202
Views
1
CrossRef citations to date
0
Altmetric
Review

Artificial Intelligence for Multiple Sclerosis Management Using Retinal Images: Pearl, Peaks, and Pitfalls

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 271-288 | Received 27 Sep 2023, Accepted 23 Nov 2023, Published online: 13 Dec 2023

References

  • Oudejans E, Luchicchi A, Strijbis EMM, Geurts JJG, van Dam AM. Is MS affecting the CNS only? Lessons from clinic to myelin pathophysiology. Neurol Neuroimmunol Neuroinflamm. 2021;8(1). doi:10.1212/NXI.0000000000000914.
  • Walton C, King R, Rechtman L. Rising prevalence of multiple sclerosis worldwide: insights from the atlas of MS, third edition. Mult Scler. 2020;26(14):1816–21. doi:10.1177/1352458520970841.
  • Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010;9(5):520–532. doi:10.1016/S1474-4422(10)70064-8.
  • Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S Multiple sclerosis. Nat Rev Dis Primers. 2018;4(1):43. doi:10.1038/s41572-018-0041-4.
  • Tafti D, Ehsan M, Xixis KL. Multiple Sclerosis. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2023.
  • Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–1517. doi:10.1016/S0140-6736(08)61620-7.
  • Shindler KS, Guan Y, Ventura E, Bennett J, Rostami A. Retinal ganglion cell loss induced by acute optic neuritis in a relapsing model of multiple sclerosis. Mult Scler. 2006;12(5):526–532. doi:10.1177/1352458506070629.
  • Beiki O, Frumento P, Bottai M, Manouchehrinia A, Hillert J. Changes in the risk of reaching multiple sclerosis disability milestones in recent decades: a nationwide population-based cohort study in Sweden. JAMA Neurol. 2019;76(6):665–671. doi:10.1001/jamaneurol.2019.0330.
  • McGinley MP, Goldschmidt CH, Rae-Grant AD. Diagnosis and treatment of multiple sclerosis: a review. JAMA. 2021;325(8):765–779. doi:10.1001/jama.2020.26858.
  • Neuritis O. Multiple sclerosis risk after optic neuritis. Arch Neurol. 2008;65:727–32. https://pubmed.ncbi.nlm.nih.gov/18541792/.
  • Petzold A, de Boer JF, Schippling S, Vermersch P, Kardon R, Green A Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2010;9(9):921–932. doi:10.1016/S1474-4422(10)70168-X.
  • Bhinder B, Gilvary C, Madhukar NS. Elemento O. Artificial Intelligence In Cancer Research And Precision Medicine Cancer Discov. 2021;11(4):900–15. doi:10.1158/2159-8290.CD-21-0090.
  • Serbecic N, Aboul-Enein F, Beutelspacher SC. High resolution spectral domain optical coherence tomography (SD-OCT) in multiple sclerosis: the first follow up study over two years. PLoS One. 2011;6(5):e19843. doi:10.1371/journal.pone.0019843.
  • Garcia-Martin E, Rodriguez-Mena D, Herrero R, Almarcegui C, Dolz I, Martin J. Neuro-ophthalmologic evaluation, quality of life, and functional disability in patients with MS. Neurology. 2013;81(1):76–83. doi:10.1212/WNL.0b013e318299ccd9.
  • Sidibe D, Sadek I, Meriaudeau F. Discrimination of retinal images containing bright lesions using sparse coded features and SVM. Comput Biol Med. 2015;62:175–84. doi:10.1016/j.compbiomed.2015.04.026.
  • Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8(1):1–74. doi:10.1186/s40537-021-00444-8.
  • Graves J, Balcer LJ. Eye disorders in patients with multiple sclerosis: natural history and management. Clin Ophthalmol. 2010;4:1409–22. doi:10.2147/OPTH.S6383.
  • Gabilondo I, Martinez-Lapiscina EH, Fraga-Pumar E, Ortiz-Perez S, Torres-Torres R, Andorra M Dynamics of retinal injury after acute optic neuritis. Ann Neurol. 2015;77(3):517–528. doi:10.1002/ana.24351.
