966
Views
78
CrossRef citations to date
0
Altmetric
Original

Limbal Stem Cell Deficiency and Corneal Neovascularization

, &
Pages 139-148 | Published online: 02 Jul 2009

REFERENCES

  • Hanna C, Bicknell D S, O'Brien J E. Cell turnover in the adult human eye. Archives of Ophthalmology 1961; 65: 695–698
  • Hanna C, O'Brien J E. Cell production and migration in the epithelial layer of the cornea. Archives of Ophthalmology 1960; 64: 536–539
  • Lehrer M S, Sun T T, Lavker R M. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. Journal of Cell Science 1998; 111: 2867–2875, (Pt 19)
  • Leblond C P. The life history of cells in renewing systems. The American Journal of Anatomy 1981; 160: 114–158
  • Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 1971; 229: 560–561
  • Schermer A, Galvin S, Sun T T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. The Journal of Cell Biology 1986; 103: 49–62
  • Cotsarelis G, Cheng S Z, Dong G, Sun T T, Lavker R M. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells. Cell 1989; 57: 201–209
  • Ebato B, Friend J, Thoft R A. Comparison of limbal and peripheral human corneal epithelium in tissue culture. Investigative Ophthalmology & Visual Science 1988; 29: 1533–1537
  • Lindberg K, Brown M E, Chaves H V, Kenyon K R, Rheinwald J G. In vitro propagation of human ocular surface epithelial cells for transplantation. Investigative Ophthalmology & Visual Science 1993; 34: 2672–2679
  • Chen J J, Tseng S C. Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium. Investigative Ophthalmology & Visual Science 1991; 32: 2219–2233
  • Chen J J, Tseng S C. Corneal epithelial wound healing in partial limbal deficiency. Investigative Ophthalmology & Visual Science 1990; 31: 1301–1314
  • Huang A J, Tseng S C. Corneal epithelial wound healing in the absence of limbal epithelium. Investigative Ophthalmology & Visual Science 1991; 32: 96–105
  • Kruse F E, Chen J J, Tsai R J, Tseng S C. Conjunctival transdifferentiation is due to the incomplete removal of limbal basal epithelium. Investigative Ophthalmology & Visual Science 1990; 31: 1903–1913
  • Dua H S, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Survey of Ophthalmology 2000; 44: 415–425
  • Townsend W M. The limbal palisades of Vogt. Transactions of the American Ophthalmological Society 1991; 89: 721–756
  • Lawrenson J G, Ruskell G L. The structure of corpuscular nerve endings in the limbal conjunctiva of the human eye. Journal of Anatomy 1991; 177: 75–84
  • Goldberg M F, Bron A J. Limbal palisades of Vogt. Transactions of the American Ophthalmological Society 1982; 80: 155–171
  • Zieske J D. Perpetuation of stem cells in the eye. Eye (London, England) 1994; 8: 163–169, (Pt 2)
  • Stepp M A, Zieske J D. The corneal epithelial stem cell niche. The Ocular Surface 2005; 3: 15–26
  • Dua H S, Shanmuganathan V A, Powell-Richards A O, Tighe P J, Joseph A. Limbal epithelial crypts: A novel anatomical structure and a putative limbal stem cell niche. The British Journal of Ophthalmology 2005; 89: 529–532
  • Shanmuganathan V A, Foster T, Kulkarni B B, et al. Morphological characteristics of the limbal epithelial crypt. The British Journal of Ophthalmology 2007; 91: 514–519
  • Shortt A J, Secker G A, Munro P M, Khaw P T, Tuft S J, Daniels J T. Characterization of the limbal epithelial stem cell niche: Novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells (Dayton, Ohio) 2007; 25: 1402–1409
  • Majo F, Rochat A, Nicolas M, Jaoude G A, Barrandon Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature 2008; 456: 250–254
  • Amano S, Rohan R, Kuroki M, Tolentino M, Adamis A P. Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Investigative Ophthalmology & Visual Science 1998; 39: 18–22
  • Biswas P S, Banerjee K, Kinchington P R, Rouse B T. Involvement of IL-6 in the paracrine production of VEGF in ocular HSV-1 infection. Experimental Eye Research 2006; 82: 46–54
  • Yoshida S, Ono M, Shono T, et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Molecular and Cellular Biology 1997; 17: 4015–4023
