, J. N. (2001). Contrasting patterns of streptococcal superantigen-induced T-cell proliferation in guttate vs. Chronic plaque psoriasis. The British Journal of Dermatology, 145(2), 245–251. https://doi.org/10.1046/j.1365-2133.2001.04341.x
  • De Almeida, C. V., Antiga, E., & Lulli, M. (2023). Oral and topical probiotics and postbiotics in Skincare and Dermatological therapy: A concise review. Microorganisms [Internet], 11(6), 1420. https://doi.org/10.3390/microorganisms11061420
  • De Francesco, M. A., & Caruso, A. (2022). The gut microbiome in psoriasis and Crohn’s Disease: Is its perturbation a common denominator for their pathogenesis? Vaccines, 10(2), 244. https://doi.org/10.3390/vaccines10020244
  • De Gruijl, F. (2016, December). For better or for worse, UV in psoriasis. Experimental Dermatology, 25(12), 945–946. https://doi.org/10.1111/exd.13216
  • Deng, Y., Chang, C., & Lu, Q. (2016). The inflammatory response in psoriasis: A comprehensive review. Clinical Reviews in Allergy & Immunology, 50(3), 377–389. https://doi.org/10.1007/s12016-016-8535-x
  • Dennis, E. A. (1997). The growing phospholipase A2 superfamily of signal transduction enzymes. Trends in Biochemical Sciences, 22(1), 1–2. https://doi.org/10.1016/s0968-0004(96)20031-3
  • DiCesare, A., DiMeglio, P., & Nestle, F. (2009). The IL-23/Th17 axis in the immunopathogenesis of psoriasis. The Journal of Investigative Dermatology, 129(6), 1339–1350. https://doi.org/10.1038/jid.2009.59
  • DiMeglio, P., Perera, G. K., & Nestle, F. O. (2011). The multitasking organ: Recent insights into skin immune function. Immunity, 35(6), 857–869. https://doi.org/10.1016/j.immuni.2011.12.003
  • Diluvio, L., Vollmer, S., Besgen, P., Ellwart, J. W., Chimenti, S., & Prinz, J. C. (2006). Identical TCR beta-chain rearrangements in streptococcal angina and skin lesions of patients with psoriasis vulgaris. Journal of Immunology, 176(11), 7104–7111. https://doi.org/10.4049/jimmunol.176.11.7104
  • Dixon, L., Witcraft, S., McCowan, N., & Brodell, R. (2018). Stress and skin disease quality of life: The moderating role of anxiety sensitivity social concerns. The British Journal of Dermatology, 178(4), 951–957. https://doi.org/10.1111/bjd.16082
  • Dobrică, E.-C., Cozma, M.-A., Găman, M.-A., Voiculescu, V.-M., & Găman, A. M. (2022). The involvement of oxidative stress in psoriasis: A systematic review. Antioxidants, 11(2), 282. https://doi.org/10.3390/antiox11020282
  • Doebel, T., Voisin, B., & Nagao, K. (2017). Langerhans cells – The macrophage in dendritic cell clothing. Trends in Immunology, 38(11), 817–828. https://doi.org/10.1016/j.it.2017.06.008
  • Dopytalska, K., Baranowska-Bik, A., Roszkiewicz, M., Bik, W., & Walecka, I. (2020). The role of leptin in selected skin diseases. Lipids in Health and Disease, 5(1), 19(215. https://doi.org/10.1186/s12944-020-01391-8
  • Douroudis, K., Ramessur, R., Barbosa, I. A., Baudry, D., Duckworth, M., Angit, C., Capon, F., Chung, R., Curtis, C. J., DiMeglio, P., Goulding, J. M. R., Griffiths, C. E. M., Lee, S. H., Mahil, S. K., Parslew, R., Reynolds, N. J., Shipman, A. R., Warren, R. B., Yiu, Z. Z. N., & BSTOP Study Groups. (2022). Differences in Clinical Features and Comorbid Burden between HLA-C*06: 02 carrier groups in >9,000 people with psoriasis. The Journal of Investigative Dermatology, 142(6), 1617–1628.e10.
  • Drago, L., De Grandi, R., Altomare, G., Pigatto, P., Rossi, O., & Toscano, M. (2016). Skin microbiota of first cousins affected by psoriasis and atopic dermatitis. Clinical and Molecular Allergy, 14(1), 2. https://doi.org/10.1186/s12948-016-0038-z
  • Duvic, M., Asano, A., Hager, C., & Mays, S. (1998). The pathogenesis of psoriasis and the mechanism of action of tazarotene. Journal of the American Academy of Dermatology, 39(4), S129–S133. https://doi.org/10.1016/S0190-9622(98)70309-3
  • Eirís, N., González-Lara, L., Santos-Juanes, J., Queiro, R., Coto, E., & Coto-Segura, P. (2014). Genetic variation at IL12B, IL23R and IL23A is associated with psoriasis severity, psoriatic arthritis and type 2 diabetes mellitus. Journal of Dermatological Science, 75(3), 167–172. https://doi.org/10.1016/j.jdermsci.2014.05.010
  • Eissa, A., Cretu, D., Soosaipillai, A., Thavaneswaran, A., Pellett, F., Diamandis, A., Cevikbas, F., Steinhoff, M., Diamandis, E. P., Gladman, D., & Chandran, V. (2013). Serum kallikrein-8 correlates with skin activity, but not psoriatic arthritis, in patients with psoriatic disease. Clinical Chemistry and Laboratory Medicine (CCLM), 51(2), 317–325. https://doi.org/10.1515/cclm-2012-0251
  • El Ferezli, J., Jenbazian, L., Rubeiz, N., Kibbi, A.-G., Zaynoun, S., & Abdelnoor, A. M. (2008). Streptococcus sp. and staphylococcus aureus isolates from patients with psoriasis possess genes that code for toxins (superantigens): Clinical and therapeutic implications. Immunopharmacology and Immunotoxicology, 30(2), 195–205. https://doi.org/10.1080/08923970801946808
  • Elango, T., Thirupathi, A., Subramanian, S., Ethiraj, P., Dayalan, H., & Gnanaraj, P. (2017). Methotrexate treatment provokes apoptosis of proliferating keratinocyte in psoriasis patients. Clinical and Experimental Medicine, 17(3), 371–381. https://doi.org/10.1007/s10238-016-0431-4
  • Elder, J. T., Nair, R. P., Guo, S.-W., Henseler, T., Christophers, E., & Voorhees, J. J. (1994). The genetics of psoriasis. Archives of Dermatology, 130(2), 216. https://doi.org/10.1001/archderm.1994.01690020082014
  • Elewski, B. (1990). Does pityrosporum ovale have a role in psoriasis? Archives of Dermatology, 126(8), 1111–1112. https://doi.org/10.1001/archderm.1990.01670320135037
  • Ellinghaus, E., Ellinghaus, D., Stuart, P. E., Nair, R. P., Debrus, S., Raelson, J. V., Belouchi, M., Fournier, H., Reinhard, C., Ding, J., Li, Y., Tejasvi, T., Gudjonsson, J., Stoll, S. W., Voorhees, J. J., Lambert, S., Weidinger, S., Eberlein, B., Kunz, M., … Franke, A. (2010). Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nature Genetics, 42(11), 991–995. https://doi.org/10.1038/ng.689
  • Elliott, H. R., Tillin, T., McArdle, W. L., Ho, K., Duggirala, A., Frayling, T. M., Davey Smith, G., Hughes, A. D., Chaturvedi, N., & Relton, C. L. (2014). Differences in smoking associated DNA methylation patterns in South Asians and Europeans. Clinical Epigenetics, 6(1), 4. https://doi.org/10.1186/1868-7083-6-4
  • Engen, P., Green, S., Voigt, R., Forsyth, C., & Keshavarzian, A. (2015). The gastrointestinal microbiome: Alcohol effects on the composition of intestinal microbiota. Alcohol Research: Current Reviews, 37(2), 223–236.
  • Enlund, F., Samuelsson, L., Enerbäck, C., Inerot, A., Wahlström, J., Yhr, M., Torinsson, Å., Riley, J., Swanbeck, G., & Martinsson, T. (1999). Psoriasis susceptibility locus in chromosome region 3q21 identified in patients from southwest Sweden. European Journal of Human Genetics, 7(7), 783–790. https://doi.org/10.1038/sj.ejhg.5200365
  • Escapa, I. F., Chen, T., Huang, Y., Gajare, P., Dewhirst, F. E., Lemon, K. P., & Xu, J. (2018). New Insights into human nostril microbiome from the Expanded Human Oral Microbiome Database (eHOMD): A resource for the microbiome of the human aerodigestive tract. mSystems [Internet], 3(6), e00187–18. https://doi.org/10.1128/mSystems.00187-18
  • Fahlén, A., Engstrand, L., Baker, B. S., Powles, A., & Fry, L. (2012). Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Archives of Dermatological Research, 304(1), 15–22. https://doi.org/10.1007/s00403-011-1189-x
  • Farag, A. G. A., Elshayb, E. E., Sharaky, D. R. A., Elashafey, E. N., & Khadra, A. A. E. A. (2019). Role of HCV infection in psoriasis: A clinical and immunohistochemical study. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/JCDR/2019/39627.12833
  • Farag, A., Shoaib, M., Labeeb, A., Sleem, A., Hussien, H., Elshaib, M., & Hanout, H. (2022). S100A8 (rs3806232) gene polymorphism and S100A8 serum level in psoriasis vulgaris patients: A preliminary study. Journal of Cosmetic Dermatology, 21(10), 4974–4982. https://doi.org/10.1111/jocd.14928
  • Farber, E. M. (1974). Natural history of psoriasis in 61 twin pairs. Archives of Dermatology, 109(2), 207. https://doi.org/10.1001/archderm.1974.01630020023005
  • Farkas, A., & Kemény, L. (2010). The alcohol metabolite acetaldehyde and psoriasis: Another trigger factor? Clinical and Experimental Dermatology, 35(8), 923–925. https://doi.org/10.1111/j.1365-2230.2010.03866.x
  • Farkas, A., & Kemény, L. (2013). Alcohol, liver, systemic inflammation and skin: A focus on patients with psoriasis. Skin Pharmacology and Physiology, 26(3), 119–126. https://doi.org/10.1159/000348865
  • Fenix, K., Wijesundara, D. K., Cowin, A. J., Grubor-Bauk, B., & Kopecki, Z. (2020). Immunological memory in imiquimod-induced murine model of psoriasiform dermatitis. International Journal of Molecular Sciences, 21(19), 7228. https://doi.org/10.3390/ijms21197228
  • Ferreira, B., Pio-Abreu, J., Reis, J., & Figueiredo, A. (2017). Analysis of the prevalence of mental disorders in psoriasis: The relevance of psychiatric assessment in dermatology. Psychiatria Danubina, 29(4), 401–406. https://doi.org/10.24869/psyd.2017.401
  • NIH Intramural Sequencing Center Comparative Sequencing Program, Findley, K., Oh, J., Yang, J., Conlan, S., Deming, C., Meyer, J. A., Schoenfeld, D., Nomicos, E., Park, M., Kong, H. H., & Segre, J. A. (2013). Topographic diversity of fungal and bacterial communities in human skin. Nature, 498(7454), 367–370.
  • Fisher, D. A. (1988). Exacerbation of psoriasis by the hypolipidemic agent, Gemfibrozil. Archives of Dermatology, 124(6), 854. https://doi.org/10.1001/archderm.1988.01670060012006
  • Früh, K., & Yang, Y. (1999). Antigen presentation by MHC class I and its regulation by interferon gamma. Current Opinion in Immunology, 11(1), 76–81. https://doi.org/10.1016/s0952-7915(99)80014-4
  • Fry, L., & Baker, B. S. (2007). Triggering psoriasis: The role of infections and medications. Clinics in Dermatology, 25(6), 606–615. https://doi.org/10.1016/j.clindermatol.2007.08.015
  • Fry, L., Baker, B. S., Powles, A. V., Fahlen, A., & Engstrand, L. (2013). Is chronic plaque psoriasis triggered by microbiota in the skin? British Journal of Dermatology, 169(1), 47–52. https://doi.org/10.1111/bjd.12322
  • Fuchs, E., & Cleveland, D.W. (1998). A structural scaffolding of intermediate filaments in health and disease. Science, 279 (5350), 514–519. https://doi.org/10.1126/science.279.5350.514
  • Fuentes-Duculan, J., Bonifacio, K., Kunjravia, N., Cueto, I., Li, X., Garcet, S., & Krueger, J. G. (2017). 004 Autoantigens ADAMTSL5 and LL-37 are significantly upregulated in active psoriasis and associated with dendritic cells and macrophages. Journal of Investigative Dermatology, 137(5), S1. https://doi.org/10.1016/j.jid.2017.02.017
  • Fulton, C., Anderson, G. M., Zasloff, M., Bull, R., & Quinn, A. G. (1997). Expression of natural peptide antibiotics in human skin. Lancet, 350(9093), 1750–1751. https://doi.org/10.1016/S0140-6736(05)63574-X
  • Fyhrquist, N., Muirhead, G., Prast-Nielsen, S., Jeanmougin, M., Olah, P., Skoog, T., Jules-Clement, G., Feld, M., Barrientos-Somarribas, M., Sinkko, H., Van Den Bogaard, E. H., Zeeuwen, P. L. J. M., Rikken, G., Schalkwijk, J., Niehues, H., Däubener, W., Eller, S. K., Alexander, H., Pennino, D., … Alenius, H. (2019). Microbe-host interplay in atopic dermatitis and psoriasis. Nature Communications, 10(1), 4703. https://doi.org/10.1038/s41467-019-12253-y
  • Gabr, S. A., & Al-Ghadir, A. H. (2012). Role of cellular oxidative stress and cytochrome c in the pathogenesis of psoriasis. Archives of Dermatological Research, 304(6), 451–457. https://doi.org/10.1007/s00403-012-1230-8
  • Gallais Sérézal, I., Hoffer, E., Ignatov, B., Martini, E., Zitti, B., Ehrström, M., & Eidsmo, L. (2019). A skewed pool of resident T cells triggers psoriasis-associated tissue responses in never-lesional skin from patients with psoriasis. The Journal of Allergy and Clinical Immunology, 143(4), 1444–1454. https://doi.org/10.1016/j.jaci.2018.08.048
  • Gallo, R. L., & Hooper, L. V. (2012). Epithelial antimicrobial defence of the skin and intestine. Nature Reviews Immunology, 12(7), 503–516. https://doi.org/10.1038/nri3228
  • Gallo, R. L., Ono, M., Povsic, T., Page, C., Eriksson, E., Klagsbrun, M., & Bernfield, M. (1994). Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proceedings of the National Academy of Sciences of the United States of America, 91(23), 11035–11039. https://doi.org/10.1073/pnas.91.23.11035
  • Ganguly, D., Chamilos, G., Lande, R., Gregorio, J., Meller, S., Facchinetti, V., Homey, B., Barrat, F. J., Zal, T., & Gilliet, M. (2009). Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. The Journal of Experimental Medicine, 206(9), 1983–1994. https://doi.org/10.1084/jem.20090480
  • Gao, L., Li, K., Li, F., Li, H., Liu, L., Wang, L., Zhang, Z., Gao, T., & Liu, Y. (2010). Polymorphisms in the FOXP3 gene in Han Chinese psoriasis patients. Journal of Dermatological Science, 57(1), 51–56. https://doi.org/10.1016/j.jdermsci.2009.09.010
  • Gao, Z., Tseng, C., Strober, B. E., Pei, Z., Blaser, M. J., & Ahmed, N. (2008). Substantial alterations of the cutaneous bacterial biota in Psoriatic Lesions. PLoS One, 3(7), e2719. https://doi.org/10.1371/journal.pone.0002719
  • García-Montero, C., Fraile-Martínez, O., Gómez-Lahoz, A., Pekarek, L., Castellanos, A., Noguerales-Fraguas, F., Coca, S., Guijarro, L., García-Honduvilla, N., Asúnsolo, A., Sanchez-Trujillo, L., Lahera, G., Bujan, J., Monserrat, J., Álvarez-Mon, M., Álvarez-Mon, M., & Ortega, M. (2021). Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease Nutrients, 13(2), 699. https://doi.org/10.3390/nu13020699
  • Gasmi Benahmed, A., Kumar Mujawdiya, P., Noor, S., & Gasmi, A. (2022). Porphyromonas gingivalis in the development of periodontitis: Impact on dysbiosis and inflammation. Archives of Razi Institute, 77(5), 1539–1551. https://doi.org/10.22092/ARI.2021.356596.1875
  • Gelfand, J. M., Neimann, A. L., Shin, D. B., Wang, X., Margolis, D. J., & Troxel, A. B. (2006). Risk of myocardial infarction in patients with psoriasis. JAMA, 296(14), 1735–1741. https://doi.org/10.1001/jama.296.14.1735
  • Gelfand, J. M., Stern, R. S., Nijsten, T., Feldman, S. R., Thomas, J., Kist, J., Rolstad, T., & Margolis, D. J. (2005). The prevalence of psoriasis in African Americans: Results from a population-based study. Journal of the American Academy of Dermatology, 52(1), 23–26. https://doi.org/10.1016/j.jaad.2004.07.045
  • Georgakopoulos, J. R., Mufti, A., Vender, R., Prajapati, V. H., & Yeung, J. (2021). Incidence and prognosis of COVID-19 in psoriasis patients on biologic therapy: A multicentre retrospective cohort study. Journal of the European Academy of Dermatology and Venereology, 35(8), e485–e487. https://doi.org/10.1111/jdv.17279
  • Gianfrancesco, M., Dehairs, J., L’Homme, L., Herinckx, G., Esser, N., Jansen, O., Habraken, Y., Lassence, C., Swinnen, J., Rider, M., Piette, J., Paquot, N., & Legrand-Poels, S. (2019). Saturated fatty acids induce NLRP3 activation in human macrophages through K(+) e_ux resulting from phospholipid saturation and Na, K-ATPase disruption. Biochimica Et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1864(7), 1017–1030. https://doi.org/10.1016/j.bbalip.2019.04.001
  • Gibson, F., Hanly, A., Grbic, N., Grunberg, N., Wu, M., Collard, M., & Alani, R. M. (2022). Epigenetic dysregulation in autoimmune and inflammatory skin diseases. Clinical Reviews in Allergy & Immunology, 63(3), 447–471. https://doi.org/10.1007/s12016-022-08956-8
  • Gisondi, P., Piaserico, S., Naldi, L., Dapavo, P., Conti, A., Malagoli, P., Marzano, A. V., Bardazzi, F., Gasperini, M., Cazzaniga, S., Costanzo, A., & collaborators in the studies of COVID-19 pandemic. (2021). Incidence rates of hospitalization and death from COVID-19 in patients with psoriasis receiving biological treatment: A Northern Italy experience. The Journal of Allergy and Clinical Immunology, 147(2), 558–560.e1.