  • Bennett JL. Optic Neuritis. Continuum (Minneap Minn). CONTINUUM. 2019;25(5):1236–1264. doi:10.1212/CON.0000000000000768.
  • Biousse V, Trichet C, Bloch-Michel E, Roullet E. Multiple sclerosis associated with uveitis in two large clinic-based series. Neurology. 1999;52(1):179–81. doi:10.1212/WNL.52.1.179.
  • Rucker CW. Retinopathy of multiple sclerosis. Trans Am Ophthalmol Soc. 1947;45:564–570. https://pubmed.ncbi.nlm.nih.gov/16693461/.
  • Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of retinal structure and function as biomarkers in neurology and psychiatry. Biomarkers In Neuropsychiatry. 2020;2:100018. doi:10.1016/j.bionps.2020.100018.
  • Britze J, Pihl-Jensen G, Frederiksen JL. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: a systematic review and meta-analysis. J Neurol. 2017;264(9):1837–1853. doi:10.1007/s00415-017-8531-y.
  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W. Optical coherence tomography. Science. 1991;254(5035):1178–1181. doi:10.1126/science.1957169.
  • Kiernan DF, Mieler WF, Hariprasad SM. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am J Ophthalmol. 2010;149(1):18–31. doi:10.1016/j.ajo.2009.08.037.
  • Aumann S, Donner S, Fischer J, Muller F. Optical coherence tomography (OCT): principle and technical realization. In: Bille J, ed. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics. Cham (CH): Springer Copyright 2019, The Author(s); 2019:pp. 59–85. https://pubmed.ncbi.nlm.nih.gov/32091846/.
  • Olbert E, Struhal W. Retinal imaging with optical coherence tomography in multiple sclerosis: novel aspects. Wien Med Wochenschr. 2022;172(15–16):329–36. doi:10.1007/s10354-022-00925-2.
  • Pulicken M, Gordon-Lipkin E, Balcer LJ, Frohman E, Cutter G, Calabresi PA. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology. 2007;69(22):2085–2092. doi:10.1212/01.wnl.0000294876.49861.dc.
  • Pisa M, Croese T, Dalla Costa G, Guerrieri S, Huang SC, Finardi A. Subclinical anterior optic pathway involvement in early multiple sclerosis and clinically isolated syndromes. Brain. 2021;144(3):848–862. doi:10.1093/brain/awaa458.
  • Jakimovski D, Benedict RHB, Weinstock-Guttman B, Ozel O, Fuchs TA, Lincoff N. Visual deficits and cognitive assessment of multiple sclerosis: confounder, correlate, or both? J Neurol. 2021;268(7):2578–2588. doi:10.1007/s00415-021-10437-5.
  • Pawlitzki M, Horbrugger M, Loewe K, Kaufmann J, Opfer R, Wagner M. MS optic neuritis-induced long-term structural changes within the visual pathway. Neurol Neuroimmunol Neuroinflamm. 2020;7(2):e665. doi:10.1212/NXI.0000000000000665.
  • He Y, Carass A, Liu Y, Jedynak BM, Solomon SD, Saidha S. Structured layer surface segmentation for retina OCT using fully convolutional regression networks. Med Image Anal. 2021;68:101856. doi:10.1016/j.media.2020.101856.
  • Dahrouj M, Miller JB. Artificial intelligence (AI) and retinal optical coherence tomography (OCT). Semin Ophthalmol. 2021;36(4):341–345. doi:10.1080/08820538.2021.1901123.
  • Holmes W, Bialik M, Fadel C. Artificial Intelligence in Education. Switzerland: Globethics Publications; 2023. doi:10.58863/20.500.12424/4276068.
  • Mitchell TM. Machine Learning. New York: The McGrawHill Companies; 2007. https://scholar.google.de/citations?view_op=view_citation&hl=en&user=MnfzuPYAAAAJ&citation_for_view=MnfzuPYAAAAJ:h0bj9BThk1MC.