  • Berger O, Gan X, Gujuluva C, et al. CXC and CC chemokine receptors on coronary and brain endothelia. Molecular Medicine 1999; 5: 795–805
  • Koch A E, Polverini P J, Kunkel S L, et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 1992; 258: 1798–1801
  • Strieter R M, Kunkel S L, Elner V M, et al. Interleukin-8. A corneal factor that induces neovascularization. The American Journal of Pathology 1992; 141: 1279–1284
  • Goede V, Brogelli L, Ziche M, Augustin H G. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. International Journal of Cancer 1999; 82: 765–770
  • Vaporciyan A A, DeLisser H M, Yan H C, et al. Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo. Science 1993; 262: 1580–1582
  • Soubrane G, Jerdan J, Karpouzas I, et al. Binding of basic fibroblast growth factor to normal and neovascularized rabbit cornea. Investigative Ophthalmology & Visual Science 1990; 31: 323–333
  • Chang J H, Gabison E E, Kato T, Azar D T. Corneal neovascularization. Current Opinion in Ophthalmology 2001; 12: 242–249
  • Ma X, Ottino P, Bazan H E, Bazan N G. Platelet-activating factor (PAF) induces corneal neovascularization and upregulates VEGF expression in endothelial cells. Investigative Ophthalmology & Visual Science 2004; 45: 2915–2921
  • Tao Y, Bazan H E, Bazan N G. Platelet-activating factor induces the expression of metalloproteinases-1 and -9, but not -2 or -3, in the corneal epithelium. Investigative Ophthalmology & Visual Science 1995; 36: 345–354
  • Tao Y, Bazan H E, Bazan N G. Platelet-activating factor enhances urokinase-type plasminogen activator gene expression in corneal epithelium. Investigative Ophthalmology & Visual Science 1996; 37: 2037–2046
  • Stoltz R A, Schwartzman M L. High affinity binding sites for 12(R)-Hydroxyeicosatrienoic acid [12(R)-HETrE] in microvessel endothelial cells. J Ocul Pharmacol Ther 1997; 13: 191–199
  • Moser T L, Stack M S, Asplin I, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 1999; 96: 2811–2816
  • Moser T L, Kenan D J, Ashley T A, et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proceedings of the National Academy of Sciences of the United States of America 2001; 98: 6656–6661
  • Tarui T, Miles L A, Takada Y. Specific interaction of angiostatin with integrin alpha(v)beta(3) in endothelial cells. The Journal of Biological Chemistry 2001; 276: 39562–39568
  • Hanai J, Gloy J, Karumanchi S A, et al. Endostatin is a potential inhibitor of Wnt signaling. The Journal of Cell Biology 2002; 158: 529–539
  • Rehn M, Veikkola T, Kukk-Valdre E, et al. Interaction of endostatin with integrins implicated in angiogenesis. Proceedings of the National Academy of Sciences of the United States of America 2001; 98: 1024–1029
  • Dhanabal M, Ramchandran R, Waterman M J, et al. Endostatin induces endothelial cell apoptosis. The Journal of Biological Chemistry 1999; 274: 11721–11726
  • Kim Y M, Jang J W, Lee O H, et al. Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Research 2000; 60: 5410–5413
  • Kim Y M, Hwang S, Kim Y M, et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. The Journal of Biological Chemistry 2002; 277: 27872–27879
  • Ramchandran R, Dhanabal M, Volk R, et al. Antiangiogenic activity of restin, NC10 domain of human collagen XV: Comparison to endostatin. Biochemical and Biophysical Research Communications 1999; 255: 735–739
  • Karakousis P C, John S K, Behling K C, et al. Localization of pigment epithelium derived factor (PEDF) in developing and adult human ocular tissues. Molecular Vision 2001; 7: 154–163
  • Ma D H, Chen J K, Zhang F, Lin K Y, Yao J Y, Yu J S. Regulation of corneal angiogenesis in limbal stem cell deficiency. Progress in Retinal and Eye Research 2006; 25: 563–590
  • Ambati B K, Nozaki M, Singh N, et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature 2006; 443: 993–997
  • Chen H, Ikeda U, Shimpo M, et al. Inhibition of vascular endothelial growth factor activity by transfection with the soluble FLT-1 gene. Journal of Cardiovascular Pharmacology 2000; 36: 498–502