  • Gómez-Chávez, F., Cedillo-Peláez, C., Zapi-Colín, L. A., Gutiérrez-González, G., Martínez-Torres, I., Peralta, H., Chavez-Galan, L., Avila-Calderón, E. D., Contreras-Rodríguez, A., Bartolo-Aguilar, Y., Rodríguez-Martínez, S., Cancino-Diaz, M. E., & Cancino-Diaz, J. C. (2021). The extracellular vesicles from the commensal Staphylococcus Epidermidis ATCC12228 strain regulate skin inflammation in the imiquimod-induced psoriasis murine model. International Journal of Molecular Sciences, 22(23), 13029. https://doi.org/10.3390/ijms222313029
  • Gottlieb, S. L., Gilleaudeau, P., Johnson, R., Estes, L., Woodworth, T. G., Gottlieb, A. B., & Krueger, J. G. (1995). Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nature Medicine, 1(5), 442–447. https://doi.org/10.1038/nm0595-442
  • Goyal, M. M., & Basak, A. (2010). Human catalase: Looking for complete identity. Protein & Cell, 1(10), 888–897. https://doi.org/10.1007/s13238-010-0113-z
  • Graciano-Machuca, O., Alvarado-Navarro, A., Ramírez-Dueñas, M. G., Villanueva-Quintero, D. G., Velarde de La Cruz, E. E., Machado-Sulbarán, A. C., Montoya-Buelna, M., & Sánchez-Hernández, P. E. (2020). Diversity of KIR/HLA genotypes and their association with psoriasis vulgaris in the western mexican population. Genes, 11(3), 338. https://doi.org/10.3390/genes11030338
  • Greb, J. E., Goldminz, A. M., Elder, J. T., Lebwohl, M. G., Gladman, D. D., Wu, J. J., Mehta, N. N., Finlay, A. Y., & Gottlieb, A. B. (2016). Psoriasis. Nature Reviews Disease Primers, 2(1), 16082. https://doi.org/10.1038/nrdp.2016.82
  • Grice, E. A., Kong, H. H., Conlan, S., Deming, C. B., Davis, J., Young, A. C., Bouffard, G. G., Blakesley, R. W., Murray, P. R., Green, E. D., Turner, M. L., Segre, J. A., & NISC Comparative Sequencing Program. (2009). Topographical and temporal diversity of the human skin microbiome. Science, 324(5931), 1190–1192. https://doi.org/10.1126/science.1171700
  • Griffiths, C., Armstrong, A., Gudjonsson, J., & Barker, J. (2021). Psoriasis. The Lancet, 397(10281), 1301–1315. https://doi.org/10.1016/S0140-6736(20)32549-6
  • Griffiths, C. E., & Barker, J. N. (2007). Pathogenesis and clinical features of psoriasis. The Lancet, 370(9583), 263–271. https://doi.org/10.1016/S0140-6736(07)61128-3
  • Groeger, D., O’Mahony, L., Murphy, E. F., Bourke, J. F., Dinan, T. G., Kiely, B., Shanahan, F., & Quigley, E. M. M. (2013). Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes, 4(4), 325–339. https://doi.org/10.4161/gmic.25487
  • Gu, L.-H., & Coulombe, P. A. (2007). Keratin function in skin epithelia: A broadening palette with surprising shades. Current Opinion in Cell Biology, 19(1), 13–23. https://doi.org/10.1016/j.ceb.2006.12.007
  • Guarneri, C., Aguennouz, M., Guarneri, F., Polito, F., Benvenga, S., & Cannavò, S. P. (2018). Autoimmunity to heterogeneous nuclear ribonucleoprotein A1 in psoriatic patients and correlation with disease severity. Journal der Deutschen Dermatologischen Gesellschaft, 16(9), 1103–1107. https://doi.org/10.1111/ddg.13631
  • Gudjonsson, J. E., Ding, J., Johnston, A., Tejasvi, T., Guzman, A. M., Nair, R. P., Voorhees, J. J., Abecasis, G. R., & Elder, J. T. (2010). Assessment of the psoriatic transcriptome in a large sample: Additional regulated genes and comparisons with in vitro models. The Journal of Investigative Dermatology, 130(7), 1829–1840. https://doi.org/10.1038/jid.2010.36
  • Gudjónsson, J. E., Kárason, A., Antonsdóttir, A. A., Rúnarsdóttir, E. H., Gulcher, J. R., Stefánsson, K., & Valdimarsson, H. (2002). HLA-Cw6-positive and HLA-Cw6-negative patients with psoriasis vulgaris have distinct clinical features. The Journal of Investigative Dermatology, 118(2), 362–365. https://doi.org/10.1046/j.0022-202x.2001.01656.x
  • Gudjonsson, J. E., Karason, A., Antonsdottir, A., Runarsdottir, E. H., Hauksson, V. B., Upmanyu, R., Gulcher, J., Stefansson, K., & Valdimarsson, H. (2003). Psoriasis patients who are homozygous for the HLA-Cw*0602 allele have a 2.5-fold increased risk of developing psoriasis compared with Cw6 heterozygotes. The British Journal of Dermatology, 148(2), 233–235. https://doi.org/10.1046/j.1365-2133.2003.05115.x
  • Gudjonsson, J. E., Karason, A., Runarsdottir, E. H., Antonsdottir, A. A., Hauksson, V. B., Jónsson, H. H., Gulcher, J., Stefansson, K., & Valdimarsson, H. (2006). Distinct clinical differences between HLA-Cw*0602 positive and negative psoriasis patients—An analysis of 1019 HLA-C- and HLA-B-typed patients. The Journal of Investigative Dermatology, 126(4), 740–745. https://doi.org/10.1038/sj.jid.5700118
  • Gudjonsson, J. E., Thorarinsson, A. M., Sigurgeirsson, B., Kristinsson, K. G., & Valdimarsson, H. (2003). Streptococcal throat infections and exacerbation of chronic plaque psoriasis: A prospective study. The British Journal of Dermatology, 149(3), 530–534. https://doi.org/10.1046/j.1365-2133.2003.05552.x
  • Gudmundsdottir, A. S., Sigmundsdottir, H., Sigurgeirsson, B., Good, M. F., Valdimarsson, H., & Jonsdottir, I. (1999). Is an epitope on keratin 17 a major target for autoreactive T lymphocytes in psoriasis? Clinical and Experimental Immunology, 117(3), 580–586. https://doi.org/10.1046/j.1365-2249.1999.01013.x
  • Gudmundsson, G. H., Agerberth, B., Odeberg, J., Bergman, T., Olsson, B., & Salcedo, R. (1996). The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. European Journal of Biochemistry, 238(2), 325–332. https://doi.org/10.1111/j.1432-1033.1996.0325z.x
  • Guiducci, C., Tripodo, C., Gong, M., Sangaletti, S., Colombo, M. P., Coffman, R. L., & Barrat, F. J. (2010). Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. Journal of Experimental Medicine, 207(13), 2931–2942. https://doi.org/10.1084/jem.20101048
  • Guo, Y., Luo, L., Zhu, J., & Li, C. (2023). Multi-Omics research strategies for psoriasis and atopic dermatitis. International Journal of Molecular Sciences, 24(9), 8018. https://doi.org/10.3390/ijms24098018
  • Gupta, A., & Gupta, V. (2010). Metabolic syndrome: What are the risks for humans? Bioscience Trends, 4(5), 204–212.
  • Gupta, M., Weinberg, J. M., Yamauchi, P. S., Patil, A., Grabbe, S., & Goldust, M. (2022). Psoriasis: Embarking a dynamic shift in the skin microbiota. Journal of Cosmetic Dermatology, 21(4), 1402–1406. https://doi.org/10.1111/jocd.14273
  • Gutiérrez, J. (2002). Daño oxidativo, radicales libres y antioxidantes. Rev Cub Med Milit, 31(2), 126–133. https://doi.org/10.5867/medwave.2002.07.3608
  • Habeebuddin, M., Karnati, R. K., Shiroorkar, P. N., Nagaraja, S., Asdaq, S. M. B., Khalid Anwer, M., & Fattepur, S. (2022). Topical probiotics: More than a skin deep. Pharmaceutics, 14(3), 557. https://doi.org/10.3390/pharmaceutics14030557
  • Hadley, G. A., Bartlett, S. T., Via, C. S., Rostapshova, E. A., & Moainie, S. (1997). The epithelial cell-specific integrin, CD103 (alpha E integrin), defines a novel subset of alloreactive CD8+ CTL. Journal of Immunology, 159(8), 3748–3756. https://doi.org/10.4049/jimmunol.159.8.3748
  • Halliwell, B. (1997). Antioxidants and human disease: A general introduction. Nutrition Reviews, 55(1), S44–S49. https://doi.org/10.1111/j.1753-4887.1997.tb06100.x
  • Hammar, H., Gu, S. Q., Johannesson, A., Sundkvist, K. G., & Biberfeld, P. (1984). Subpopulations of mononuclear cells in microscopic lesions of psoriatic patients. Selective accumulation of suppressor/cytotoxic T cells in epidermis during the evolution of the lesion. The Journal of Investigative Dermatology, 83(6), 416–420. https://doi.org/10.1111/1523-1747.ep12273499
  • Hanson, K. M., & Clegg, R. M. (2002). Observation and quantification of ultraviolet-induced reactive oxygen species in ex vivo human skin¶. Photochemistry and Photobiology, 76(1), 57–63. https://doi.org/10.1562/0031-8655(2002)0760057OAQOUI2.0.CO2
  • Harder, J., Bartels, J., Christophers, E., & Schroder, J. M. (2001). Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. The Journal of Biological Chemistry, 276(8), 5707–5713. https://doi.org/10.1074/jbc.M008557200
  • Harder, J., Bartels, J., Christophers, E., & Schröder, J. M. (1997). A peptide antibiotic from human skin. Nature, 387(6636), 861. https://doi.org/10.1038/43088
  • Harder, J., Meyer-Hoffert, U., Wehkamp, K., Schwichtenberg, L., & Schröder, J.-M. (2004). Differential gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. The Journal of Investigative Dermatology, 123(3), 522–529. https://doi.org/10.1111/j.0022-202X.2004.23234.x
  • Harrison, O. J., Linehan, J. L., Shih, H.-Y., Bouladoux, N., Han, S.-J., Smelkinson, M., Sen, S. K., Byrd, A. L., Enamorado, M., Yao, C., Tamoutounour, S., Van Laethem, F., Hurabielle, C., Collins, N., Paun, A., Salcedo, R., O’Shea, J. J., & Belkaid, Y. (2019). Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science, 363(6422), eaat6280. https://doi.org/10.1126/science.aat6280
  • Hawkes, J. E., Gonzalez, J. A., & Krueger, J. G. (2017). Autoimmunity in Psoriasis: Evidence for Specific Autoantigens. Current Dermatology Reports, 6(2), 104–112. https://doi.org/10.1007/s13671-017-0177-6
  • Hawkes, J. E., Yan, B. Y., Chan, T. C., & Krueger, J. G. (2018). Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. Journal of Immunology, 201(6), 1605–1613. https://doi.org/10.4049/jimmunol.1800013
  • Helmick, C. G., Lee-Han, H., Hirsch, S. C., Baird, T. L., & Bartlett, C. L. (2014). Prevalence of psoriasis among adults in the U.S. American Journal of Preventive Medicine, 47(1), 37–45. https://doi.org/10.1016/j.amepre.2014.02.012
  • Heng, M. C. Y., & Heng, M. K. (1988). Beta-Adrenoceptor Antagonist-Induced Psoriasiform Eruption Clinical and Pathogenetic Aspects. International Journal of Dermatology, 27(9), 619–627. https://doi.org/10.1111/j.1365-4362.1988.tb02419.x
  • Herbert, D., Franz, S., Popkova, Y., Anderegg, U., Schiller, J., Schwede, K., Lorz, A., Simon, J., & Saalbach, A. (2018). High-fat diet exacerbates early psoriatic skin inflammation independent of obesity: Saturated fatty acids as key players. The Journal of Investigative Dermatology, 138(9), 1999–2009. https://doi.org/10.1016/j.jid.2018.03.1522
  • Hernández-Bello, J., Rodríguez-Puente, M., Gutiérrez-Cuevas, J., García-Arellano, S., Muñoz-Valle, J. F., Fafutis-Morris, M., Villanueva-Quintero, D. G., & Alvarado-Navarro, A. (2021). Macrophage migration inhibitory factor gene polymorphisms (SNP -173 G>C and STR-794 CATT5-8) confer risk of plaque psoriasis: A case–control study. Journal of Clinical Laboratory Analysis, 35(11). https://doi.org/10.1002/jcla.23999
  • Hernández-Collazo, A. A., Pérez-Méndez, O., López-Olmos, V., Delgado-Rizo, V., Muñoz-Valle, J. F., Martínez-López, E., Villanueva-Quintero, D. G., Domínguez-Díaz, C., Fafutis-Morris, M., & Alvarado-Navarro, A. (2021). Association between rs662 (A > G) and rs854560 (A > T) polymorphisms in PON1 gene and the susceptibility for psoriasis in mestizo population of Western Mexico. Molecular Biology Reports, 48(1), 183–194. https://doi.org/10.1007/s11033-020-06031-z
  • Herster, F., Bittner, Z., Archer, N. K., Dickhöfer, S., Eisel, D., Eigenbrod, T., Knorpp, T., Schneiderhan-Marra, N., Löffler, M. W., Kalbacher, H., Vierbuchen, T., Heine, H., Miller, L. S., Hartl, D., Freund, L., Schäkel, K., Heister, M., Ghoreschi, K., & Weber, A. N. R. (2020). Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nature Communications, 11(1), 105. https://doi.org/10.1038/s41467-019-13756-4
  • Honda, T., & Kabashima, K. (2019). Current understanding of the role of dietary lipids in the pathophysiology of psoriasis. Journal of Dermatological Science, 94(3), 314–320. https://doi.org/10.1016/j.jdermsci.2019.05.003
  • Honeyman, J. (2016). Psychoneuroimmunology and the skin. Acta dermato-venereologica, 96(217), 38–46. https://doi.org/10.2340/00015555-2376
  • Houshang, N., Reza, K., Masoud, S., Ali, E., Mansour, R., & Vaisi-Raygani, A. (2014). Antioxidant status in patients with psoriasis: Antioxidant in patients with psoriasis. Cell Biochemistry and Function, 32(3), 268–273. https://doi.org/10.1002/cbf.3011
  • Hu, S. C.-S., Yu, H.-S., Yen, F.-L., Lin, C.-L., Chen, G.-S., & Lan, C.-C. E. (2016). Neutrophil extracellular trap formation is increased in psoriasis and induces human β-defensin-2 production in epidermal keratinocytes. Scientific Reports, 6(1), 31119. https://doi.org/10.1038/srep31119
  • Hugh, J., & Weinberg, J. (2018). Update on the pathophysiology of psoriasis. Cutis, 102(55), 6–12.