  • Liu J, Yin L, Dong H, Xu E, Zhang L, Qiao Y. Decreased serum levels of nucleolin protein fragment, as analyzed by bead-based proteomic technology, in multiple sclerosis patients compared to controls. J Neuroimmunol. 2012;250(1):71–6. doi:10.1016/j.jneuroim.2012.05.002.
  • Nabizadeh F, Masrouri S, Ramezannezhad E, Ghaderi A, Sharafi AM, Soraneh S. Artificial intelligence in the diagnosis of multiple sclerosis: A systematic review. Mult Scler Relat Disord. 2022;59:103673. doi:10.1016/j.msard.2022.103673.
  • MacEachern SJ, Forkert ND. Machine learning for precision medicine. Genome. 2021;64(4):416–425. doi:10.1139/gen-2020-0131.
  • Filippi M, Preziosa P, Arnold DL, Barkhof F, Harrison DM, Maggi P. Present and future of the diagnostic work-up of multiple sclerosis: the imaging perspective. J Neurol. 2023;270(3):1286–1299. doi:10.1007/s00415-022-11488-y.
  • Raiesdana S. Automated detection of Multiple Sclerosis Lesions Using Texture-based Features and a hybrid Classifier. Journal Title. 2020;6(1):16–30. doi:10.32598/CJNS.6.20.220.1.
  • Pontillo G, Penna S, Cocozza S, Quarantelli M, Gravina M, Lanzillo R. Stratification of multiple sclerosis patients using unsupervised machine learning: a single-visit MRI-driven approach. Eur Radiol. 2022;32(8):5382–91. doi:10.1007/s00330-022-08610-z.
  • Kenney RC, Liu M, Hasanaj L, Joseph B, Abu Al-Hassan A, Balk LJ. The role of optical coherence tomography criteria and machine learning in multiple sclerosis and optic neuritis diagnosis. Neurology. 2022;99(11):e1100–e12. doi:10.1212/WNL.0000000000200883.
  • Meyer-Baese A, Schmid V. Chapter 2 - feature selection and extraction. In: Meyer-Baese A Schmid V, eds. Pattern Recognition and Signal Analysis in Medical Imaging. Second ed. Oxford: Academic Press; 2014:pp. 21–69.
  • Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–1182.
  • Soufan O, Kleftogiannis D, Kalnis P, Bajic VB, Gupta D. DWFS: a wrapper feature selection tool based on a parallel genetic algorithm. PLoS One. 2015;10(2):e0117988. doi:10.1371/journal.pone.0117988.
  • López F G, Torres M G, Melián Batista B, Moreno Pérez JA, Moreno-Vega JM. Solving feature subset selection problem by a parallel scatter search. Eur J Oper Res. 2006;169(2):477–89. doi:10.1016/j.ejor.2004.08.010.
  • García-Torres M, Gómez-Vela F, Divina F, Pinto-Roa DP, Noguera JLV, Román JCM Scatter search for high-dimensional feature selection using feature grouping. Proceedings of the Genetic and Evolutionary Computation Conference Companion; Lille, France: Association for Computing Machinery; 2021. p. 149–150.
  • Esteva A, Chou K, Yeung S, Naik N, Madani A, Mottaghi A. Deep learning-enabled medical computer vision. NPJ Digit Med. 2021;4(1):5. doi:10.1038/s41746-020-00376-2.
  • Krichen M, Convolutional neural networks: a survey. Computers. 2023;12(8):151. doi:10.3390/computers12080151.
  • Garcia-Martin E, Pablo LE, Herrero R, Ara JR, Martin J, Larrosa JM. Neural networks to identify multiple sclerosis with optical coherence tomography. Acta Ophthalmol. 2013;91(8):e628–34. doi:10.1111/aos.12156.
  • Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8(1):53. doi:10.1186/s40537-021-00444-8.