  • Kong H L, Hecht D, Song W, et al. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor. Human Gene Therapy 1998; 9: 823–833
  • Jordan T, Hanson I, Zaletayev D, et al. The human PAX6 gene is mutated in two patients with aniridia. Nature Genetics 1992; 1: 328–332
  • Ambati B K, Patterson E, Jani P, et al. Soluble vascular endothelial growth factor receptor-1 contributes to the corneal antiangiogenic barrier. The British Journal of Ophthalmology 2007; 91: 505–508
  • Tseng S C. Concept and application of limbal stem cells. Eye 1989; 3: 141–157, (Pt 2)
  • Dua H S, Forrester J V. The corneoscleral limbus in human corneal epithelial wound healing. American Journal of Ophthalmology 1990; 110: 646–656
  • Dua H S, Gomes J A, Singh A. Corneal epithelial wound healing. The British Journal of Ophthalmology 1994; 78: 401–408
  • Dua H S. The conjunctiva in corneal epithelial wound healing. The British Journal of Ophthalmology 1998; 82: 1407–1411
  • Thoft R A, Friend J, Murphy H S. Ocular surface epithelium and corneal vascularization in rabbits. I. The role of wounding. Investigative Ophthalmology & Visual Science 1979; 18: 85–92
  • Joussen A M, Poulaki V, Mitsiades N, et al. VEGF-dependent conjunctivalization of the corneal surface. Investigative Ophthalmology & Visual Science 2003; 44: 117–123
  • Shapiro M S, Friend J, Thoft R A. Corneal re-epithelialization from the conjunctiva. Investigative Ophthalmology & Visual Science 1981; 21: 135–142
  • Ma D H, Tsai R J, Chu W K, Kao C H, Chen J K. Inhibition of vascular endothelial cell morphogenesis in cultures by limbal epithelial cells. Investigative Ophthalmology & Visual Science 1999; 40: 1822–1828
  • Anderson D F, Ellies P, Pires R T, Tseng S C. Amniotic membrane transplantation for partial limbal stem cell deficiency. The British Journal of Ophthalmology 2001; 85: 567–575
  • Jenkins C, Tuft S, Liu C, Buckley R. Limbal transplantation in the management of chronic contact-lens-associated epitheliopathy. Eye 1993; 7: 629–633, (Pt 5)
  • Kenyon K R, Tseng S C. Limbal autograft transplantation for ocular surface disorders. Ophthalmology 1989; 96: 709–722, discussion 722–703
  • Tsai R J, Tseng S C. Human allograft limbal transplantation for corneal surface reconstruction. Cornea 1994; 13: 389–400
  • Tsubota K, Toda I, Saito H, Shinozaki N, Shimazaki J. Reconstruction of the corneal epithelium by limbal allograft transplantation for severe ocular surface disorders. Ophthalmology 1995; 102: 1486–1496
  • Solomon A, Ellies P, Anderson D F, et al. Long-term outcome of keratolimbal allograft with or without penetrating keratoplasty for total limbal stem cell deficiency. Ophthalmology 2002; 109: 1159–1166
  • Tsubota K, Satake Y, Kaido M, et al. Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation. The New England Journal of Medicine 1999; 340: 1697–1703
  • Pellegrini G, Traverso C E, Franzi A T, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997; 349: 990–993
  • Nakamura T, Inatomi T, Sotozono C, Amemiya T, Kanamura N, Kinoshita S. Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. The British Journal of Ophthalmology 2004; 88: 1280–1284
  • Nishida K, Yamato M, Hayashida Y, et al. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 2004; 77: 379–385
  • Tsai R J, Li L M, Chen J K. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. The New England Journal of Medicine 2000; 343: 86–93
  • Ramaesh K, Dhillon B. Ex vivo expansion of corneal limbal epithelial/stem cells for corneal surface reconstruction. European Journal of Ophthalmology 2003; 13: 515–524
  • Koizumi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S. Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology 2001; 108: 1569–1574
  • Koizumi N, Cooper L J, Fullwood N J, et al. An evaluation of cultivated corneal limbal epithelial cells, using cell-suspension culture. Investigative Ophthalmology & Visual Science 2002; 43: 2114–2121