  • Hunter, H., Griffith, C., & Kleyn, C. (2013). Does psychosocial stress play a role in the exacerbation of psoriasis? The British Journal of Dermatology, 169(5), 965–974. https://doi.org/10.1111/bjd.12478
  • Huynh, M., Gupta, R., & Koo, J. (2013). Emotional stress as a trigger for inflammatory skin disorders. Seminars in Cutaneous Medicine and Surgery, 32(2), 68–72. https://doi.org/10.12788/j.sder.0003
  • Ibrahim, H. R., Matsuzaki, T., & Aoki, T. (2001). Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Letters, 506(1), 27–32. https://doi.org/10.1016/s0014-5793(01)02872-1
  • Imoto, T. (1996). Engineering of lysozyme. In P. Jolles (Ed.), Lysozymes: Model enzymes in biochemistry and biology. Birkhäuser Verlag, 163—181.
  • Jacobi, T. C., & Highet, A. (2003). A clinical dilemma while treating hypercholesterolaemia in psoriasis. British Journal of Dermatology, 149(6), 1305–1306. https://doi.org/10.1111/j.1365-2133.2003.05675.x
  • Jean-Philippe, J., Paz, S., & Caputi, M. (2013). hnRNP A1: The Swiss army knife of gene expression. International Journal of Molecular Sciences, 14(9), 18999–19024. https://doi.org/10.3390/ijms140918999
  • Jiang, Q., Yang, G., Xiao, F., Xie, J., Wang, S., Lu, L., & Cui, D. (2021). Role of Th22 cells in the pathogenesis of autoimmune diseases. Frontiers in Immunology, 12, 688066. https://doi.org/10.3389/fimmu.2021.688066
  • Jin, L., & Wang, G. (2014). Keratin 17: A critical player in the pathogenesis of psoriasis. Medicinal Research Reviews, 34(2), 438–454. https://doi.org/10.1002/med.21291
  • Johnson-Huang, L. M., Lowes, M. A., & Krueger, J. G. (2012). Putting together the psoriasis puzzle: An update on developing targeted therapies. Disease Models & Mechanisms, 5(4), 423–433. https://doi.org/10.1242/dmm.009092
  • Johnston, A., Gudjonsson, J. E., Sigmundsdottir, H., Love, T. J., & Valdimarsson, H. (2004). Peripheral blood T cell responses to keratin peptides that share sequences with streptococcal M proteins are largely restricted to skin-homing CD8(+) T cells. Clinical and Experimental Immunology, 138(1), 83–93. https://doi.org/10.1111/j.1365-2249.2004.00600.x
  • Jones, D. A., Yawalkar, N., Suh, K.-Y., Sadat, S., Rich, B., & Kupper, T. S. (2004). Identification of Autoantigens in Psoriatic Plaques Using Expression Cloning. Journal of Investigative Dermatology, 123(1), 93–100. https://doi.org/10.1111/j.0022-202X.2004.22709.x
  • Jorgenson, E., Thai, K., Hoffmann, T., Sakoda, L., Kvale, M., Banda, Y., Schaefer, C., Risch, N., Mertens, J., Weisner, C., & Choquet, H. (2017). Genetic contributors to variation in alcohol consumption vary by race/ethnicity in a large multi-ethnic genome-wide association study. Molecular Psychiatry, 22(9), 1359–1367. https://doi.org/10.1038/mp.2017.101
  • Joshi, A. A., Lerman, J. B., Aberra, T. M., Afshar, M., Teague, H. L., Rodante, J. A., Krishnamoorthy, P., Ng, Q., Aridi, T. Z., Salahuddin, T., Natarajan, B., Lockshin, B. N., Ahlman, M. A., Chen, M. Y., Rader, D. J., Reilly, M. P., Remaley, A. T., Bluemke, D. A., Playford, M. P., … Mehta, N. N. (2016). GlycA is a Novel Biomarker of inflammation and subclinical cardiovascular disease in psoriasis. Circulation Research, 119(11), 1242–1253. https://doi.org/10.1161/CIRCRESAHA.116.309637
  • Joyce, C. E., Zhou, X., Xia, J., Ryan, C., Thrash, B., Menter, A., Zhang, W., & Bowcock, A. M. (2011). Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRnaome. Human Molecular Genetics, 20(20), 4025–4040. https://doi.org/10.1093/hmg/ddr331
  • Ju, H. J., Park, H. J., Choi, I. H., Lee, K. H., Kwon, M. Y., & Park, C. J. (2022). Comparison of Th1 and Th17 inflammatory cytokine profiles between chronic plaque and acute guttate psoriasis. Annals of Dermatology, 34(3), 200–205. https://doi.org/10.5021/ad.2022.34.3.200
  • Julià, A., Tortosa, R., Hernanz, J. M., Cañete, J. D., Fonseca, E., Ferrándiz, C., Unamuno, P., Puig, L., Fernández-Sueiro, J. L., Sanmartí, R., Rodríguez, J., Gratacós, J., Dauden, E., Sánchez-Carazo, J. L., López-Estebaranz, J. L., Moreno-Ramírez, D., Queiró, R., Montilla, C., Torre-Alonso, J. C., … Marsal, S. (2012). Risk variants for psoriasis vulgaris in a large case–control collection and association with clinical subphenotypes. Human Molecular Genetics, 21(20), 4549–4557. https://doi.org/10.1093/hmg/dds295
  • Kamiya, K., Kishimoto, M., Sugai, J., Komine, M., & Ohtsuki, M. (2019, September). Risk factors for the development of psoriasis. International Journal of Molecular Sciences, 20(18), 4347. https://doi.org/10.3390/ijms20184347
  • Kanda, N., Hoashi, T., & Saeki, H. (2020). Nutrition and psoriasis. International Journal of Molecular Sciences, 21(15), 5405. https://doi.org/10.3390/ijms21155405
  • Karasawa, T., Kawashima, A., Usui-Kawanishi, F., Watanabe, S., Kimura, H., Kamata, R., Shirasuna, K., Koyama, Y., Sato-Tomita, A., Matsuzaka, T., Tomoda, H., Park, S.-Y., Shibayama, N., Shimano, H., Kasahara, T., & Takahashi, M. (2018). Saturated fatty acids undergo intracellular crystallization and activate the NLRP3 inflammasome in macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(4), 744–756. https://doi.org/10.1161/ATVBAHA.117.310581
  • Karbach, S., Croxford, A. L., Oelze, M., Schüler, R., Minwegen, D., Wegner, J., Koukes, L., Yogev, N., Nikolaev, A., Reißig, S., Ullmann, A., Knorr, M., Waldner, M., Neurath, M. F., Li, H., Wu, Z., Brochhausen, C., Scheller, J., Rose-John, S., … Münzel, T. (2014). Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(12), 2658–2668. https://doi.org/10.1161/ATVBAHA.114.304108
  • Kashem, S. W., Igyártó, B. Z., Gerami-Nejad, M., Kumamoto, Y., Mohammed, J., Jarrett, E., Drummond, R. A., Zurawski, S. M., Zurawski, G., Berman, J., Iwasaki, A., Brown, G. D., & Kaplan, D. H. (2015). Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity, 42(2), 356–366. https://doi.org/10.1016/j.immuni.2015.01.008
  • Kashem, S. W., & Kaplan, D. H. (2016). Skin immunity to Candida albicans. Trends in Immunology, 37(7), 440–450. https://doi.org/10.1016/j.it.2016.04.007
  • Kastelan, M., Massari, L., & Brajac, I. (2006). Apoptosis mediated by cytolytic molecules might be responsible for maintenance of psoriatic plaques. Medical Hypotheses, 67(2), 336–337. https://doi.org/10.1016/j.mehy.2006.01.051
  • Kastelan, M., Prpić-Massari, L., & Brajac, I. (2009). Apoptosis in psoriasis. Acta Dermatovenereol Croat, 17(3), 182–186.
  • Katsimbri, P., Korakas, E., Kountouri, A., Ikonomidis, I., Tsougos, E., Vlachos, D., Papadavid, E., Raptis, A., & Lambadiari, V. (2021). The effect of antioxidant and anti-inflammatory capacity of Diet on Psoriasis and Psoriatic Arthritis phenotype: Nutrition as therapeutic tool? Antioxidants (Basel), 22(2), 157. https://doi.org/10.3390/antiox10020157
  • Kaufman, B. P., & Alexis, A. F. (2018). Psoriasis in skin of color: Insights into the epidemiology, clinical presentation, genetics, quality-of-life impact, and treatment of psoriasis in non-white Racial/Ethnic groups. American Journal of Clinical Dermatology, 19(3), 405–423. https://doi.org/10.1007/s40257-017-0332-7
  • Kaushik, S., & Lebwohl, M. (2019). Psoriasis: Which therapy for which patient: Psoriasis comorbidities and preferred systemic agents. Journal of the American Academy of Dermatology, 80(1), 27–40. https://doi.org/10.1016/j.jaad.2018.06.057
  • Keermann, M., Kõks, S., Reimann, E., Prans, E., Abram, K., & Kingo, K. (2015). Transcriptional landscape of psoriasis identifies the involvement of IL36 and IL36RN. BMC Genomics, 16(1), 322. https://doi.org/10.1186/s12864-015-1508-2
  • Kempfer, R., & Pombo, A. (2020). Methods for mapping 3D chromosome architecture. Nature Reviews Genetics, 21(4), 207–226. https://doi.org/10.1038/s41576-019-0195-2
  • Khalid, U., Ahlehoff, O., Gislason, G. H., Skov, L., Torp-Pedersen, C., & Hansen, P. R. (2015). Increased risk of aortic valve stenosis in patients with psoriasis: A nationwide cohort study. European Heart Journal, 36(32), 2177–2183. https://doi.org/10.1093/eurheartj/ehv185
  • Khalid, U., Egeberg, A., Ahlehoff, O., Smedegaard, L., Gislason, G. H., & Hansen, P. R. (2016). Nationwide study on the risk of abdominal aortic aneurysms in patients with psoriasis. Arteriosclerosis, Thrombosis, and Vascular Biology, 36(5), 1043–1048. https://doi.org/10.1161/ATVBAHA.116.307449
  • Kim, G. K., & Del Rosso, J. Q. (2010). Drug-provoked psoriasis: Is it drug induced or drug aggravated?: Understanding pathophysiology and clinical relevance. The Journal of Clinical and Aesthetic Dermatology, 3(1), 32–38.
  • Kim, J., & Krueger, J. G. (2017). Highly effective new treatments for psoriasis target the IL-23/Type 17 T cell autoimmune axis. Annual Review of Medicine, 68(1), 255–269. https://doi.org/10.1146/annurev-med-042915-103905
  • Kim, J., Lee, J., Kim, H. J., Kameyama, N., Nazarian, R., Der, E., Cohen, S., Guttman-Yassky, E., Putterman, C., & Krueger, J. G. (2021). Single-cell transcriptomics applied to emigrating cells from psoriasis elucidate pathogenic versus regulatory immune cell subsets. The Journal of Allergy and Clinical Immunology, 148(5), 1281–1292. https://doi.org/10.1016/j.jaci.2021.04.021
  • Kim, S., Choe, J., & Park, K. (2020). Ethanol augments monosodium urate-induced NLRP3 inflammasome activation via regulation of AhR and TXNIP in human macrophages. Yonsei Medical Journal, 61(6), 533–541. https://doi.org/10.3349/ymj.2020.61.6.533
  • Kishikawa, T., Arase, N., Tsuji, S., Maeda, Y., Nii, T., Hirata, J., Suzuki, K., Yamamoto, K., Masuda, T., Ogawa, K., Ohshima, S., Inohara, H., Kumanogoh, A., Fujimoto, M., & Okada, Y. (2021). Large-scale plasma-metabolome analysis identifies potential biomarkers of psoriasis and its clinical subtypes. Journal of Dermatological Science, 102(2), 78–84. https://doi.org/10.1016/j.jdermsci.2021.03.006
  • Kivelä, T., Jääskeläinen, J., Vaheri, A., & Carpén, O. (2000). Ezrin, a membrane-organizing protein, as a polarization marker of the retinal pigment epithelium in vertebrates. Cell and Tissue Research, 301(2), 217–223. https://doi.org/10.1007/s004410000225
  • Kjersti, D., Duvetorp, A., Iversen, L., Østergaard, M., Seifert, O., Tveit, K. S., & Skov, L. (2019). Prevalence of psoriasis and psoriatic arthritis and patient perceptions of severity in Sweden, Norway and Denmark: Results from the Nordic patient survey of psoriasis and psoriatic arthritis. Acta Dermato Venereologica, 99, 18–25. https://doi.org/10.2340/00015555-3017
  • Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1. https://doi.org/10.1093/nar/gks808
  • Kõks, S., Kingo, K., Vabrit, K., Rätsep, R., Karelson, M., Silm, H., & Vasar, E. (2005). Possible relations between the polymorphisms of the cytokines IL-19, IL-20 and IL-24 and plaque-type psoriasis. Genes and Immunity, 6(5), 407–415. https://doi.org/10.1038/sj.gene.6364216
  • Korman, N. J. (2020). Management of psoriasis as a systemic disease: What is the evidence? British Journal of Dermatology, 182(4), 840–848. https://doi.org/10.1111/bjd.18245
  • Kozakowska, M., Pietraszek-Gremplewicz, K., Jozkowicz, A., & Dulak, J. (2015). The role of oxidative stress in skeletal muscle injury and regeneration: Focus on antioxidant enzymes. Journal of Muscle Research and Cell Motility, 36(6), 377–393. https://doi.org/10.1007/s10974-015-9438-9
  • Krinsky, N. I. (1989). Antioxidant functions of carotenoids. Free Radical Biology and Medicine, 7(6), 617–635. https://doi.org/10.1016/0891-5849(89)90143-3
  • Kryczek, I., Bruce, A., Gudjonsson, J., Johnston, A., Aphale, A., Vatan, L., Szeliga, W., Wang, Y., Liu, Y., Welling, T., Elder, J., & Zou, W. (2008). Induction of IL-17+ T cell trafficking and development by IFN-gamma: Mechanism and pathological relevance in psoriasis. Journal of Immunology (Baltimore, Md: 1950), 161(7), 4733–4741. https://doi.org/10.4049/jimmunol.181.7.4733
  • Kumar, B. V., Ma, W., Miron, M., Granot, T., Guyer, R. S., Carpenter, D. J., Senda, T., Sun, X., Ho, S.-H., Lerner, H., Friedman, A. L., Shen, Y., & Farber, D. L. (2017). Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Reports, 20(12), 2921–2934. https://doi.org/10.1016/j.celrep.2017.08.078
  • Kumar, S., Han, J., Li, T., & Qureshi, A. A. (2013). Obesity, waist circumference, weight change and the risk of psoriasis in US women: Risk of psoriasis in US women. Journal of the European Academy of Dermatology and Venereology, 27(10), 1293–1298. https://doi.org/10.1111/jdv.12001
  • Kurihara, K., Fujiyama, T., Phadungsaksawasdi, P., Ito, T., & Tokura, Y. (2019). Significance of IL-17A-producing CD8+CD103+ skin resident memory T cells in psoriasis lesion and their possible relationship to clinical course. Journal of Dermatological Science, 95(1), 21–27. https://doi.org/10.1016/j.jdermsci.2019.06.002
  • Kurokawa, I., Takahashi, K., Moll, I., & Moll, R. (2011). Expression of keratins in cutaneous epithelial tumors and related disorders—Distribution and clinical significance. Experimental Dermatology, 20(3), 217–228. https://doi.org/10.1111/j.1600-0625.2009.01006.x
  • Kyriakou, A., Patsatsi, A., Sotiriadis, D., & Goulis, D. (2017). Serum Leptin, Resistin, and Adiponectin concentrations in psoriasis: A meta-analysis of observational studies. Dermatology, 233(5), 378–389. https://doi.org/10.1159/000481882
  • Kyriakou, A., Patsatsi, A., Vyzantiadis, T.-A., & Sotiriadis, D. (2014). Serum levels of TNF- α, IL-12/23p40, and IL-17 in plaque psoriasis and their correlation with disease severity. Journal of Immunology Research, 2014, 1–9. https://doi.org/10.1155/2014/467541
  • La Cava, A., Alviggi, C., & Matarese, G. (2004). Unraveling the multiple roles of leptin in inflammation and autoimmunity. Journal of Molecular Medicine (Berlin, Germany), 82(1), 4–11. https://doi.org/10.1007/s00109-003-0492-1
  • Lai, R., Xian, D., Xiong, X., Yang, L., Song, J., & Zhong, J. (2018). Proanthocyanidins: Novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Report, 23(1), 130–135. https://doi.org/10.1080/13510002.2018.1462027
  • Lai, Y., & Gallo, R. L. (2009). Amped up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends in Immunology, 30(3), 131–141. https://doi.org/10.1016/j.it.2008.12.003
  • Lande, R., Botti, E., Jandus, C., Dojcinovic, D., Fanelli, G., Conrad, C., Chamilos, G., Feldmeyer, L., Marinari, B., Chon, S., Vence, L., Riccieri, V., Guillaume, P., Navarini, A. A., Romero, P., Costanzo, A., Piccolella, E., Gilliet, M., & Frasca, L. (2014). The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nature Communications, 5(1), 5621. https://doi.org/10.1038/ncomms6621
  • Lande, R., Chamilos, G., Ganguly, D., Demaria, O., Frasca, L., Durr, S., Conrad, C., Schröder, J., & Gilliet, M. (2015). Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA: Innate immunity. European Journal of Immunology, 45(1), 203–213. https://doi.org/10.1002/eji.201344277
  • Lande, R., Gregorio, J., Facchinetti, V., Chatterjee, B., Wang, Y.-H., Homey, B., Cao, W., Wang, Y.-H., Su, B., Nestle, F. O., Zal, T., Mellman, I., Schröder, J.-M., Liu, Y.-J., & Gilliet, M. (2007). Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature, 449(7162), 564–569. https://doi.org/10.1038/nature06116
  • Langan, E. A., Griffiths, C. E. M., Solbach, W., Knobloch, J. K., Zillikens, D., & Thaçi, D. (2018). The role of the microbiome in psoriasis: Moving from disease description to treatment selection? British Journal of Dermatology, 178(5), 1020–1027. https://doi.org/10.1111/bjd.16081
  • Langley, R. G. B., Krueger, G. G., & Griffiths, C. E. M. (2005). Psoriasis: Epidemiology, clinical features, and quality of life. Annals of the Rheumatic Diseases, 64(suppl_2), ii18–ii23. https://doi.org/10.1136/ard.2004.033217
  • Larrick, J. W., Lee, J., Ma, S., Li, X., Francke, U., Wright, S. C., & Balint, R. F. (1996). Structural, functional analysis and localization of the human CAP18 gene. FEBS Letters, 398(1), 74–80. https://doi.org/10.1016/s0014-5793(96)01199-4
  • Lawrence, J. M., & Bendich, A. (1987). Free radical tissue damage: Protective role of antioxidant nutrients. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 1(6), 441–445. https://doi.org/10.1096/fasebj.1.6.3315807
  • Lebwohl, M. (1999). The role of salicylic acid in the treatment of psoriasis. International Journal of Dermatology, 38(1), 16–24. https://doi.org/10.1046/j.1365-4362.1999.00500.x
  • Lee, E. B., Wu, K. K., & Lee, M. P. (2018). Psoriasis risk factors and triggers. Cutis, 102(5S), 18–22.
  • Lee, Y.-A., Rüschendorf, F., Windemuth, C., Schmitt-Egenolf, M., Stadelmann, A., Nürnberg, G., Ständer, M., Wienker, T. F., Reis, A., & Traupe, H. (2000). Genomewide scan in german families reveals evidence for a novel psoriasis-susceptibility locus on chromosome 19p13. The American Journal of Human Genetics, 67(4), 1020–1024. https://doi.org/10.1086/303075
  • Lei, Y., Wang, K., Deng, L., Chen, Y., Nice, E. C., & Huang, C. (2015). Redox regulation of inflammation: Old elements, a new story: Redox modifications in inflammation. Medicinal Research Reviews, 35(2), 306–340. https://doi.org/10.1002/med.21330
  • Leigh, I. M., Navsaria, H., Purkis, P. E., McKay, I. A., Bowden, P. E., & Riddle, P. N. (1995). Keratins (K16 and K17) as markers of keratinocyte hyperproliferation in psoriasis in vivo and in vitro. The British Journal of Dermatology, 133(4), 501–511. https://doi.org/10.1111/j.1365-2133.1995.tb02696.x
  • Lenkowski, M., Nijakowski, K., Kaczmarek, M., & Surdacka, A. (2021). The loop-mediated isothermal amplification technique in periodontal diagnostics: A systematic review. Journal of Clinical Medicine, 10(6), 1189. https://doi.org/10.3390/jcm10061189
  • Leung, D. Y., Travers, J. B., Giorno, R., Norris, D. A., Skinner, R., Aelion, J., Kazemi, L. V., Kim, M. H., Trumble, A. E., & Kotb, M. (1995). Evidence for a streptococcal superantigen-driven process in acute guttate psoriasis. The Journal of Clinical Investigation, 96(5), 2106–2112. https://doi.org/10.1172/JCI118263
  • Liang, X., Ou, C., Zhuang, J., Li, J., Zhang, F., Zhong, Y., & Chen, Y. (2021). Interplay between skin microbiota dysbiosis and the host immune system in psoriasis: Potential pathogenesis. Frontiers in Immunology, 12, 764384. https://doi.org/10.3389/fimmu.2021.764384
  • Lihn, A., Bruun, J., He, G., Pedersen, S., Jensen, P., & Richelsen, B. (2004). Lower expression of adiponectin mRNA in visceral adipose tissue in lean and obese subjects. Molecular and Cellular Endocrinology, 219(1–2), 9–15. https://doi.org/10.1016/j.mce.2004.03.002
  • Lin, Y., Zhang, W., Li, B., & Wang, G. (2022). Keratin 17 in psoriasis: Current understanding and future perspectives. Seminars in Cell & Developmental Biology, 128, 112–119. https://doi.org/10.1016/j.semcdb.2021.06.018
  • Lou, F., Sun, Y., Xu, Z., Niu, L., Wang, Z., Deng, S., Liu, Z., Zhou, H., Bai, J., Yin, Q., Cai, X., Sun, L., Wang, H., Li, Q., Wu, Z., Chen, X., Gu, J., Shi, Y.-L., Tao, W., … Wang, H. (2020). Excessive polyamine generation in keratinocytes promotes self-rna sensing by dendritic cells in psoriasis. Immunity, 53(1), 204–216.e10. https://doi.org/10.1016/j.immuni.2020.06.004
  • Lövgren, T., Eloranta, M.-L., Båve, U., Alm, G. V., & Rönnblom, L. (2004). Induction of interferon-alpha production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis and Rheumatism, 50(6), 1861–1872. https://doi.org/10.1002/art.20254
  • Lowes, M. A., Suárez-Fariñas, M., & Krueger, J. G. (2014). Immunology of psoriasis. Annual Review of Immunology, 32(1), 227–255. https://doi.org/10.1146/annurev-immunol-032713-120225
  • Luo, Q., Zeng, J., Li, W., Lin, L., Zhou, X., Tian, X., Liu, W., Zhang, L., & Zhang, X. (2018). Interaction of MTHFR gene with smoking and alcohol use and haplotype combination susceptibility to psoriasis in Chinese population. Immunologic Research, 66(4), 543–547. https://doi.org/10.1007/s12026-018-9017-4
  • Ma, W., Lehner, P. J., Cresswell, P., Pober, J. S., & Johnson, D. R. (1997). Interferon-gamma rapidly increases peptide transporter (TAP) subunit expression and peptide transport capacity in endothelial cells. The Journal of Biological Chemistry, 272(26), 16585–16590. https://doi.org/10.1074/jbc.272.26.16585
  • Macias, V. C., & Cunha, D. (2013). Psoriasis triggered by tetanus-diphtheria vaccination. Cutaneous and Ocular Toxicology, 32(2), 164–165. https://doi.org/10.3109/15569527.2012.727936
  • Mackay, L. K., Rahimpour, A., Ma, J. Z., Collins, N., Stock, A. T., Hafon, M.-L., Vega-Ramos, J., Lauzurica, P., Mueller, S. N., Stefanovic, T., Tscharke, D. C., Heath, W. R., Inouye, M., Carbone, F. R., & Gebhardt, T. (2013). The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nature Immunology, 14(12), 1294–1301. https://doi.org/10.1038/ni.2744
  • Madva, E., & Granstein, R. (2013, November). Nerve-derived transmitters including peptides influence cutaneous immunology. Brain, Behavior, and Immunity, 34, 1–10. https://doi.org/10.1016/j.bbi.2013.03.006
  • Mahoney, S. E., Duvic, M., Nickoloff, B. J., Minshall, M., Smith, L. C., Griffiths, C. E., Paddock, S. W., & Lewis, D. E. (1991). Human immunodeficiency virus (HIV) transcripts identified in HIV-related psoriasis and kaposi’s sarcoma lesions. Journal of Clinical Investigation, 88(1), 174–185. https://doi.org/10.1172/JCI115275
  • Makredes, M., Robinson, D., Bala, M., & Kimball, A. B. (2009). The burden of autoimmune disease: A comparison of prevalence ratios in patients with psoriatic arthritis and psoriasis. Journal of the American Academy of Dermatology, 61(3), 405–410. https://doi.org/10.1016/j.jaad.2009.02.015
  • Malesza, I., Malesza, M., Walkowiak, J., Mussin, N., Walkowiak, D., Aringazina, R., Bartkowiak-Wieczorek, J., & Mądry, E. (2021). High-Fat,Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells, 10(11), 3164. https://doi.org/10.3390/cells10113164
  • Mallbris, L., Larsson, P., Bergqvist, S., Vingård, E., Granath, F., & Ståhle, M. (2005). Psoriasis phenotype at disease onset: Clinical characterization of 400 adult cases. The Journal of Investigative Dermatology, 124(3), 499–504. https://doi.org/10.1111/j.0022-202X.2004.23611.x
  • Mallon, E., Bunce, M., Wojnarowska, F., & Welsh, K. (1997). HLA-CW*0602 is a susceptibility factor in type I psoriasis, and evidence Ala-73 is increased in male type I psoriatics. Journal of Investigative Dermatology, 109(2), 183–186. https://doi.org/10.1111/1523-1747.ep12319304
  • Mallon, E., & Bunker, C. B. (2000). HIV-Associated psoriasis. AIDS Patient Care and STDs, 14(5), 239–246. https://doi.org/10.1089/108729100317696
  • Manjula, B. N., Trus, B. L., & Fischetti, V. A. (1985). Presence of two distinct regions in the coiled-coil structure of the streptococcal pep M5 protein: Relationship to mammalian coiled-coil proteins and implications to its biological properties. Proceedings of the National Academy of Sciences of the United States of America, 82(4), 1064–1068. https://doi.org/10.1073/pnas.82.4.1064
  • Manzel, A., Muller, D. N., Hafler, D. A., Erdman, S. E., Linker, R. A., & Kleinewietfeld, M. (2014). Role of “Western Diet” in inflammatory autoimmune diseases. Current Allergy and Asthma Reports, 14(1), 404. https://doi.org/10.1007/s11882-013-0404-6
  • Marek-Jozefowicz, L., Czajkowski, R., Borkowska, A., Nedoszytko, B., Żmijewski, M., Cubała, W., & Slominski, A. (2022). The brain–skin axis in psoriasis—Psychological, psychiatric, hormonal, and dermatological aspects. International Journal of Molecular Sciences, 23(2), 669. https://doi.org/10.3390/ijms23020669
  • Martin, J., Young, M., & Aldredge, L. (2019). Recommendations for initiating systemic therapy in patients with psoriasis. The Journal of Clinical and Aesthetic Dermatology, 12(4), 13–26.
  • Maruyama, K., Takayama, Y., Kondo, T., Ishibashi, K., Sahoo, B. R., Kanemaru, H., Kumagai, Y., Martino, M. M., Tanaka, H., Ohno, N., Iwakura, Y., Takemura, N., Tominaga, M., & Akira, S. (2017). Nociceptors boost the resolution of fungal osteoinflammation via the TRP channel-CGRP-Jdp2 axis. Cell Reports, 19(13), 2730–2742. https://doi.org/10.1016/j.celrep.2017.06.002
  • Masschalck, B., Deckers, D., & Michiels, C. W. (2002). Lytic and nonlytic mechanism of inactivation of gram-positive bacteria by lysozyme under atmospheric and high hydrostatic pressure. Journal of Food Protection, 65(12), 1916–1923. https://doi.org/10.4315/0362-028x-65.12.1916
  • Masschalck, B., & Michiels, C. W. (2003). Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Critical Reviews in Microbiology, 29(3), 191–214. https://doi.org/10.1080/713610448
  • Matos, T. R., O’Malley, J. T., Lowry, E. L., Hamm, D., Kirsch, I. R., Robins, H. S., Kupper, T. S., Krueger, J. G., & Clark, R. A. (2017). Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing αβ T cell clones. The Journal of Clinical Investigation, 127(11), 4031–4041. https://doi.org/10.1172/JCI93396
  • Matthews, D., Fry, L., Powles, A., Weber, J., McCarthy, M., Fisher, E., Davies, K., & Williamson, R. (1996). Evidence that a locus for familial psoriasis maps to chromosome 4q. Nature Genetics, 14(2), 231–233. https://doi.org/10.1038/ng1096-231
  • Maynard, N., & Armstrong, A. W. (2023). The impact of immune-modulating treatments for dermatological diseases on the risk of infection with SARS-CoV-2 and outcomes associated with COVID-19 illness. Current Dermatology Reports, 12(2), 45–55. https://doi.org/10.1007/s13671-023-00385-w
  • McBride, D. A., Dorn, N. C., Yao, M., Johnson, W. T., Wang, W., Bottini, N., & Shah, N. J. (2023). Short-chain fatty acid-mediated epigenetic modulation of inflammatory T cells in vitro. Drug Delivery and Translational Research, 13(7), 1912–1924. https://doi.org/10.1007/s13346-022-01284-6
  • McCall, L.-I., Callewaert, C., Zhu, Q., Song, S. J., Bouslimani, A., Minich, J. J., Ernst, M., Ruiz-Calderon, J. F., Cavallin, H., Pereira, H. S., Novoselac, A., Hernandez, J., Rios, R., Branch, O. H., Blaser, M. J., Paulino, L. C., Dorrestein, P. C., Knight, R., & Dominguez-Bello, M. G. (2019). Home chemical and microbial transitions across urbanization. Nature Microbiology, 5(1), 108–115. https://doi.org/10.1038/s41564-019-0593-4
  • McGill, A., Frank, A., Emmett, N., Turnbull, D., Birch-Machin, M., & Reynolds, N. (2005). The anti-psoriatic drug anthralin accumulates in keratinocyte mitochondria, dissipates mitochondrial membrane potential, and induces apoptosis through a pathway dependent on respiratory competent mitochondria. The FASEB Journal, 19(8), 1012–1014. https://doi.org/10.1096/fj.04-2664fje
  • Méndez-Samperio, P. (2010). The human cathelicidin hCap18/LL-37: A multifunctional peptide involved in mycobacterial infections. Peptides, 31(9), 1791–1798. https://doi.org/10.1016/j.peptides.2010.06.016
  • Menter, A., Strober, B., Kaplan, D., Kivelevitch, D., Prater, E., Stoff, B., Armstrong, A., Connor, C., Cordoro, K., Davis, D., Elewski, B., Gelfand, J., Gordon, K., Gottlieb, A., Kavanaugh, A., Kiselica, M., Korman, N. J., Kroshinsky, D., Lebwohl, M., … Elmets, C. (2019). Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. Journal of the American Academy of Dermatology, 80(4), 1029–1072. https://doi.org/10.1016/j.jaad.2018.11.057
  • Michalek, I. M., Loring, B., & John, S. M. (2017). A systematic review of worldwide epidemiology of psoriasis. Journal of the European Academy of Dermatology and Venereology, 31(2), 205–212. https://doi.org/10.1111/jdv.13854
  • Mitsui, A., Tada, Y., Takahashi, T., Shibata, S., Kamata, M., Miyagaki, T., Fujita, H., Sugaya, M., Kadono, T., Sato, S., & Asano, Y. (2016). Serum IL-33 levels are increased in patients with psoriasis. Clinical and Experimental Dermatology, 41(2), 183–189. https://doi.org/10.1111/ced.12670
  • Moitinho-Silva, L., Boraczynski, N., Emmert, H., Baurecht, H., Szymczak, S., Schulz, H., Haller, D., Linseisen, J., Gieger, C., Peters, A., Tittmann, L., Lieb, W., Bang, C., Franke, A., Rodriguez, E., & Weidinger, S. (2021). Host traits, lifestyle and environment are associated with human skin bacteria. British Journal of Dermatology, 185(3), 573–584. https://doi.org/10.1111/bjd.20072
  • Morita, A. (2018). Current developments in phototherapy for psoriasis. The Journal of Dermatology, 45(3), 287–292. https://doi.org/10.1111/1346-8138.14213
  • Morizane, S., & Gallo, R. L. (2012). Antimicrobial peptides in the pathogenesis of psoriasis. The Journal of Dermatology, 39(3), 225–230. https://doi.org/10.1111/j.1346-8138.2011.01483.x
  • Morris, A., Rogers, M., Fischer, G., & Williams, K. (2001). Childhood psoriasis: A clinical review of 1262 cases. Pediatric Dermatology, 18(3), 188–198. https://doi.org/10.1046/j.1525-1470.2001.018003188.x
  • Moutsopoulos, N. M., Kling, H. M., Angelov, N., Jin, W., Palmer, R. J., Nares, S., Osorio, M., & Wahl, S. M. (2012). Porphyromonas gingivalis promotes Th17 inducing pathways in chronic periodontitis. Journal of Autoimmunity, 39(4), 294–303. https://doi.org/10.1016/j.jaut.2012.03.003
  • Munera-Campos, M., Ballesca, F., & Carrascosa, J. M. (2018). Reacciones paradójicas de los tratamientos biológicos utilizados en psoriasis: Revisión de la literatura. Actas Dermo-Sifiliográficas, 109(9), 791–800. https://doi.org/10.1016/j.ad.2018.04.003
  • Murzaku, E. C., Bronsnick, T., & Rao, B. K. (2014). Diet in dermatology. Journal of the American Academy of Dermatology, 71(6), .e1053.1–.e1053.16. https://doi.org/10.1016/j.jaad.2014.06.016
  • Myers, B., Brownstone, N., Reddy, V., Chan, S., Thibodeaux, Q., Truong, A., Bhutani, T., Chang, H.-W., & Liao, W. (2019). The gut microbiome in psoriasis and psoriatic arthritis. Best Practice & Research Clinical Rheumatology, 33(6), 101494. https://doi.org/10.1016/j.berh.2020.101494
  • Myers, E., Kheradmand, S., & Miller, R. (2021). An update on Narrowband Ultraviolet B Therapy for the treatment of skin diseases. Cureus, 13(11), e19182. https://doi.org/10.7759/cureus.19182
  • Nagy, I., Pivarcsi, A., Kis, K., Koreck, A., Bodai, L., McDowell, A., Seltmann, H., Patrick, S., Zouboulis, C. C., & Kemény, L. (2006). Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes and Infection, 8(8), 2195–2205. https://doi.org/10.1016/j.micinf.2006.04.001
  • Naik, S., Bouladoux, N., Linehan, J. L., Han, S.-J., Harrison, O. J., Wilhelm, C., Conlan, S., Himmelfarb, S., Byrd, A. L., Deming, C., Quinones, M., Brenchley, J. M., Kong, H. H., Tussiwand, R., Murphy, K. M., Merad, M., Segre, J. A., & Belkaid, Y. (2015). Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature, 520(7545), 104–108. https://doi.org/10.1038/nature14052
  • Naik, S., Bouladoux, N., Wilhelm, C., Molloy, M. J., Salcedo, R., Kastenmuller, W., Deming, C., Quinones, M., Koo, L., Conlan, S., Spencer, S., Hall, J. A., Dzutsev, A., Kong, H., Campbell, D. J., Trinchieri, G., Segre, J. A., & Belkaid, Y. (2012). Compartmentalized control of skin immunity by resident commensals. Science, 337(6098), 1115–1119. https://doi.org/10.1126/science.1225152
  • Nair, R. P., Ruether, A., Stuart, P. E., Jenisch, S., Tejasvi, T., Hiremagalore, R., Schreiber, S., Kabelitz, D., Lim, H. W., Voorhees, J. J., Christophers, E., Elder, J. T., & Weichenthal, M. (2008). Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. Journal of Investigative Dermatology, 128(7), 1653–1661. https://doi.org/10.1038/sj.jid.5701255
  • Nair, R. P., Stuart, P. E., Nistor, I., Hiremagalore, R., Chia, N. V. C., Jenisch, S., Weichenthal, M., Abecasis, G. R., Lim, H. W., Christophers, E., Voorhees, J. J., & Elder, J. T. (2006). Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. The American Journal of Human Genetics, 78(5), 827–851. https://doi.org/10.1086/503821
  • Najarian, D. J., & Gottlieb, A. B. (2003). Connections between psoriasis and Crohn’s disease. Journal of the American Academy of Dermatology, 48(6), 805–821; quiz 822–824. https://doi.org/10.1067/mjd.2003.540
  • Nakamizo, S., Honda, T., & Kabashima, K. (2018). Saturated fatty acids as possible key amplifiers of psoriatic dermatitis. The Journal of Investigative Dermatology, 138(9), 1901–1903. https://doi.org/10.1016/j.jid.2018.07.004
  • Nanda, H., Ponnusamy, N., Odumpatta, R., Jeyakanthan, J., & Mohanapriya, A. (2020). Exploring genetic targets of psoriasis using genome wide association studies (GWAS) for drug repurposing. 3 Biotech, 10(2), 43. https://doi.org/10.1007/s13205-019-2038-4
  • Navarro-López, V., Martínez-Andrés, A., Ramírez-Boscá, A., Ruzafa-Costas, B., Núñez-Delegido, E., Carrión-Gutiérrez, M. A., Prieto-Merino, D., Codoñer-Cortés, F., Ramón-Vidal, D., Genovés-Martínez, S., Chenoll-Cuadros, E., Pérez-Orquín, J. M., Picó-Monllor, J. A., & Chumillas-Lidón, S. (2019). Efficacy and safety of oral administration of a mixture of probiotic strains in patients with psoriasis: A randomized controlled clinical trial. Acta Dermato-Venereologica, 99(12), 1078–1084. https://doi.org/10.2340/00015555-3305
  • Nestle, F. O., Conrad, C., Tun-Kyi, A., Homey, B., Gombert, M., Boyman, O., Burg, G., Liu, Y.-J., & Gilliet, M. (2005). Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. The Journal of Experimental Medicine, 202(1), 135–143. https://doi.org/10.1084/jem.20050500
  • Nestle, F. O., Kaplan, D. H., & Barker, J. (2009). Psoriasis. New England Journal of Medicine, 361(5), 496–509. https://doi.org/10.1056/NEJMra0804595
  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). “Metabonomics”: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 29(11), 1181–1189. https://doi.org/10.1080/004982599238047
  • Niidome, T., Wakamatsu, M., Wada, A., Hirayama, T., & Aoyagi, H. (2000). Required structure of cationic peptide for oligonucleotide-binding and -delivering into cells. Journal of Peptide Science: An Official Publication of the European Peptide Society, 6(6), 271–279. https://doi.org/10.1002/1099-1387(200006)6:6<271:AID-PSC249>3.3.CO;2-6
  • Nijakowski, K., Gruszczyński, D., Kolasińska, J., Kopała, D., & Surdacka, A. (2022). Periodontal disease in patients with psoriasis: A systematic review. International Journal of Environmental Research and Public Health, 19(18), 11302. https://doi.org/10.3390/ijerph191811302
  • Nikamo, P., Lysell, J., & Ståhle, M. (2015). Association with genetic variants in the IL-23 and NF-κB pathways discriminates between mild and severe psoriasis skin disease. The Journal of Investigative Dermatology, 135(8), 1969–1976. https://doi.org/10.1038/jid.2015.103
  • Nordin, U. M., Ahmad, N., Salim, N., & Yusof, N. M. (2021). Lipid-based nanoparticles for psoriasis treatment: A review on conventional treatments, recent works, and future prospects. RSC Advances, 11(46), 29080–29101. https://doi.org/10.1039/d1ra06087b
  • Nordwig, S., Kränke, B., & Aberer, E. (2005). Staphylococcal toxins in patients with psoriasis, atopic dermatitis, and erythroderma, and in healthy control subjects. Journal of the American Academy of Dermatology, 53(1), 67–72. https://doi.org/10.1016/j.jaad.2005.02.034
  • Nussbaum, L., Chen, Y. L., & Ogg, G. S. (2021). Role of regulatory T cells in psoriasis pathogenesis and treatment. The British Journal of Dermatology, 184(1), 14–24. https://doi.org/10.1111/bjd.19380
  • O’Brien, R. L., & Born, W. K. (2015). Dermal γδ T cells—What have we learned? Cellular Immunology, 296(1), 62–69. https://doi.org/10.1016/j.cellimm.2015.01.011
  • O’Neill, J., & Feldman, S. (2010). Vitamine D analogue-based therapies for psoriasis. Drugs Today (Barc), 46(5), 351–360. https://doi.org/10.1358/dot.2010.46.5.1473264
  • O’Neill, C. A., Monteleone, G., McLaughlin, J. T., & Paus, R. (2016). The gut-skin axis in health and disease: A paradigm with therapeutic implications. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 38(11), 1167–1176. https://doi.org/10.1002/bies.201600008
  • Oestreicher, J. L., Walters, I. B., Kikuchi, T., Gilleaudeau, P., Surette, J., Schwertschlag, U., Dorner, A. J., Krueger, J. G., & Trepicchio, W. L. (2001). Molecular classification of psoriasis disease-associated genes through pharmacogenomic expression profiling. The Pharmacogenomics Journal, 1(4), 272–287. https://doi.org/10.1038/sj.tpj.6500067
  • Oh, J., Byrd, A. L., Park, M., Kong, H. H., & Segre, J. A. (2016). Temporal stability of the human skin microbiome. Cell, 165(4), 854–866. https://doi.org/10.1016/j.cell.2016.04.008
  • Olejniczak-Staruch, I., Ciążyńska, M., Sobolewska-Sztychny, D., Narbutt, J., Skibińska, M., & Lesiak, A. (2021). Alterations of the skin and gut microbiome in psoriasis and psoriatic arthritis. International Journal of Molecular Sciences, 22(8), 3998. https://doi.org/10.3390/ijms22083998
  • Oliveira, M. D. F. S. P. D., Rocha, B. D. O., & Duarte, G. V. (2015). Psoriasis: Classical and emerging comorbidities. Anais Brasileiros De Dermatologia, 90(1), 9–20. https://doi.org/10.1590/abd1806-4841.20153038
  • Omary, M. B., Coulombe, P. A., & McLean, W. H. I. (2004). Intermediate filament proteins and their associated diseases. The New England Journal of Medicine, 351(20), 2087–2100. https://doi.org/10.1056/NEJMra040319
  • Ong, P. Y., Ohtake, T., Brandt, C., Strickland, I., Boguniewicz, M., Ganz, T., Gallo, R. L., & Leung, D. Y. M. (2002). Endogenous antimicrobial peptides and skin infections in atopic dermatitis. The New England Journal of Medicine, 347(15), 1151–1160. https://doi.org/10.1056/NEJMoa021481
  • Paiva-Lopes, M. J., Batuca, J. R., Gouveia, S., Alves, M., Papoila, A. L., & Alves, J. D. (2020). Antibodies towards high-density lipoprotein components in patients with psoriasis. Archives of Dermatological Research, 312(2), 93–102. https://doi.org/10.1007/s00403-019-01986-x
  • Palakornkitti, P., Nimmannitya, K., & Rattanakaemakorn, P. (2021). Biological therapy in psoriasis: An emphasis on its dermatologic adverse events. Asian Pacific Journal of Allergy & Immunology / Launched by the Allergy & Immunology Society of Thailand, 39(4), 215–230. https://doi.org/10.12932/AP-110521-1129
  • Paller, A. S., Singh, R., Cloutier, M., Gauthier-Loiselle, M., Emond, B., Guérin, A., & Ganguli, A. (2018). Prevalence of psoriasis in children and adolescents in the United States: A claims-based analysis. Journal of Drugs in Dermatology, 17(2), 187–194.