  • Vázquez ER, Rodríguez MN, López-Varela E, Penedo MG. Deep learning for segmentation of optic disc and retinal layers in peripapillary optical coherence tomography images. InFifteenth International Conference on Machine Vision (ICMV 2022); Jun, 7, 2023; Vol. 12701; 381–388. SPIE.
  • Montolío A, Cegoñino J, Garcia-Martin E, Pérez Del Palomar A The macular retinal ganglion cell layer as a biomarker for diagnosis and prognosis in multiple sclerosis: a deep learning approach. Acta Ophthalmologica.n/a(n/a).
  • Wang T, Chen J, Liu L, Guo L. A review: how deep learning technology impacts the evaluation of traditional village landscapes. Buildings. 2023;13(2):525. doi:10.3390/buildings13020525.
  • López-Dorado A, Ortiz M, Satue M, Rodrigo MJ, Barea R, Sánchez-Morla EM. Early diagnosis of multiple sclerosis using swept-source optical coherence tomography and convolutional neural networks trained with data augmentation. Sensors (Basel). 2021;22(1):167. doi:10.3390/s22010167.
  • Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. doi:10.1016/j.media.2017.07.005.
  • Thilagamani S, Shanthi N. A survey on image segmentation through clustering. International Journal Of Research And Reviews In Information Sciences. 2011;1:14–7.
  • Basaeed E, Bhaskar H, Hill P, Al-Mualla M, Bull D. A supervised hierarchical segmentation of remote-sensing images using a committee of multi-scale convolutional neural networks. International Journal Of Remote Sensing. 2016;37(7):1671–1691. doi:10.1080/01431161.2016.1159745.
  • Bankman IN. Introduction to segmentation. In: Bankman I, ed. Handbook of Medical Imaging. San Diego: Academic Press; 2000:pp. 67–8.
  • Qiu L, Yu D, Zhang C, Zhang X. A local–global framework for semantic segmentation of multisource remote sensing images. Remote Sensing. 2023;15(1):231. doi:10.3390/rs15010231.
  • Khandelwal R Computer vision: instance segmentation with mask R-CNN. Dostupné z. https://towardsdatasciencecom/computer-vision-instancesegmentation-with-maskr-cnn-7983502fcad1. 2019.
  • Jardim S, António J, Mora C. Graphical image region extraction with K-Means clustering and watershed. J Imaging. 2022;8(6):163. doi:10.3390/jimaging8060163.
  • Bercovich E, Javitt MC. Medical Imaging: From Roentgen to the Digital Revolution, and Beyond. Rambam Maimonides Med J. 2018;9(4):e0034. doi:10.5041/RMMJ.10355.
  • Mishra Z, Ganegoda A, Selicha J, Wang Z, Sadda SR, Hu Z. Automated Retinal Layer Segmentation Using Graph-based Algorithm Incorporating Deep-learning-derived Information. Sci Rep. 2020;10(1):9541. doi:10.1038/s41598-020-66355-5.
  • Del Palomar A P, Cegoñino J, Montolío A, Orduna E, Vilades E, Sebastián B. Swept source optical coherence tomography to early detect multiple sclerosis disease. The use of machine learning techniques. PLoS One. 2019;14(5):e0216410. doi:10.1371/journal.pone.0216410.
  • Cavaliere C, Vilades E, Alonso-Rodríguez MC, Rodrigo MJ, Pablo LE, Miguel JM. Computer-aided diagnosis of multiple sclerosis using a support vector machine and optical coherence tomography features. Sensors. 2019;19(23):5323. doi:10.3390/s19235323.
  • Montolío A, Cegoñino J, Garcia-Martin E, Pérez Del Palomar A. Comparison of machine learning methods using spectralis OCT for diagnosis and disability progression prognosis in multiple sclerosis. Ann Biomed Eng. 2022;50(5):507–28. doi:10.1007/s10439-022-02930-3.
  • Garcia-Martin E, Ortiz M, Boquete L, Sánchez-Morla EM, Barea R, Cavaliere C. Early diagnosis of multiple sclerosis by OCT analysis using Cohen’s d method and a neural network as classifier. Comput Biol Med. 2021;129:104165. doi:10.1016/j.compbiomed.2020.104165.
  • Ciftci Kavaklioglu B, Erdman L, Goldenberg A, Kavaklioglu C, Alexander C, Oppermann HM. Machine learning classification of multiple sclerosis in children using optical coherence tomography. Mult Scler. 2022;28(14):2253–2262. doi:10.1177/13524585221112605.
  • Ortiz M, Mallen V, Boquete L, Sanchez-Morla EM, Cordon B, Vilades E. Diagnosis of multiple sclerosis using optical coherence tomography supported by artificial intelligence. Mult Scler Relat Disord. 2023;74:104725. doi:10.1016/j.msard.2023.104725.
  • Wildner P, Stasiołek M, Matysiak M. Differential diagnosis of multiple sclerosis and other inflammatory CNS diseases. Mult Scler Relat Disord. 2020;37:101452. doi:10.1016/j.msard.2019.101452.
  • Kim H, Lee Y, Kim YH, Lim YM, Lee JS, Woo J. Deep learning-based method to differentiate neuromyelitis optica spectrum disorder from multiple sclerosis. Front Neurol. 2020;11:599042. doi:10.3389/fneur.2020.599042.
  • Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177–189. doi:10.1212/WNL.0000000000001729.
  • Rogaczewska M, Michalak S, Stopa M. Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorder using optical coherence tomography angiography. Sci Rep. 2021;11(1):10697. doi:10.1038/s41598-021-90036-6.
  • Hassan E, Elmougy S, Ibraheem MR, Hossain MS, AlMutib K, Ghoneim A. Enhanced deep learning Model for classification of retinal optical coherence tomography images. Sensors. 2023;23(12):5393. doi:10.3390/s23125393.
  • Acquaviva M, Menon R, Di Dario M, Dalla Costa G, Romeo M, Sangalli F. Inferring multiple sclerosis stages from the blood transcriptome via machine learning. Cell Rep Med. 2020;1(4):100053. doi:10.1016/j.xcrm.2020.100053.
  • Pinto MF, Oliveira H, Batista S, Cruz L, Pinto M, Correia I. Prediction of disease progression and outcomes in multiple sclerosis with machine learning. Sci Rep. 2020;10(1):21038. doi:10.1038/s41598-020-78212-6.
  • Lim CK, Bilgin A, Lovejoy DB, Tan V, Bustamante S, Taylor BV. Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci Rep. 2017;7(1):41473. doi:10.1038/srep41473.
  • Bonacchi R, Filippi M, Rocca MA. Role of artificial intelligence in MS clinical practice. Neuroimage Clin. 2022;35:103065. doi:10.1016/j.nicl.2022.103065.
  • Pellegrini F, Copetti M, Sormani MP, Bovis F, de Moor C, Debray TP. Predicting disability progression in multiple sclerosis: insights from advanced statistical modeling. Multiple Sclerosis Jl. 2020;26(14):1828–1836. doi:10.1177/1352458519887343.
  • Rothman A, Murphy OC, Fitzgerald KC, Button J, Gordon-Lipkin E, Ratchford JN. Retinal measurements predict 10-year disability in multiple sclerosis. Ann Clin Transl Neurol. 2019;6(2):222–32. doi:10.1002/acn3.674.
  • Bsteh G, Hegen H, Teuchner B, Amprosi M, Berek K, Ladstätter F. Peripapillary retinal nerve fibre layer as measured by optical coherence tomography is a prognostic biomarker not only for physical but also for cognitive disability progression in multiple sclerosis. Multiple Sclerosis Jl. 2019;25(2):196–203. doi:10.1177/1352458517740216.
  • Montolío A, Martín-Gallego A, Cegoñino J, Orduna E, Vilades E, Garcia-Martin E. Machine learning in diagnosis and disability prediction of multiple sclerosis using optical coherence tomography. Comput Biol Med. 2021;133:104416. doi:10.1016/j.compbiomed.2021.104416.
  • Saidha S, Syc SB, Frohman EM, Calabresi PA. