Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 53, 2024 - Issue 3
176
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effect of CDK4/6 Inhibitors on Tumor Immune Microenvironment

, , , , &

References

  • Ameratunga, M., Kipps, E., Okines, A. F., & Lopez, J. S. (2018). To cycle or fight—CDK4/6 inhibitors at the crossroads of anticancer immunity. Clinical Cancer Research, 25(1), 21–28. https://doi.org/10.1158/1078-0432.CCR-18-1999
  • Ameratunga, M., Kipps, E., Okines, A. F. C., & Lopez, J. S. (2019). To cycle or fight—CDK4/6 inhibitors at the crossroads of anticancer immunity. Clinical Cancer Research, 25(1), 21–8. https://doi.org/10.1158/1078-0432.CCR-18-1999
  • Bauer, C. A., Kim, E. Y., Marangoni, F., Carrizosa, E., & Mempel, T. R. (2014). Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction. Journal of Clinical Investigation, 124(6), 2425–2440. https://doi.org/10.1172/JCI66375
  • Bonelli, M., La Monica, S., Fumarola, C., & Alfieri, R. (2019). Multiple effects of CDK4/6 inhibition in cancer: From cell cycle arrest to immunomodulation. Biochemical Pharmacology, 170. https://doi.org/10.1016/j.bcp.2019.113676
  • Bonelli, M. A., Digiacomo, G., Fumarola, C., Alfieri, R., Quaini, F., Falco, A., Madeddu, D., La Monica, S., Cretella, D., Ravelli, A., Ulivi, P., Tebaldi, M., Calistri, D., Delmonte, A., Ampollini, L., Carbognani, P., Tiseo, M., Cavazzoni, A., & Petronini, P. G. (2017). Combined inhibition of CDK4/6 and PI3K/AKT/mTOR pathways induces a synergistic anti-tumor effect in malignant pleural mesothelioma cells. Neoplasia, 19(8), 637–648. https://doi.org/10.1016/j.neo.2017.05.003
  • Bouillez, A., Rajabi, H., Jin, C., Samur, M., Tagde, A., Alam, M., Hiraki, M., Maeda, T., Hu, X., Adeegbe, D., Kharbanda, S., Wong, K.-K., & Kufe, D. (2017). MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene, 36(28), 4037–4046. https://doi.org/10.1038/onc.2017.47
  • Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095
  • Chaikovsky, A. C., & Sage, J. (2018). Beyond the cell cycle: Enhancing the immune surveillance of tumors via CDK4/6 inhibition. Molecular Cancer Research, 16(10), 1454–1457. https://doi.org/10.1158/1541-7786.MCR-18-0201
  • Cingz, O., & Goff, S. P. (2017) Cyclin-dependent kinase activity is required for type I interferon production. Proceedings of the National Academy of Sciences 115(13), E2950–E2959
  • De Simone, M., Arrigoni, A., Rossetti, G., Gruarin, P., Pagani, I., Politano, C., Bonnal, R. P., Provasi, E., Sarnicola, M., Panzeri, I., Moro, M., Crosti, M., Mazzara, S., Vaira, V., Bosari, S., Palleschi, A., Santambrogio, L., Bovo, G. … Abrignani, S. (2016). Transcriptional landscape of human tissue lymphocytes unveils uniqueness of Tumor-infiltrating T regulatory cells. Immunity, 45(5), 1135–1147. https://doi.org/10.1016/j.immuni.2016.10.021
  • Deng, J., Wang, E. S., Jenkins, R. W., Li, S., Dries, R., Yates, K., Chhabra, S., Huang, W., Liu, H., Aref, A. R., Ivanova, E., Paweletz, C. P., Bowden, M., Zhou, C. W., Herter-Sprie, G. S., Sorrentino, J. A., Bisi, J. E., Lizotte, P. H. … Gray, N. S. (2018). CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discovery, 8(2), 216–233. https://doi.org/10.1158/2159-8290.CD-17-0915
  • Ding, W., Li, Z., Wang, C., Ruan, G. D., & Tu, C. (2018). The CDK4/6 inhibitor in HR-positive advanced breast cancer: A systematic review and meta-analysis. Medicine, 97(20), e10746. https://doi.org/10.1097/MD.0000000000010746
  • Egelston, C., Guo, W., Yost, S., Lee, J. S., Rose, D., Avalos, C., Ye, J., Frankel, P., Schmolze, D., Waisman, J., Lee, P., & Yuan, Y. (2021). Pre-existing effector T-cell levels and augmented myeloid cell composition denote response to CDK4/6 inhibitor palbociclib and pembrolizumab in hormone receptor-positive metastatic breast cancer. The Journal for ImmunoTherapy of Cancer, 9(3), e002084. https://doi.org/10.1136/jitc-2020-002084
  • Fassl, A., Geng, Y., & Sicinski, P. (2022). CDK4 and CDK6 kinases: From basic science to cancer therapy. Science, 375(6577). https://doi.org/10.1126/science.abc1495
  • Gallanis, G., Sharif, G., Schmidt, M., Friedland, B., Battina, R., Rahhal, R., Davis, J., Khan, I., Wellstein, A., & Riegel, A. (2023). Stromal senescence following treatment with the CDK4/6 inhibitor palbociclib alters the lung metastatic niche and increases metastasis of drug-resistant mammary cancer cells. Cancers, 15(6), 1908. https://doi.org/10.3390/cancers15061908
  • Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C., & Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioportal. Science Signaling, 6(269), l1. https://doi.org/10.1126/scisignal.2004088
  • Goel, S., De Cristo, M. J., Watt, A. C., BrinJones, H., Sceneay, J., Li, B. B., Khan, N., Ubellacker, J. M., Xie, S., Metzger-Filho, O., Hoog, J., Ellis, M. J., Ma, C. X., Ramm, S., Krop, I. E., Winer, E. P., Roberts, T. M., Kim, H.-J., McAllister, S. S., & Zhao, J. J. (2017). CDK4/6 inhibition triggers anti-tumour immunity. Nature, 548(7668), 471–475. https://doi.org/10.1038/nature23465
  • Hou, F., Ma, D., & Cui, B. (2013). Treg cells in different forms of uterine cancer. Clinica Chimica Acta, 415, 337–340. https://doi.org/10.1016/j.cca.2012.11.004
  • Hu, M. G., Deshpande, A., Schlichting, N., Hinds, E. A., Mao, C., Dose, M., Hu, G.-F., Van Etten, R. A., Gounari, F., & Hinds, P. W. (2011). CDK6 kinase activity is required for thymocyte development. Blood, 117(23), 6120–6131. https://doi.org/10.1182/blood-2010-08-300517
  • Jin, X., Ding, D., Yan, Y., Li, H., Wang, B., Ma, L., Ye, Z., Ma, T., Wu, Q., Rodrigues, D. N., Kohli, M., Jimenez, R., Wang, L., Goodrich, D. W., de Bono, J., Dong, H., Wu, H., Zhu, R., & Huang, H. (2019). Phosphorylated RB promotes cancer immunity by inhibiting NF-κB activation and PD-L1 expression - ScienceDirect. Molecular Cell, 73(1), 22–35.e6. https://doi.org/10.1016/j.molcel.2018.10.034
  • Knudsen, E. S., Kumarasamy, V., Nambiar, R., Pearson, J. D., Vail, P., Rosenheck, H., Wang, J., Eng, K., Bremner, R., Schramek, D., Rubin, S. M., Welm, A. L., & Witkiewicz, A. K. (2022). CDK/cyclin dependencies define extreme cancer cell-cycle heterogeneity and collateral vulnerabilities. Cell Reports, 38(9), 110448. https://doi.org/10.1016/j.celrep.2022.110448
  • König, S., Probst-Kepper, M., Reinl, T., Jeron, A., Huehn, J., Schraven, B., & Jänsch, L. (2012). First insight into the kinome of human regulatory T cells. PLoS One, 7(7), e40896. https://doi.org/10.1371/journal.pone.0040896
  • Kovatcheva, M., Liu, D. D., Dickson, M. A., Klein, M. E., & Koff, A. J. O. (2015). MDM2 turnover and expression of ATRX determine the choice between quiescence and senescence in response to CDK4 inhibition. Oncotarget, 6(10), 8226–8243. https://doi.org/10.18632/oncotarget.3364
  • Lee, S., & Lee, J.-S. (2019). Cellular senescence: A promising strategy for cancer therapy. BMB Reports, 52(1), 35–41. https://doi.org/10.5483/BMBRep.2019.52.1.294
  • Lelliott, E. J., Kong, I. Y., Zethoven, M., Ramsbottom, K. M., Martelotto, L. G., Meyran, D., Zhu, J. J., Costacurta, M., Kirby, L., Sandow, J. J., Lim, L., Dominguez, P. M., Todorovski, I., Haynes, N. M., Beavis, P. A., Neeson, P. J., Hawkins, E. D., McArthur, G. A. … Kearney, C. J. (2021). CDK4/6 inhibition promotes antitumor immunity through the induction of T-cell memory. Cancer Discovery, 11(10), 2582–2601. https://doi.org/10.1158/2159-8290.CD-20-1554
  • Lu, Y.-S., Im, S.-A., Colleoni, M., Franke, F., Bardia, A., Cardoso, F., Harbeck, N., Hurvitz, S., Chow, L., Sohn, J., Lee, K. S., Campos-Gomez, S., Villanueva Vazquez, R., Jung, K. H., Babu, K. G., Wheatley-Price, P., De Laurentiis, M., Im, Y.-H. … Ji, Y. (2022). Updated overall survival of ribociclib plus endocrine therapy versus endocrine therapy alone in pre- and perimenopausal patients with HR+/HER2− advanced breast cancer in MONALEESA-7: A phase III randomized clinical trial. Clinical Cancer Research, 28(5), 851–859. https://doi.org/10.1158/1078-0432.CCR-21-3032