  • Paniz Mondolfi, A. E., Hernandez Perez, M., Blohm, G., Marquez, M., Mogollon Mendoza, A., Hernandez-Pereira, C. E., Escalona, M. A., Lodeiro Colatosti, A., Rothe DeArocha, J., & Rodriguez Morales, A. J. (2018). Generalized pustular psoriasis triggered by Zika virus infection. Clinical and Experimental Dermatology, 43(2), 171–174. https://doi.org/10.1111/ced.13294
  • Parisi, R., Iskandar, I. Y. K., Kontopantelis, E., Augustin, M., Griffiths, C. E. M., & Ashcroft, D. M. (2020). National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ, m1590. https://doi.org/10.1136/bmj.m1590
  • Parisi, R., Symmons, D. P. M., Griffiths, C. E. M., & Ashcroft, D. M. (2013). Global epidemiology of psoriasis: A systematic review of incidence and prevalence. Journal of Investigative Dermatology, 133(2), 377–385. https://doi.org/10.1038/jid.2012.339
  • Park, H., & Kim, K. (2012). Association of alcohol consumption with lipid profile in hypertensive men. Alcohol and Alcoholism (Oxford, Oxfordshire), 47(3), 282–287. https://doi.org/10.1093/alcalc/ags019
  • Pasquali, L., Srivastava, A., Meisgen, F., Das Mahapatra, K., Xia, P., Xu Landén, N., Pivarcsi, A., & Sonkoly, E. (2019). The keratinocyte transcriptome in psoriasis: Pathways related to immune responses, cell cycle and keratinization. Acta Dermato-Venereologica, 99(2), 196–205. https://doi.org/10.2340/00015555-3066
  • Patsatsi, A., & Kyriakou, A. (2021). Impact of the COVID-19 pandemic on the course and management of chronic inflammatory immune-mediated skin diseases: What’s the evidence? Clinics in Dermatology, 39(1), 52–55. https://doi.org/10.1016/j.clindermatol.2020.12.012
  • Paulino, L. C., Tseng, C.-H., Strober, B. E., & Blaser, M. J. (2006). Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. Journal of Clinical Microbiology, 44(8), 2933–2941. https://doi.org/10.1128/JCM.00785-06
  • Pemberton, P. A., Tipton, A. R., Pavloff, N., Smith, J., Erickson, J. R., Mouchabeck, Z. M., & Kiefer, M. C. (1997). Maspin is an intracellular serpin that partitions into secretory vesicles and is present at the cell surface. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 45(12), 1697–1706. https://doi.org/10.1177/002215549704501213
  • Penso, L., Dray-Spira, R., Weill, A., Pina Vegas, L., Zureik, M., & Sbidian, E. (2021). Association between biologics use and risk of serious infection in patients with psoriasis. JAMA Dermatology, 157(9), 1056–1065. https://doi.org/10.1001/jamadermatol.2021.2599
  • Péter, I., Jagicza, A., Ajtay, Z., Kiss, I., & Németh, B. (2016). A psoriasis és az oxidatív stressz. Orvosi Hetilap, 157(45), 1781–1785. https://doi.org/10.1556/650.2016.30589
  • Peters, E., Liezmann, C., Klapp, B., & Kruse, J. (2012). The neuroimmune connection interferes with tissue regeneration and chronic inflammatory disease in the skin. Annals of the New York Academy of Sciences, 1262(1), 118–126. https://doi.org/10.1111/j.1749-6632.2012.06647.x
  • Petit, R., Cano, A., Ortiz, A., Espina, M., Prat, J., Muñoz, M., Severino, P., Souto, E., García, M., Pujol, M., & Sánchez-López, E. (2021). Psoriasis: From pathogenesis to pharmacological and nano-technological-based therapeutics. International Journal of Molecular Sciences, 22(9), 4983. https://doi.org/10.3390/ijms22094983
  • Phan, C., Touvier, M., Kesse-Guyot, E., Adjibade, M., Hercberg, S., Wolkenstein, P., Chosidow, O., Ezzedine, K., & Sbidian, E. (2018). Association between Mediterranean anti-inflammatory dietary profile and severity of psoriasis: Results from the NutriNet-Sant_e cohort. JAMA Dermatology, 154(9), 1017–1024. https://doi.org/10.1001/jamadermatol.2018.2127
  • Pietrzak, A., Grywalska, E., Socha, M., Roliński, J., Franciszkiewicz-Pietrzak, K., Rudnicka, L., Rudzki, M., & Krasowska, D. (2018). Prevalence and possible role of Candida Species in patients with psoriasis: A systematic review and meta-analysis. Mediators of Inflammation, 2018, 1–7. https://doi.org/10.1155/2018/9602362
  • Pihlstrom, B. L., Michalowicz, B. S., & Johnson, N. W. (2005). Periodontal diseases. The Lancet, 366(9499), 1809–1820. https://doi.org/10.1016/S0140-6736(05)67728-8
  • Pleńkowska, J., Gabig-Cimińska, M., & Mozolewski, P. (2020). Oxidative stress as an important contributor to the pathogenesis of psoriasis. International Journal of Molecular Sciences, 21(17), 6206. https://doi.org/10.3390/ijms21176206
  • Polak, K., Bergler-Czop, B., Szczepanek, M., Wojciechowska, K., Frątczak, A., & Kiss, N. (2021). Psoriasis and gut Microbiome-Current State of art. International Journal of Molecular Sciences, 22(9), 4529. https://doi.org/10.3390/ijms22094529
  • Polenghi, M., Gala, C., Citeri, A., Manca, G., Gruzzi, R., Barcella, M., & Finzi, A. (1989). Psychoneurophysiological implications in the pathogenesis and treatment of psoriasis. Acta Derm Venereol Suppl (Stockh), 146, 84–86.
  • Polenghi, M., Molinari, E., Gala, C., Guzzi, R., Garutti, C., & Finzi, A. (1994). Experience with psoriasis in a psychosomatic dermatology clinic. Acta Derm Venereol Suppl (Stockh), 186, 65–66. https://doi.org/10.2340/000155551866566
  • Porter, R. M., & Lane, E. B. (2003). Phenotypes, genotypes and their contribution to understanding keratin function. Trends in Genetics, 19(5), 278–285. https://doi.org/10.1016/s0168-9525(03)00071-4
  • Potestio, L., Battista, T., Cacciapuoti, S., Ruggiero, A., Martora, F., Fornaro, L., Camela, E., & Megna, M. (2023). New onset and exacerbation of psoriasis following COVID-19 vaccination: A review of the current knowledge. Biomedicines, 11(8), 2191. https://doi.org/10.3390/biomedicines11082191
  • Potestio, L., Martora, F., Fabbrocini, G., Battista, T., & Megna, M. (2023). Safety and Efficacy of Covid-19 Vaccination in Patients Undergoing Biological Treatments for Psoriasis. Psoriasis (Auckland, NZ), 13, 11–18. https://doi.org/10.2147/PTT.S398135
  • Prinz, J. C. (2001). Psoriasis vulgaris–a sterile antibacterial skin reaction mediated by cross-reactive T cells? An immunological view of the pathophysiology of psoriasis. Clinical and Experimental Dermatology, 26(4), 326–332. https://doi.org/10.1046/j.1365-2230.2001.00831.x
  • Prinz, J. C. (2004). Disease mimicry—A pathogenetic concept for T cell-mediated autoimmune disorders triggered by molecular mimicry? Autoimmunity Reviews, 3(1), 10–15. https://doi.org/10.1016/S1568-9972(03)00059-4
  • Puri, P., Nandar, S., Kathuria, S., & Ramesh, V. (2017). Effects of air pollution on the skin: A review. Indian Journal of Dermatology, Venereology and Leprology, 83(4), 415. https://doi.org/10.4103/0378-6323.199579
  • Quaranta, M., Knapp, B., Garzorz, N., Mattii, M., Pullabhatla, V., Pennino, D., Andres, C., Traidl-Hoffmann, C., Cavani, A., Theis, F. J., Ring, J., Schmidt-Weber, C. B., Eyerich, S., & Eyerich, K. (2014). Intraindividual genome expression analysis reveals a specific molecular signature of psoriasis and eczema. Science Translational Medicine, 6(244), 244ra90. https://doi.org/10.1126/scitranslmed.3008946
  • Rademaker, M., Agnew, K., Anagnostou, N., Andrews, M., Armour, K., Baker, C., Foley, P., Gebauer, K., Gupta, M., Marshman, G., Rubel, D., Sullivan, J., & Wong, L.-C. (2019). Psoriasis and infection. A clinical practice narrative. The Australasian Journal of Dermatology, 60(2), 91–98. https://doi.org/10.1111/ajd.12895
  • Rajaiah, R., & Moudgil, K. D. (2009). Heat-shock proteins can promote as well as regulate autoimmunity. Autoimmunity Reviews, 8(5), 388–393. https://doi.org/10.1016/j.autrev.2008.12.004
  • Rauschenberger, T., Schmitt, V., Azeem, M., Klein-Hessling, S., Murti, K., Grän, F., Goebeler, M., Kerstan, A., Klein, M., Bopp, T., Serfling, E., & Muhammad, K. (2019, August 9). T cells control chemokine secretion by Keratinocytes. Frontiers in Immunology, 10, 1917. https://doi.org/10.3389/fimmu.2019.01917
  • Ray-Jones, H., Duffus, K., McGovern, A., Martin, P., Shi, C., Hankinson, J., Gough, O., Yarwood, A., Morris, A. P., Adamson, A., Taylor, C., Ding, J., Gaddi, V. P., Fu, Y., Gaffney, P., Orozco, G., Warren, R. B., & Eyre, S. (2020). Mapping DNA interaction landscapes in psoriasis susceptibility loci highlights KLF4 as a target gene in 9q31. BMC Biology, 18(1), 47. https://doi.org/10.1186/s12915-020-00779-3
  • Retèl, J., Hoebee, B., Braun, J. E. F., Lutgerink, J. T., Van Den Akker, E., Wanamarta, A. H., Joenje, H., & Lafleur, M. V. M. (1993). Mutational specificity of oxidative DNA damage. Mutation Research/Genetic Toxicology, 299(3–4), 165–182. https://doi.org/10.1016/0165-1218(93)90094-T
  • Ridaura, V. K., Bouladoux, N., Claesen, J., Chen, Y. E., Byrd, A. L., Constantinides, M. G., Merrill, E. D., Tamoutounour, S., Fischbach, M. A., & Belkaid, Y. (2018). Contextual control of skin immunity and inflammation by Corynebacterium. Journal of Experimental Medicine, 215(3), 785–799. https://doi.org/10.1084/jem.20171079
  • Roberson, E. D. O., Liu, Y., Ryan, C., Joyce, C. E., Duan, S., Cao, L., Martin, A., Liao, W., Menter, A., & Bowcock, A. M. (2012). A subset of methylated CpG sites differentiate psoriatic from normal skin. The Journal of Investigative Dermatology, 132(3 Pt 1), 583–592. https://doi.org/10.1038/jid.2011.348
  • Rodrigues de Souza, I., Savio de Araujo-Souza, P., & Morais Leme, D. (2022). Genetic variants affecting chemical mediated skin immunotoxicity. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 25(2), 43–95. https://doi.org/10.1080/10937404.2021.2013372
  • Rosenberg, E. W., Belew, P., & Bale, G. (1980). Effect of topical applications of heavy suspensions of killed Malassezia ovalis on rabbit skin. Mycopathologia, 72(3), 147–154. https://doi.org/10.1007/BF00572657
  • Roszkiewicz, M., Dopytalska, K., Szymańska, E., Jakimiuk, A., & Walecka, I. (2020). Environmental risk factors and epigenetic alternations in psoriasis. Annals of Agricultural and Environmental Medicine: AAEM, 27(3), 335–342. https://doi.org/10.26444/aaem/112107
  • Ruchusatsawat, K., Wongpiyabovorn, J., Shuangshoti, S., Hirankarn, N., & Mutirangura, A. (2006). SHP-1 promoter 2 methylation in normal epithelial tissues and demethylation in psoriasis. Journal of Molecular Medicine (Berlin, Germany), 84(2), 175–182. https://doi.org/10.1007/s00109-005-0020-6
  • Rudramurthy, S. M., Honnavar, P., Chakrabarti, A., Dogra, S., Singh, P., & Handa, S. (2014). Association of Malassezia species with psoriatic lesions. Mycoses, 57(8), 483–488. https://doi.org/10.1111/myc.12186
  • Rutter, K. J., Watson, R. E. B., Cotterell, L. F., Brenn, T., Griffiths, C. E. M., & Rhodes, L. E. (2009). Severely photosensitive psoriasis: A phenotypically defined patient subset. Journal of Investigative Dermatology, 129(12), 2861–2867. https://doi.org/10.1038/jid.2009.156
  • Ryan, C., & Kirby, B. (2015). Psoriasis is a systemic disease with multiple cardiovascular and metabolic comorbidities. Dermatologic Clinics, 33(1), 41–55. https://doi.org/10.1016/j.det.2014.09.004
  • Sahlén, P., Spalinskas, R., Asad, S., Mahapatra, K. D., Höjer, P., Anil, A., Eisfeldt, J., Srivastava, A., Nikamo, P., Mukherjee, A., Kim, K.-H., Bergman, O., Ståhle, M., Sonkoly, E., Pivarcsi, A., Wahlgren, C.-F., Nordenskjöld, M., Taylan, F., Bradley, M., & Tapia-Páez, I. (2021). Chromatin interactions in differentiating keratinocytes reveal novel atopic dermatitis- and psoriasis-associated genes. The Journal of Allergy and Clinical Immunology, 147(5), 1742–1752. https://doi.org/10.1016/j.jaci.2020.09.035
  • Sandoval-Talamantes, A. K., Brito-Luna, M. J., Fafutis-Morris, M., Villanueva-Quintero, D. G., Graciano-Machuca, O., Ramírez-Dueñas, M. G., & Alvarado-Navarro, A. (2015). The 3′UTR 1188A/C polymorphism of IL-12p40 is not associated with susceptibility for developing plaque psoriasis in mestizo population from western Mexico. Immunology Letters, 163(2), 221–226. https://doi.org/10.1016/j.imlet.2014.10.004
  • Sato, Y., Ogawa, E., & Okuyama, R. (2020). Role of innate immune cells in psoriasis. International Journal of Molecular Sciences, 21(18), 6604. https://doi.org/10.3390/ijms21186604
  • Scharschmidt, T. C., Vasquez, K. S., Truong, H.-A., Gearty, S. V., Pauli, M. L., Nosbaum, A., Gratz, I. K., Otto, M., Moon, J. J., Liese, J., Abbas, A. K., Fischbach, M. A., & Rosenblum, M. D. (2015). A wave of regulatory t cells into neonatal skin mediates tolerance to commensal microbes. Immunity, 43(5), 1011–1021. https://doi.org/10.1016/j.immuni.2015.10.016
  • Schockman, G., & Höltje, J. (1987). Microbial peptidoglycan (murein) hydrolases. In J. M. Ghuysen & R. Hakenbeck (Eds.), The bacterial cell wall (Vol. 66, p. 131). Elsevier.
  • Setty, A., Curhan, G., & Choi, H. (2007). Obesity, waist circumference, weight change, and the risk of psoriasis in women: Nurses’ health study II. Archives of Internal Medicine, 167(15), 1670–1675. https://doi.org/10.1001/archinte.167.15.1670
  • Sharma, A., Upadhyay, D. K., Gupta, G. D., Narang, R. K., & Rai, V. K. (2022). IL-23/Th17 Axis: A potential therapeutic target of psoriasis. Current Drug Research Reviews, 14(1), 24–36. https://doi.org/10.2174/2589977513666210707114520
  • Shen, Z., Wang, G., Fan, J.-Y., Li, W., & Liu, Y.-F. (2005). HLA DR B1*04, *07-restricted epitopes on keratin 17 for autoreactive T cells in psoriasis. Journal of Dermatological Science, 38(1), 25–39. https://doi.org/10.1016/j.jdermsci.2005.01.001
  • Shi, G., Li, S. J., Wang, T. T., Cheng, C. M., Fan, Y. M., & Zhu, K. J. (2016). The common CARD14 gene missense polymorphism rs11652075 (c.C2458T/p.Arg820Trp) is associated with psoriasis: A meta-analysis. Genetics and Molecular Research, 15(3). https://doi.org/10.4238/gmr.15038357
  • Shilov, V. N., & Sergienko, V. I. (2000). Oxidative stress in keratinocytes as an etiopathogenetic factor of psoriasis. Bulletin of Experimental Biology and Medicine, 129(4), 309–313. https://doi.org/10.1007/BF02439252
  • Shindo, Y., Witt, E., Han, D., Tzeng, B., Aziz, T. A. T., Nguyen, L., & Packer, L. (1997). Recovery of antioxidants and reduction in lipid hydroperoxides in murine epidermis and dermis after acute ultraviolet radiation exposure. Photodermatol Photoimmunol and Photomed, 10(5), 183–191.
  • Shindo, Y., Witt, E., & Packer, L. (1993). Antioxidant defense mechanisms in murine epidermis and dermis and their responses to ultraviolet light. Journal of Investigative Dermatology, 100(3), 260–265. https://doi.org/10.1111/1523-1747.ep12469048
  • Sidbury, R., Davis, M., Cohen, D., Cordoro, K., Berger, T., Bergman, J., Chamlin, S., Cooper, K., Feldman, S., Hanifin, J., Krol, A., Margolis, D., Paller, A., Schwarzenberger, K., Silverman, R., Simpson, E., Tom, W., Williams, H., Elmets, C., … Eichenfield, L. (2014). Guidelines of care for the management of atopic dermatitis: Section 3. Management and treatment with phototherapy and systemic agents. Journal of the American Academy of Dermatology, 71(2), 327–349. https://doi.org/10.1016/j.jaad.2014.03.030
  • Sigurdardottir, S. L., Thorleifsdottir, R. H., Valdimarsson, H., & Johnston, A. (2013). The association of sore throat and psoriasis might be explained by histologically distinctive tonsils and increased expression of skin-homing molecules by tonsil T cells. Clinical and Experimental Immunology, 174(1), 139–151. https://doi.org/10.1111/cei.12153
  • Sikora, M., Stec, A., Chrabaszcz, M., Waskiel-Burnat, A., Zaremba, M., Olszewska, M., & Rudnicka, L. (2019). Intestinal fatty acid binding protein, a biomarker of intestinal barrier, is associated with severity of psoriasis. Journal of Clinical Medicine, 8(7), 1021. https://doi.org/10.3390/jcm8071021
  • Simeone, P., Teson, M., Latini, A., Carducci, M., & Venuti, A. (2005). Human papillomavirus type 5 in primary keratinocytes from psoriatic skin. Experimental Dermatology, 14(11), 824–829. https://doi.org/10.1111/j.1600-0625.2005.00358.x
  • Singh, R., Koppu, S., Perche, P. O., & Feldman, S. R. (2021). The cytokine mediated molecular pathophysiology of psoriasis and its clinical implications. International Journal of Molecular Sciences, 22(23), 12793. https://doi.org/10.3390/ijms222312793
  • Singh, S., Pradhan, D., Puri, P., Ramesh, V., Aggarwal, S., Nayek, A., & Jain, A. K. (2019). Genomic alterations driving psoriasis pathogenesis. Gene, 683, 61–71. https://doi.org/10.1016/j.gene.2018.09.042
  • Slominski, A., Kim, T., Kleszczyński, K., Semak, I., Janjetovic, Z., Sweatman, T., Skobowiat, C., Steketee, J., Lin, Z., Postlethwaite, A., Li, W., Reiter, R., & Tobin, D. (2020). Characterization of serotonin and N-acetylserotonin systems in the human epidermis and skin cells. Journal of Pineal Research, 68(2), e12626. https://doi.org/10.1111/jpi.12626
  • Smith, P., Howitt, M., Panikov, N., Michaud, M., Gallini, C., Bohlooly, Y., Glickman, J., & Garrett, W. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 341(645), 569–573. https://doi.org/10.1126/science.1241165
  • Song, G., Yoon, H. Y., Yee, J., Kim, M. G., & Gwak, H. S. (2022). Antihypertensive drug use and psoriasis: A systematic review, meta- and network meta-analysis. British Journal of Clinical Pharmacology, 88(3), 933–941. https://doi.org/10.1111/bcp.15060
  • Squiquera, L., Galimberti, R., Morelli, L., Plotkin, L., Milicich, R., Kowalckzuk, A., & Leoni, J. (1994). Antibodies to proteins from Pityrosporum ovale in the sera from patients with psoriasis. Clinical and Experimental Dermatology, 19(4), 289–293. https://doi.org/10.1111/j.1365-2230.1994.tb01197.x
  • Stehlikova, Z., Kostovcik, M., Kostovcikova, K., Kverka, M., Juzlova, K., Rob, F., Hercogova, J., Bohac, P., Pinto, Y., Uzan, A., Koren, O., Tlaskalova-Hogenova, H., & Jiraskova Zakostelska, Z. (2019). Dysbiosis of skin microbiota in psoriatic patients: Co-occurrence of fungal and bacterial communities. Frontiers in Microbiology, 10, 438. https://doi.org/10.3389/fmicb.2019.00438
  • Stewart, T., Tong, W., & Whitfeld, M. (2018). The associations between psychological stress and psoriasis: A systematic review. International Journal of Dermatology, 57(11), 1275–1282. https://doi.org/10.1111/ijd.13956
  • Surace, A. E. A., & Hedrich, C. M. (2019). The role of epigenetics in Autoimmune/Inflammatory disease. Frontiers in Immunology, 10, 1525. https://doi.org/10.3389/fimmu.2019.01525
  • Svanström, C., Lonne-Rahm, S., & Nordlind, K. (2019). Psoriasis and alcohol. Psoriasis (Auckl), 21(9), 75–79. https://doi.org/10.2147/PTT.S164104
  • Szentkereszty-Kovács, Z., Gáspár, K., Szegedi, A., Kemény, L., Kovács, D., & Tör˝ocsik, D. (2021). Alcohol in psoriasis-from bench to bedside. International Journal of Molecular Sciences, 22(9), 4987. https://doi.org/10.3390/ijms22094987
  • Szeverenyi, I., Cassidy, A. J., Chung, C. W., Lee, B. T. K., Common, J. E. A., Ogg, S. C., Chen, H., Sim, S. Y., Goh, W. L. P., Ng, K. W., Simpson, J. A., Chee, L. L., Eng, G. H., Li, B., Lunny, D. P., Chuon, D., Venkatesh, A., Khoo, K. H., McLean, W. H. I., … Lane, E. B. (2008). The human intermediate filament database: Comprehensive information on a gene family involved in many human diseases. Human Mutation, 29(3), 351–360. https://doi.org/10.1002/humu.20652
  • Takahashi, T., & Yamasaki, K. (2020). Psoriasis and antimicrobial peptides. International Journal of Molecular Sciences, 21(18), 6791. https://doi.org/10.3390/ijms21186791
  • Takemoto, A., Cho, O., Morohoshi, Y., Sugita, T., & Muto, M. (2015). Molecular characterization of the skin fungal microbiome in patients with psoriasis. The Journal of Dermatology, 42(2), 166–170. https://doi.org/10.1111/1346-8138.12739
  • Telfer, N. R., Chalmers, R. J., Whale, K., & Colman, G. (1992). The role of streptococcal infection in the initiation of guttate psoriasis. Archives of Dermatology, 128(1), 39–42. https://doi.org/10.1001/archderm.1992.01680110049004
  • Ten Bergen, L. L., Petrovic, A., Aarebrot, A. K., & Appel, S. (2020). Current knowledge on autoantigens and autoantibodies in psoriasis. Scandinavian Journal of Immunology, 92(4). https://doi.org/10.1111/sji.12945
  • Teng, Y., Xie, W., Tao, X., Liu, N., Yu, Y., Huang, Y., Xu, D., & Fan, Y. (2021). Infection‑provoked psoriasis: Induced or aggravated (review). Experimental and Therapeutic Medicine, 21(6), 567. https://doi.org/10.3892/etm.2021.9999
  • Tervaert, W. C., & Esseveld, H. (1970). A study of the incidence of haemolytic streptococci in the throat in patients with psoriasis vulgaris, with reference to their role in the pathogenesis of this disease. Dermatologica, 140(5), 282–290. https://doi.org/10.1159/000252565
  • Theoharides, T., & Kavalioti, M. (2018). Stress, inflammation and natural treatments. Journal of Biological Regulators and Homeostatic Agents, 32(6), 1345–1347.
  • Thewes, M., Stadler, R., Korge, B., & Mischke, D. (1991). Normal psoriatic epidermis expression of hyperproliferation-associated keratins. Archives of Dermatological Research, 283(7), 465–471. https://doi.org/10.1007/BF00371784
  • Thome, J. J. C., & Farber, D. L. (2015). Emerging concepts in tissue-resident T cells: Lessons from humans. Trends in Immunology, 36(7), 428–435. https://doi.org/10.1016/j.it.2015.05.003
  • Thye, A. Y.-K., Bah, Y.-R., Law, J. W.-F., Tan, L. T.-H., He, Y.-W., Wong, S.-H., Thurairajasingam, S., Chan, K.-G., Lee, L.-H., & Letchumanan, V. (2022). Gut–Skin Axis: Unravelling the connection between the gut microbiome and psoriasis. Biomedicines, 10(5), 1037. https://doi.org/10.3390/biomedicines10051037
  • Tinggaard, A. B., Hjuler, K. F., Andersen, I. T., Winther, S., Iversen, L., & Bøttcher, M. (2021). Prevalence and severity of coronary artery disease linked to prognosis in psoriasis and psoriatic arthritis patients: A multi-centre cohort study. Journal of Internal Medicine, 290(3), 693–703. https://doi.org/10.1111/joim.13311
  • Tocci, M., Matkovich, D., Collier, K., Kwok, P., Dumont, F., Lin, S., Degudicibus, S., Siekierka, J., Chin, J., & Hutchinson, N. (1989). The immunosuppressant FK506 selectively inhibits expression of early T cell activation genes. Journal of Immunology (Baltimore, Md: 1950), 143(2), 718–726. https://doi.org/10.4049/jimmunol.143.2.718
  • Todberg, T., Egeberg, A., Zachariae, C., Sørensen, N., Pedersen, O., & Skov, L. (2022). Patients with psoriasis have a dysbiotic taxonomic and functional gut microbiota. The British Journal of Dermatology, 187(1), 89–98. https://doi.org/10.1111/bjd.21245
  • Todberg, T., Kaiser, H., Zachariae, C., Egeberg, A., Halling, A., & Skov, L. (2021). Characterization of Oral and GUt microbiota in patients with psoriatic diseases: A systematic review. Acta Dermato Venereologica. https://doi.org/10.2340/00015555-3882
  • Tokura, Y., Phadungsaksawasdi, P., Kurihara, K., Fujiyama, T., & Honda, T. (2021). Pathophysiology of skin resident memory T cells. Frontiers in Immunology, 11, 618897. https://doi.org/10.3389/fimmu.2020.618897
  • Tomfohrde, J., Silverman, A., Barnes, R., Fernandez-Vina, M. A., Young, M., Lory, D., Morris, L., Wuepper, K. D., Stastny, P., Menter, A., & Bowcock, A. (1994). Gene for Familial Psoriasis Susceptibility Mapped to the Distal End of Human Chromosome 17q. Science, 264(5162), 1141–1145. https://doi.org/10.1126/science.8178173
  • Tonel, G., Conrad, C., Laggner, U., DiMeglio, P., Grys, K., McClanahan, T. K., Blumenschein, W. M., Qin, J.-Z., Xin, H., Oldham, E., Kastelein, R., Nickoloff, B. J., & Nestle, F. O. (2010). Cutting edge: A critical functional role for IL-23 in psoriasis. Journal of Immunology, 185(10), 5688–5691. https://doi.org/10.4049/jimmunol.1001538
  • Traks, T., Keermann, M., Prans, E., Karelson, M., Loite, U., Kõks, G., Silm, H., Kõks, S., & Kingo, K. (2019). Polymorphisms in IL36G gene are associated with plaque psoriasis. BMC Medical Genetics, 20(1), 10. https://doi.org/10.1186/s12881-018-0742-2
  • Trembath, R. C., Lee Clough, R., Rosbotham, J. L., Jones, A. B., Camp, R. D. R., Frodsham, A., Browne, J., Barber, R., Terwilliger, J., Mark Lathrop, G., & Barker, J. N. W. N. (1997). Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Human Molecular Genetics, 6(5), 813–820. https://doi.org/10.1093/hmg/6.5.813
  • Troyanovsky, S. M., Guelstein, V. I., Tchipysheva, T. A., Krutovskikh, V. A., & Bannikov, G. A. (1989). Patterns of expression of keratin 17 in human epithelia: Dependency on cell position. Journal of Cell Science, 93(Pt 3), 419–426. https://doi.org/10.1242/jcs.93.3.419
  • Tsoi, L. C., Spain, S. L., Knight, J., Ellinghaus, E., Stuart, P. E., Capon, F., Ding, J., Li, Y., Tejasvi, T., Gudjonsson, J. E., Kang, H. M., Allen, M. H., McManus, R., Novelli, G., Samuelsson, L., Schalkwijk, J., Ståhle, M., Burden, A. D., Smith, C. H., … Trembath, R. C. (2012). Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nature Genetics, 44(12), 1341–1348. https://doi.org/10.1038/ng.2467
  • Ungprasert, P., Wijarnpreecha, K., & Wetter, D. A. (2017). Periodontitis and risk of psoriasis: A systematic review and meta-analysis. Journal of the European Academy of Dermatology and Venereology, 31(5), 857–862. https://doi.org/10.1111/jdv.14051
  • Ursell, L. K., Metcalf, J. L., Parfrey, L. W., & Knight, R. (2012). Defining the human microbiome. Nutrition Reviews, 70, S38–S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x
  • Uva, L., Miguel, D., Pinheiro, C., Antunes, J., Cruz, D., Ferreira, J., & Filipe, P. (2012). Mechanisms of action of topical corticosteroids in psoriasis. International Journal of Endocrinology, 2012(561018), 1–16. https://doi.org/10.1155/2012/561018
  • Valdimarsson, H., Baker, B. S., Jónsdóttir, I., Powles, A., & Fry, L. (1995). Psoriasis: A T-cell-mediated autoimmune disease induced by streptococcal superantigens? Immunology Today, 16(3), 145–149. https://doi.org/10.1016/0167-5699(95)80132-4
  • Valdimarsson, H., Thorleifsdottir, R. H., Sigurdardottir, S. L., Gudjonsson, J. E., & Johnston, A. (2009). Psoriasis – As an autoimmune disease caused by molecular mimicry. Trends in Immunology, 30(10), 494–501. https://doi.org/10.1016/j.it.2009.07.008
  • Van Eden, W., Wick, G., Albani, S., & Cohen, I. (2007). Stress, heat shock proteins, and autoimmunity: How immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Annals of the New York Academy of Sciences, 1113(1), 217–237. https://doi.org/10.1196/annals.1391.020
  • Vasseur, P., Pohin, M., Gisclard, C., Jégou, J., Morel, F., Silvain, C., & Lecron, J. (2020). Chronic alcohol consumption exacerbates the severity of psoriasiform dermatitis in mice. Alcoholism, Clinical and Experimental Research, 44(9), 1728–1733. https://doi.org/10.1111/acer.14400
  • Veal, C. D., Clough, R. L., Barber, R. C., Mason, S., Tillman, D., Ferry, B., Jones, A. B., Ameen, M., Balendran, N., Powis, S. H., Burden, A. D., Barker, J. N. W. N., & Trembath, R. C. (2001). Identification of a novel psoriasis susceptibility locus at 1p and evidence of epistasis between PSORS1 and candidate loci. Journal of Medical Genetics, 38(1), 7–13. https://doi.org/10.1136/jmg.38.1.7
  • Verhasselt, V., Goldman, M., & Willems, F. (1998). Oxidative stress up-regulates IL-8 and TNF-α synthesis by human dendritic cells. European Journal of Immunology, 28(11), 3886–3890. https://doi.org/10.1002/(SICI)1521-4141(199811)28:11<3886:AID-IMMU3886>3.0.CO;2-M
  • Villalpando-Vargas, F. V., Rivera-Valdés, J. J., Alvarado-Navarro, A., Huerta-Olvera, S. G., Macías-Barragán, J., Martínez-López, E., & Graciano-Machuca, O. (2021). Association between IL-17A, IL-17F and IL-17RA gene polymorphisms and susceptibility to psoriasis and psoriatic arthritis: A meta-analysis. Inflammation Research, 70(10–12), 1201–1210. https://doi.org/10.1007/s00011-021-01514-6
  • Visser, M. J. E., Kell, D. B., & Pretorius, E. (2019). Bacterial dysbiosis and translocation in psoriasis vulgaris. Frontiers in Cellular and Infection Microbiology, 9, 7. https://doi.org/10.3389/fcimb.2019.00007
  • Vo, S., Watanabe, R., Koguchi-Yoshioka, H., Matsumura, Y., Ishitsuka, Y., Nakamura, Y., Okiyama, N., Fujisawa, Y., & Fujimoto, M. (2019). CD8 resident memory T cells with interleukin 17A-producing potential are accumulated in disease-naïve nonlesional sites of psoriasis possibly in correlation with disease duration. The British Journal of Dermatology, 181(2), 410–412. https://doi.org/10.1111/bjd.17748
  • Wang, H., Chan, H. H., Ni, M. Y., Lam, W. W., Chan, W. M. M., & Pang, H. (2020). Bacteriophage of the skin microbiome in patients with psoriasis and healthy family controls. Journal of Investigative Dermatology, 140(1), 182–190.e5. https://doi.org/10.1016/j.jid.2019.05.023
  • Wang, L., Yu, X., Wu, C., Zhu, T., Wang, W., Zheng, X., & Jin, H. (2018). RNA sequencing-based longitudinal transcriptomic profiling gives novel insights into the disease mechanism of generalized pustular psoriasis. BMC Medical Genomics, 11(1), 52. https://doi.org/10.1186/s12920-018-0369-3
  • Wang, S., Wang, R., Song, Y., Wan, Z., Chen, W., Li, H., & Li, R. (2022). Dysbiosis of nail microbiome in patients with psoriasis. Experimental Dermatology, 31(5), 800–806. https://doi.org/10.1111/exd.14528
  • Wang, X., Kaiser, H., Kvist-Hansen, A., McCauley, B. D., Skov, L., Hansen, P. R., & Becker, C. (2022). IL-17 pathway members as potential biomarkers of effective systemic treatment and cardiovascular disease in patients with moderate-to-severe psoriasis. International Journal of Molecular Sciences, 23(1), 555. https://doi.org/10.3390/ijms23010555
  • Watson, W., Cann, H., Farber, E., & Nall ML. (1972). The genetics of psoriasis. Archives of Dermatology, 105(2), 197–207. https://doi.org/10.1001/archderm.1972.01620050011002
  • Weatherhead, S., Farr, P., & Reynolds, N. (2013). Spectral effects of UV on psoriasis. Photochemical & Photobiological Sciences, 12(1), 47–53. https://doi.org/10.1039/c2pp25116g
  • Weisenseel, P., Laumbacher, B., Besgen, P., Ludolph-Hauser, D., Herzinger, T., Roecken, M., Wank, R., & Prinz, J. C. (2002). Streptococcal infection distinguishes different types of psoriasis. Journal of Medical Genetics, 39(10), 767–768. https://doi.org/10.1136/jmg.39.10.767
  • West, X. Z., Malinin, N. L., Merkulova, A. A., Tischenko, M., Kerr, B. A., Borden, E. C., Podrez, E. A., Salomon, R. G., & Byzova, T. V. (2010). Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature, 467(7318), 972–976. https://doi.org/10.1038/nature09421
  • Williamson, J. C., Scheipers, P., Schwämmle, V., Zibert, J. R., Beck, H. C., & Jensen, O. N. (2013). A proteomics approach to the identification of biomarkers for psoriasis utilising keratome biopsy. Journal of Proteomics, 94, 176–185. https://doi.org/10.1016/j.jprot.2013.09.010
  • Wilson, C., Deane, D., Wojnarowska, F., Lane, E., & Leigh, I. (1990). FOLLICULAR KERATIN EXPRESSION IN NORMAL AND PSORIATIC SCALP. JOURNAL of INVESTIGATIVE DERMATOLOGY, 95(4). https://ora.ox.ac.uk/objects/uuid:55b02b15-5ea6-405c-84a4-b28e904b2c6c
  • Windoffer, R., Beil, M., Magin, T. M., & Leube, R. E. (2011). Cytoskeleton in motion: The dynamics of keratin intermediate filaments in epithelia. The Journal of Cell Biology, 194(5), 669–678. https://doi.org/10.1083/jcb.201008095
  • Wohlrab, J., Fiedler, G., Gerdes, S., Nast, A., Philipp, S., Radtke, M., Thaci, D., Koenig, W., Pfeiffer, A., Härter, M., & Schön, M. (2013). Recommendations for detection of individual risk for comorbidities in patients with psoriasis. Archives of Dermatological Research, 305(2), 91–98. https://doi.org/10.1007/s00403-013-1318-9
  • Wójcik, P., Biernacki, M., Wroński, A., Łuczaj, W., Waeg, G., Žarković, N., & Skrzydlewska, E. (2019). Altered lipid metabolism in blood mononuclear cells of psoriatic patients indicates differential changes in psoriasis vulgaris and psoriatic arthritis. International Journal of Molecular Sciences, 20(17), 4249. https://doi.org/10.3390/ijms20174249
  • Wolf, P., Seidl, H., Bäck, B., Binder, B., Höfler, G., Quehenberger, F., Hoffmann, C., Kerl, H., Stark, S., Pfister, H. J., & Fuchs, P. G. (2004). Increased prevalence of human papillomavirus in hairs plucked from patients with psoriasis treated with psoralen–UV-A. Archives of Dermatology, 140(3). https://doi.org/10.1001/archderm.140.3.317
  • Wolf, P., Weger, W., Patra, V., Gruber-Wackernagel, A., & Byrne, S. (2016). Desired response to phototherapy vs photoaggravation in psoriasis: What makes the difference? Experimental Dermatology, 25(12), 937–944. https://doi.org/10.1111/exd.13137
  • World Health Organization. (2014). WHO Africa. https://www.afro.who.int/news/67th-session-world-health-assembly-wha-gets-underway-world-health-organization-who#
  • World Health Organization. (2020). Global report on psoriasis. https://apps.who.int/iris/handle/10665/204417
  • Woźniak, E., Owczarczyk-Saczonek, A., & Placek, W. (2021). Psychological stress, mast cells, and psoriasis—Is there any relationship? International Journal of Molecular Sciences, 22(24), 13252. https://doi.org/10.3390/ijms222413252
  • Wright, J. T. (2023). The human microbiome. The Journal of the American Dental Association, 154(4), 277–278. https://doi.org/10.1016/j.adaj.2023.02.007
  • Wroński, A., Jarocka-Karpowicz, I., Stasiewicz, A., & Skrzydlewska, E. (2023). Phytocannabinoids in the Pharmacotherapy of Psoriasis. Molecules, 28(3), 1192. https://doi.org/10.3390/molecules28031192
  • Wu, J. J., Nguyen, T. U., Poon, K.-Y. T., & Herrinton, L. J. (2012). The association of psoriasis with autoimmune diseases. Journal of the American Academy of Dermatology, 67(5), 924–930. https://doi.org/10.1016/j.jaad.2012.04.039
  • Wu, S., Jiali Han, J., Li, W.-Q., & Qureshi, A. A. (2014). Hypertension, antihypertensive medication use, and risk of psoriasis. JAMA Dermatology, 150(9), 957–963. https://doi.org/10.1001/jamadermatol.2013.9957
  • Xu, Y., Ji, Y., Lan, X., Gao, X., Chen, H.-D., & Geng, L. (2017). miR-203 contributes to IL-17-induced VEGF secretion by targeting SOCS3 in keratinocytes. Molecular Medicine Reports, 16(6), 8989–8996. https://doi.org/10.3892/mmr.2017.7759
  • Yamaguchi, Y., Nagase, T., Makita, R., Fukuhara, S., Tomita, T., Tominaga, T., Kurihara, H., & Ouchi, Y. (2002). Identification of multiple novel epididymis-specific beta-defensin isoforms in humans and mice. Journal of Immunology, 169(5), 2516–2523. https://doi.org/10.4049/jimmunol.169.5.2516
  • Yamasaki, K., & Gallo, R. L. (2008). Antimicrobial peptides in human skin disease. European Journal of Dermatology: EJD, 18(1), 11–21. https://doi.org/10.1684/ejd.2008.0304
  • Yamasaki, K., Schauber, J., Coda, A., Lin, H., Dorschner, R. A., Schechter, N. M., Bonnart, C., Descargues, P., Hovnanian, A., & Gallo, R. L. (2006). Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 20(12), 2068–2080. https://doi.org/10.1096/fj.06-6075com
  • Yamazaki, F. (2021). Psoriasis: Comorbidities. The Journal of Dermatology, 48(6), 732–740. https://doi.org/10.1111/1346-8138.15840
  • Yan, D., Chang, H., Singh, R., Lai, K., Afifi, L., Lu, X., & Liao, W. (2017). 633 role of the cutaneous microbiome in the pathogenesis of psoriasis. Journal of Investigative Dermatology, 137(5), S109. https://doi.org/10.1016/j.jid.2017.02.655
  • Yanagita, M., Kobayashi, R., Kojima, Y., Mori, K., & Murakami, S. (2012). Nicotine modulates the immunological function of dendritic cells through peroxisome proliferator-activated receptor-γ upregulation. Cellular Immunology, 274(1–2), 26–33. https://doi.org/10.1016/j.cellimm.2012.02.007
  • Yang, D., Chen, Q., Schmidt, A. P., Anderson, G. M., Wang, J. M., Wooters, J., Oppenheim, J. J., & Chertov, O. (2000). Ll-37, the neutrophil granule–and epithelial cell–derived cathelicidin, utilizes formyl peptide receptor–like 1 (Fprl1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. The Journal of Experimental Medicine, 192(7), 1069–1074. https://doi.org/10.1084/jem.192.7.1069
  • Yang, H., & Zheng, J. (2020). Influence of stress on the development of psoriasis. Clinical and Experimental Dermatology, 45(3), 284–288. https://doi.org/10.1111/ced.14105
  • Yang, Y., Qu, L., Mijakovic, I., & Wei, Y. (2022). Advances in the human skin microbiota and its roles in cutaneous diseases. Microbial Cell Factories, 21(1), 176. https://doi.org/10.1186/s12934-022-01901-6
  • Yen, H., & Chi, C.-C. (2019). Association between psoriasis and vitiligo: A systematic review and meta-analysis. American Journal of Clinical Dermatology, 20(1), 31–40. https://doi.org/10.1007/s40257-018-0394-1
  • Yin, X., Cheng, H., Wang, W., Wang, W., Fu, H., Liu, L., Zhang, F., Yang, S., & Zhang, X. (2013, May). TNIP1/ANXA6 and CSMD1 variants interacting with cigarette smoking, alcohol intake affect risk of psoriasis. Journal of Dermatological Science, 70(2), 94–98. https://doi.org/10.1016/j.jdermsci.2013.02.006
  • Ying, S., Zeng, D.-N., Chi, L., Tan, Y., Galzote, C., Cardona, C., Lax, S., Gilbert, J., Quan, Z.-X., & Badger, J. H. (2015). The influence of age and gender on skin-associated microbial communities in urban and rural human populations. PLoS One, 10(10), e0141842. https://doi.org/10.1371/journal.pone.0141842
  • Yoneyama, S., Kamiya, K., Kishimoto, M., Komine, M., & Ohtsuki, M. (2019). Generalized exacerbation of psoriasis vulgaris induced by pneumococcal polysaccharide vaccine. The Journal of Dermatology, 46(11). https://doi.org/10.1111/1346-8138.15007
  • Yoshimura, A., Lien, E., Ingalls, R., Tuomanen, E., Dziarski, R., & Golenbock, D. (1999). Cutting edge: Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. Journal of Immunology (Baltimore, Md: 1950), 163(1), 1–5. https://doi.org/10.4049/jimmunol.163.1.1
  • Young, C. N., Koepke, J. I., Terlecky, L. J., Borkin, M. S., Boyd, S. L., & Terlecky, S. R. (2008). Reactive oxygen species in tumor necrosis factor-α-activated primary human keratinocytes: Implications for psoriasis and inflammatory skin disease. Journal of Investigative Dermatology, 128(11), 2606–2614. https://doi.org/10.1038/jid.2008.122
  • Yu, S., Lee, C.-W., Li, Y.-A., Chen, T.-H., & Yu, H.-S. (2022). Prenatal infection predisposes offspring to enhanced susceptibility to imiquimod-mediated psoriasiform dermatitis in mice. Dermatologica Sinica, 40(1), 14. https://doi.org/10.4103/ds.ds_6_22
  • Yu, S., Wu, X., Shi, Z., Huynh, M., Jena, P. K., Sheng, L., Zhou, Y., Han, D., Wan, Y.-J. Y., & Hwang, S. T. (2020). Diet-induced obesity exacerbates imiquimod-mediated psoriasiform dermatitis in anti-PD-1 antibody-treated mice: Implications for patients being treated with checkpoint inhibitors for cancer. Journal of Dermatological Science, 97(3), 194–200. https://doi.org/10.1016/j.jdermsci.2020.01.011
  • Yun, S. J., Seo, J. J., Chae, J. Y., & Lee, S.-C. (2005). Peroxiredoxin I and II are up-regulated during differentiation of epidermal keratinocytes. Archives of Dermatological Research, 296(12), 555–559. https://doi.org/10.1007/s00403-005-0561-0
  • Yu, S., Wu, X., Zhou, Y., Sheng, L., Jena, P. K., Han, D., Wan, Y. J. Y., & Hwang, S. T. (2019). A western diet, but not a high-fat and low-sugar diet, predisposes mice to enhanced susceptibility to imiquimod-induced psoriasiform dermatitis. Journal of Investigative Dermatology, 139(6), 1404–1407. https://doi.org/10.1016/j.jid.2018.12.002
  • Zampetti, A., Gnarra, M., Linder, D., Digiuseppe, M. D., Carrino, N., & Feliciani, C. (2010). Psoriatic Pseudobalanitis Circinata as a Post-Viral Koebner Phenomenon. Case Reports in Dermatology, 2(3), 183–188. https://doi.org/10.1159/000321012
  • Zanetti, M. (2005). The role of cathelicidins in the innate host defenses of mammals. Current Issues in Molecular Biology, 7(2), 179–196.
  • Zavradashvili, N., Sarisozen, C., Titvinidze, G., Otinashvili, G., Kantaria, T., Tugushi, D., Puiggali, J., Torchilin, V. P., & Katsarava, R. (2019). Library of cationic polymers composed of polyamines and arginine as gene transfection agents. American Chemical Society Omega, 4(1), 2090–2101. https://doi.org/10.1021/acsomega.8b02977
  • Zeeuwen, P. L. J. M., Kleerebezem, M., Timmerman, H. M., & Schalkwijk, J. (2013). Microbiome and skin diseases. Current Opinion in Allergy & Clinical Immunology, 13(5), 514–520. https://doi.org/10.1097/ACI.0b013e328364ebeb
  • Zhang, M., Whiteley, M., Lewin, G. R., & Kline, K. A. (2022). Polymicrobial Interactions of Oral Microbiota: A Historical Review and Current Perspective. mBio, 13(3), e00235–22. https://doi.org/10.1128/mbio.00235-22
  • Zhang, P., Zhao, M., Liang, G., Yin, G., Huang, D., Su, F., Zhai, H., Wang, L., Su, Y., & Lu, Q. (2013). Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris. Journal of Autoimmunity, 41, 17–24. https://doi.org/10.1016/j.jaut.2013.01.001
  • Zhang, X., Shi, L., Sun, T., Guo, K., & Geng, S. (2021). Dysbiosis of gut microbiota and its correlation with dysregulation of cytokines in psoriasis patients. BMC Microbiology, 21(1), 78. https://doi.org/10.1186/s12866-021-02125-1
  • Zhang, X., Yin, M., & Zhang, L. (2019). Keratin 6, 16 and 17—Critical Barrier Alarmin Molecules in Skin Wounds and Psoriasis. Cells, 8(8), 807. https://doi.org/10.3390/cells8080807
  • Zheng, Y., Niyonsaba, F., Ushio, H., Nagaoka, I., Ikeda, S., Okumura, K., & Ogawa, H. (2007). Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human α-defensins from neutrophils. British Journal of Dermatology, 157(6), 1124–1131. https://doi.org/10.1111/j.1365-2133.2007.08196.x
  • Zheng, G., Wei, S., Shi, T., & Li, Y. (2004). Association between alcohol, smoking and HLA-DQA1*0201 genotype in psoriasis. Acta biochimica et biophysica Sinica, 36(9), 597–602. https://doi.org/10.1093/abbs/36.9.597
  • Zhou, S., & Yao, Z. (2022). Roles of infection in psoriasis. International Journal of Molecular Sciences, 23(13), 6955. https://doi.org/10.3390/ijms23136955
  • Zhu, K. J., Zhang, C., Li, M., Zhu, C., Shi, G., & Fan, Y. M. (2013). Leptin levels in patients with psoriasis: A meta-analysis. Clinical and Experimental Dermatology, 38(5), 478–483. https://doi.org/10.1111/ced.12171
  • Zimatkin, S., & Anichtchik, O. (1999). Alcohol-histamine interactions. Alcohol and Alcoholism (Oxford, Oxfordshire), 34(2), 141–147. https://doi.org/10.1093/alcalc/34.2.141
  • Zmora, N., Suez, J., & Elinav, E. (2019). You are what you eat: Diet, health and the gut microbiota. Nature Reviews Gastroenterology & Hepatology, 16(1), 35–56. https://doi.org/10.1038/s41575-018-0061-2
  • Zwicky, P., Ingelfinger, F., Silva de Melo, B. M., Ruchti, F., Schärli, S., Puertas, N., Lutz, M., Phan, T. S., Kündig, T. M., Levesque, M. P., Maul, J.-T., Schlapbach, C., LeibundGut-Landmann, S., Mundt, S., & Becher, B. (2021). IL-12 regulates type 3 immunity through interfollicular keratinocytes in psoriasiform inflammation. Science Immunology, 6(64), eabg9012. https://doi.org/10.1126/sciimmunol.abg9012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.