  • Grueterich M, Espana E M, Touhami A, Ti S E, Tseng S C. Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. Ophthalmology 2002; 109: 1547–1552
  • Koizumi N, Inatomi T, Suzuki T, Sotozono C, Kinoshita S. Cultivated corneal epithelial transplantation for ocular surface reconstruction in acute phase of Stevens-Johnson syndrome. Archives of Ophthalmology 2001; 119: 298–300
  • Schwab I R, Reyes M, Isseroff R R. Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea 2000; 19: 421–426
  • Shortt A J, Secker G A, Rajan M S, et al. Ex vivo expansion and transplantation of limbal epithelial stem cells. Ophthalmology 2008; 115: 1989–1997
  • Shortt A J, Secker G A, Notara M D, et al. Transplantation of ex vivo cultured limbal epithelial stem cells: A review of techniques and clinical results. Survey of Ophthalmology 2007; 52: 483–502
  • Shimazaki J, Aiba M, Goto E, Kato N, Shimmura S, Tsubota K. Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology 2002; 109: 1285–1290
  • Nakamura T, Endo K, Cooper L J, et al. The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane. Investigative Ophthalmology & Visual Science 2003; 44: 106–116
  • Kinoshita S, Koizumi N, Nakamura T. Transplantable cultivated mucosal epithelial sheet for ocular surface reconstruction. Experimental Eye Research 2004; 78: 483–491
  • Hayashida Y, Nishida K, Yamato M, et al. Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface. Investigative Ophthalmology & Visual Science 2005; 46: 1632–1639
  • Nishida K, Yamato M, Hayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. The New England Journal of Medicine 2004; 351: 1187–1196
  • Inatomi T, Nakamura T, Koizumi N, Sotozono C, Kinoshita S. Current concepts and challenges in ocular surface reconstruction using cultivated mucosal epithelial transplantation. Cornea 2005; 24: S32–S38
  • Inatomi T, Nakamura T, Koizumi N, Sotozono C, Yokoi N, Kinoshita S. Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. American Journal of Ophthalmology 2006; 141: 267–275
  • Kinoshita S, Nakamura T. Development of cultivated mucosal epithelial sheet transplantation for ocular surface reconstruction. Artificial Organs 2004; 28: 22–27
  • Nakamura T, Kinoshita S. Ocular surface reconstruction using cultivated mucosal epithelial stem cells. Cornea 2003; 22: S75–S80
  • Meller D, Pires R T, Tseng S C. Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. The British Journal of Ophthalmology 2002; 86: 463–471
  • Nakamura T, Endo K, Kinoshita S. Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells 2007; 25: 628–638
  • Satake Y, Dogru M, Yamane G Y, Kinoshita S, Tsubota K, Shimazaki J. Barrier function and cytologic features of the ocular surface epithelium after autologous cultivated oral mucosal epithelial transplantation. Archives of Ophthalmology 2008; 126: 23–28
  • Sekiyama E, Nakamura T, Kawasaki S, Sogabe H, Kinoshita S. Different expression of angiogenesis-related factors between human cultivated corneal and oral epithelial sheets. Experimental Eye Research 2006; 83: 741–746
  • Bashshur Z F, Haddad Z A, Schakal A, Jaafar R F, Saab M, Noureddin B N. Intravitreal bevacizumab for treatment of neovascular age-related macular degeneration: A one-year prospective study. American Journal of Ophthalmology 2008; 145: 249–256
  • Scott I U, Edwards A R, Beck R W, et al. A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology 2007; 114: 1860–1867
  • Kriechbaum K, Michels S, Prager F, et al. Intravitreal Avastin for macular oedema secondary to retinal vein occlusion: A prospective study. The British Journal of Ophthalmology 2008; 92: 518–522
  • Rosenfeld P J, Brown D M, Heier J S, et al. Ranibizumab for neovascular age-related macular degeneration. The New England Journal of Medicine 2006; 355: 1419–1431
  • Kaiser P K, Brown D M, Zhang K, et al. Ranibizumab for predominantly classic neovascular age-related macular degeneration: subgroup analysis of first-year ANCHOR results. American Journal of Ophthalmology 2007; 144: 850–857

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.