  • Mccartney, A., Migliaccio, I., Bonechi, M., Biagioni, C., & Di Leo, A. (2019). Mechanisms of resistance to CDK4/6 inhibitors: Potential implications and biomarkers for clinical practice. Frontiers in Oncology, 9. https://doi.org/10.3389/fonc.2019.00666
  • Mollica Poeta, V., Massara, M., Capucetti, A., & Bonecchi, R. (2019). Chemokines and chemokine receptors: New targets for cancer immunotherapy. Frontiers in Immunology, 10, 10. https://doi.org/10.3389/fimmu.2019.00379
  • Nebenfuehr, S., Kollmann, K., & Sexl, V. (2020). The role of CDK6 in cancer. International Journal of Cancer, 147(11), 2988–2995. https://doi.org/10.1002/ijc.33054
  • Pandey, P., Khan, F., Upadhyay, T. K., & Sharangi, A. B. (2023). Deciphering the immunomodulatory role of cyclin-dependent kinase 4/6 inhibitors in the tumor microenvironment. International Journal of Molecular Sciences, 24(3), 2236. https://doi.org/10.3390/ijms24032236
  • Roulois, D., Yau, H. L., Singhania, R., Wang, Y., Danesh, A., Shen, S. Y., Han, H., Liang, G., Jones, P., Pugh, T., O’Brien, C., & De Carvalho, D. (2015). DNA-Demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell, 162(5), 961–973. https://doi.org/10.1016/j.cell.2015.07.056
  • Sacaan, A. I., Thibault, S., Hong, M., Kondegowda, N. G., Nichols, T. C., Li, R., Rosselot, C., Evering, W., Fenutria, R., Vitsky, A., Brown, T., Finkelstein, M., Garcia-Ocaña, A., Khan, N., Stewart, A. F., & Vasavada, R. C. (2017). CDK4/6 inhibition on glucose and pancreatic beta cell homeostasis in young and aged rats. Molcanres, 15(11), 1531–1541. https://doi.org/10.1158/1541-7786.MCR-17-0172
  • Schaer, D. A., Beckmann, R. P., Dempsey, J. A., Huber, L., Forest, A., Amaladas, N., Li, Y., Wang, Y. C., Rasmussen, E. R., Chin, D., Capen, A., Carpenito, C., Staschke, K. A., Chung, L. A., Litchfield, L. M., Merzoug, F. F., Gong, X., Iversen, P. W. … Novosiadly, R. D. (2018). The CDK4/6 Inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Reports, 22(11), 2978. https://doi.org/10.1016/j.celrep.2018.02.053
  • Scheicher, R., Hoelbl-Kovacic, A., Bellutti, F., Tigan, A. S., Sexl, V., Heller, G., Schneckenleithner, C., Salazar-Roa, M., Zöchbauer-Müller, S., Zuber, J., Malumbres, M., Kollmann, K., & Sexl, V. (2015). CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood, 125(1), 90–101. https://doi.org/10.1182/blood-2014-06-584417
  • Schmitz, M. L., & Kracht, M. (2016). Cyclin-dependent kinases as coregulators of inflammatory gene expression. Trends in Pharmacological Sciences, 37(2), 101–113. https://doi.org/10.1016/j.tips.2015.10.004
  • Shom, G., Decristo, M. J., Mcallister, S. S., & Zhao, J. J. (2018). CDK4/6 inhibition in cancer: Beyond cell cycle arrest. Trends in Cell Biology, 28(11), S0962892418301235. https://doi.org/10.1016/j.tcb.2018.07.002
  • Sledge, G. W., Toi, M., Neven, P., Sohn, J., Inoue, K., Pivot, X., Burdaeva, O., Okera, M., Masuda, N., Kaufman, P. A., Koh, H., Grischke, E.-M., Conte, P., Lu, Y., Barriga, S., Hurt, K., Frenzel, M., Johnston, S., & Llombart-Cussac, A. (2020). The effect of abemaciclib plus fulvestrant on overall survival in hormone receptor–positive, ERBB2-negative breast cancer that progressed on endocrine therapy—MONARCH 2. JAMA Oncology, 6(1), 116. https://doi.org/10.1001/jamaoncol.2019.4782
  • Spring, L., Bardia, A., & Modi, S. (2016). Targeting the cyclin D–cyclin-dependent kinase (CDK)4/6–retinoblastoma pathway with selective CDK 4/6 inhibitors in hormone receptor-positive breast cancer: Rationale, current status, and future directions. Discovery medicine, 21(113). 65.
  • Tadesse, S., Duckett, D. R., & Monastyrskyi, A. (2021). The promise and current status of CDK12/13 inhibition for the treatment of cancer. Future Medicinal Chemistry, 13(2), 117–141. https://doi.org/10.4155/fmc-2020-0240
  • Teh, J. L. F., & Aplin, A. E. (2019). Arrested developments: CDK4/6 inhibitor resistance and alterations in the tumor immune microenvironment. Clinical Cancer Research, 25(3), 921–927. https://doi.org/10.1158/1078-0432.CCR-18-1967
  • Tempka, D., Tokarz, P., Chmielewska, K., Kluska, M., Pietrzak, J., Rygielska, A., Virág, L., & Robaszkiewicz, A. (2017). Downregulation of PARP1 transcription by CDK4/6 inhibitors sensitizes human lung cancer cells to anticancer drug-induced death by impairing OGG1-dependent base excision repair. Redox Biology, 15, 316–326. https://doi.org/10.1016/j.redox.2017.12.017
  • Teo, Z. L., Versaci, S., Dushyanthen, S., Caramia, F., Savas, P., Mintoff, C. P., Zethoven, M., Virassamy, B., Luen, S. J., McArthur, G. A., Phillips, W. A., Darcy, P. K., & Loi, S. (2017). Combined CDK4/6 and PI3Kα inhibition is synergistic and immunogenic in triple-negative breast cancer. Cancer Research, 77(22), 6340–6352. https://doi.org/10.1158/0008-5472.CAN-17-2210
  • Van den, B. T. J., Bishop, G. A., & Mathias, L. (2011). CDK-Mediated regulation of cell functions via c-jun phosphorylation and AP-1 activation. PLoS One, 6(4), e19468. https://doi.org/10.1371/journal.pone.0019468
  • Vilgelm, A. E., Johnson, C. A., Prasad, N., Yang, J., Chen, S. C., & Ayers, G. D., Pawlikowski J. S., Raman D., Sosman J. A., Kelley M., & Ecsedy J. A. (2016). Connecting the dots: Therapy-induced senescence and a tumor-suppressive immune microenvironment. Journal of the National Cancer Institute, 108(6), djv406. https://doi.org/10.1093/jnci/djv406
  • Yang, Y., Luo, J., Chen, X., Yang, Z., Mei, X., Ma, J., Zhang, Z., Guo, X., & Yu, X. (2020). CDK4/6 inhibitors: a novel strategy for tumor radiosensitization. Journal of Experimental & Clinical Cancer Research, 39(1). https://doi.org/10.1186/s13046-020-01693-w
  • Zhang, J., Bu, X., Wang, H., Zhu, Y., Geng, Y., Nihira, N. T., Tan, Y., Ci, Y., Wu, F., Dai, X., Guo, J., Huang, Y.-H., Fan, C., Ren, S., Sun, Y., Freeman, G. J., Sicinski, P., & Wei, W. (2018). Cyclin D–CDK4 kinase destabilizes PD-L1 via cullin 3–SPOP to control cancer immune surveillance. Nature, 553(7686), 91–95. https://doi.org/10.1038/nature25015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.