672
Views
57
CrossRef citations to date
0
Altmetric
Research Article

The Wnt Signaling Pathway in Familial Exudative Vitreoretinopathy and Norrie Disease

, &
Pages 211-217 | Published online: 02 Jul 2009

REFERENCES

  • Nusse R, Varmus H E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982; 31(1)99–109
  • Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 1987; 50(4)649–57
  • McMahon A P, Moon R T. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 1989; 58(6)1075–84
  • Tao Q, Yokota C, Puck H, et al. Maternal Wnt11 activates the canonical Wnt signaling pathway required for axis formation in Xenopus embryos. Cell 2005; 120(6)857–71
  • Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127(3)469–80
  • Kusserow A, Pang K, Sturm C, et al. Unexpected complexity of the Wnt gene family in a sea anemone. Nature 2005; 433(7022)156–60
  • Logan C Y, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781–810
  • de Iongh R U, Abud H E, Hime G R. WNT/Frizzled signaling in eye development and disease. Front Biosci 2006; 11: 2442–64
  • Willert K, Brown J D, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423(6938)448–52
  • Bhanot P, Brink M, Samos C H, et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 1996; 382(6588)225–30
  • Dann C E, Hsieh J C, Rattner A, Sharma D, Nathans J, Leahy D J. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 2001; 412(6842)86–90
  • Pinson K I, Brennan J, Monkley S, Avery B J, Skarnes W C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 2000; 407(6803)535–8
  • Tamai K, Semenov M, Kato Y, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 2000; 407(6803)530–5
  • Wehrli M, Dougan S T, Caldwell K, et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 2000; 407(6803)527–30
  • Xu Q, Wang Y, Dabdoub A, et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 2004; 116(6)883–95
  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J 1997; 16(13)3797–804
  • Liu C, Kato Y, Zhang Z, Do V M, Yankner B A, He X. beta-Trcp couples beta-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci USA 1999; 96(11)6273–8
  • Latres E, Chiaur D S, Pagano M. The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 1999; 18(4)849–54
  • Su L K, Vogelstein B, Kinzler K W. Association of the APC tumor suppressor protein with catenins. Science 1993; 262(5140)1734–7
  • Rubinfeld B, Souza B, Albert I, et al. Association of the APC gene product with beta-catenin. Science 1993; 262(5140)1731–4
  • van d e, Wetering M, Cavallo R, Dooijes D, et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 1997; 88(6)789–99
  • Behrens J, von Kries J P, Kuhl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996; 382(6592)638–42
  • Molenaar M, van de Wetering M, Oosterwegel M, et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 1996; 86(3)391–9
  • Criswick V G, Schepens C L. Familial exudative vitreoretinopathy. Am J Ophthalmol 1969; 68(4)578–94
  • Laqua H. Familial exudative vitreoretinopathy. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1980; 213(2)121–33
  • Canny C L, Oliver G L. Fluorescein angiographic findings in familial exudative vitreoretinopathy. Arch Ophthalmol 1976; 94(7)1114–20
  • Gow J, Oliver G L. Familial exudative vitreoretinopathy. An expanded view. Arch Ophthalmol 1971; 86(2)150–5
  • Tasman W, Augsburger J J, Shields J A, Caputo A, Annesley W H. Jr. Familial exudative vitreoretinopathy. Trans Am Ophthalmol Soc 1981; 79: 211–26
  • Nijhuis F A, Deutman A F, Aan de Kerk A L. Flourescein angiography in mild stages of dominant exudative vitreoretinopathy. Mod Probl Ophthalmol 1979; 20: 107–14
  • Nishimura M, Yamana T, Sugino M, et al. Falciform retinal fold as sign of familial exudative vitreoretinopathy. Jpn J Ophthalmol 1983; 27(1)40–53
  • van Nouhuys C E. Juvenile retinal detachment as a complication of familial exudative vitreoretinopathy. Fortschr Ophthalmol 1989; 86(3)221–3
  • Bergen R L, Glassman R. Familial exudative vitreoretinopathy. Ann Ophthalmol 1983; 15(3)275–6
  • de Crecchio G, Simonelli F, Nunziata G, et al. Autosomal recessive familial exudative vitreoretinopathy: evidence for genetic heterogeneity. Clin Genet 1998; 54(4)315–20
  • Shastry B S, Hejtmancik J F, Plager D A, Hartzer M K, Trese M T. Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy. Genomics 1995; 27(2)341–4
  • Li Y, Muller B, Fuhrmann C, et al. The autosomal dominant familial exudative vitreoretinopathy locus maps on 11q and is closely linked to D11S533. Am J Hum Genet 1992; 51(4)749–54
  • Downey L M, Keen T J, Roberts E, Mansfield D C, Bamashmus M, Inglehearn C F. A new locus for autosomal dominant familial exudative vitreoretinopathy maps to chromosome 11p12-13. Am J Hum Genet 2001; 68(3)778–81
  • Toomes C, Downey L M, Bottomley H M, et al. Identification of a fourth locus (EVR4) for familial exudative vitreoretinopathy (FEVR). Mol Vis 2004; 10: 37–42
  • Toomes C, Downey L M, Bottomley H M, Mintz-Hittner H A, Inglehearn C F. Further evidence of genetic heterogeneity in familial exudative vitreoretinopathy; exclusion of EVR1, EVR3, and EVR4 in a large autosomal dominant pedigree. Br J Ophthalmol 2005; 89(2)194–7
  • Robitaille J, MacDonald M L, Kaykas A, et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nat Genet 2002; 32(2)326–30
  • Toomes C, Bottomley H M, Jackson R M, et al. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am J Hum Genet 2004; 74(4)721–30
  • Qin M, Hayashi H, Oshima K, Tahira T, Hayashi K, Kondo H. Complexity of the genotype-phenotype correlation in familial exudative vitreoretinopathy with mutations in the LRP5 and/or FZD4 genes. Hum Mutat 2005; 26(2)104–12
  • Plager D A, Orgel I K, Ellis F D, Hartzer M, Trese M T, Shastry B S. X-linked recessive familial exudative vitreoretinopathy. Am J Ophthalmol 1992; 114(2)145–8
  • Fullwood P, Jones J, Bundey S, Dudgeon J, Fielder A R, Kilpatrick M W. X linked exudative vitreoretinopathy: clinical features and genetic linkage analysis. Br J Ophthalmol 1993; 77(3)168–70
  • Chen Z Y, Battinelli E M, Fielder A, et al. A mutation in the Norrie disease gene (NDP) associated with X-linked familial exudative vitreoretinopathy. Nat Genet 1993; 5(2)180–3
  • Jiao X, Ventruto V, Trese M T, Shastry B S, Hejtmancik J F. Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am J Hum Genet 2004; 75(5)878–84
  • Warburg M. Norrie's disesae: differential diagnosis and treatment. Acta Ophthalmolol 1975; 53: 217–36
  • Warburg M. Norrie's disease. A congenital progressive oculo-acustico-cerebral degeneration. Acta Ophthalmolol 1966; 89: 1–47, Suppl
  • Anderson S, Warburg M. Norrie's disease: congenital bilateral pseudotumor of the retina with X-chomosomal inheritance; preliminary report. Arch Ophthalmol 1961; 66: 614–8
  • Norrie G. Causes of blindness in children. Acta Ophthalmolol 1927; 5: 357–86
  • Andreoli C, Maumenee I, Zhu D, Mukai S. Histopathology and electron microscopy of a 16 week gestation retina carrying the norrie mutation. ARVO 2004
  • Parsons M A, Curtis D, Blank C E, Hughes H N, McCartney A C. The ocular pathology of Norrie disease in a fetus of 11 weeks' gestational age. Graefes Arch Clin Exp Ophthalmol 1992; 230(3)248–51
  • Joos K M, Kimura A E, Vandenburgh K, Bartley J A, Stone E M. Ocular findings associated with a Cys39Arg mutation in the Norrie disease gene. Arch Ophthalmol 1994; 112(12)1574–9
  • Redmond R M, Vaughan J I, Jay M, Jay B. In-utero diagnosis of Norrie disease by ultrasonography. Ophthalmic Paediatr Genet 1993; 14(1)1–3
  • Berger W, van de Pol D, Warburg M, et al. Mutations in the candidate gene for Norrie disease. Hum Mol Genet 1992; 1(7)461–5
  • Schroeder B, Hesse L, Bruck W, Gal A. Histopathological and immunohistochemical findings associated with a null mutation in the Norrie disease gene. Ophthalmic Genet 1997; 18(2)71–7
  • Michaelides M, Luthert P J, Cooling R, Firth H, Moore A T. Norrie disease and peripheral venous insufficiency. Br J Ophthalmol 2004; 88(11)1475
  • Chen Z Y, Hendriks R W, Jobling M A, et al. Isolation and characterization of a candidate gene for Norrie disease. Nat Genet 1992; 1(3)204–8
  • Berger W, Meindl A, van de Pol T J, et al. Isolation of a candidate gene for Norrie disease by positional cloning. Nat Genet 1992; 1(3)199–203
  • Berger W, Rogers H. Norrie Disease. McGraw Hill, New York 2001
  • Dickinson J L, Sale M M, Passmore A, et al. Mutations in the NDP gene: contribution to Norrie disease, familial exudative vitreoretinopathy and retinopathy of prematurity. Clin Experiment Ophthalmol 2006; 34(7)682–8
  • Hiraoka M, Berinstein D M, Trese M T, Shastry B S. Insertion and deletion mutations in the dinucleotide repeat region of the Norrie disease gene in patients with advanced retinopathy of prematurity. J Hum Genet 2001; 46(4)178–81
  • Black G C, Perveen R, Bonshek R, et al. Coats' disease of the retina (unilateral retinal telangiectasis) caused by somatic mutation in the NDP gene: a role for norrin in retinal angiogenesis. Hum Mol Genet 1999; 8(11)2031–5
  • Shastry B S, Pendergast S D, Hartzer M K, Liu X, Trese M T. Identification of missense mutations in the Norrie disease gene associated with advanced retinopathy of prematurity. Arch Ophthalmol 1997; 115(5)651–5
  • Kim J H, Yu Y S, Kim J, Park S S. Mutations of the Norrie gene in Korean ROP infants. Korean J Ophthalmol 2002; 16(2)93–6
  • Haider M Z, Devarajan L V, Al-Essa M, et al. Missense mutations in norrie disease gene are not associated with advanced stages of retinopathy of prematurity in Kuwaiti arabs. Biol Neonate 2000; 77(2)88–91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.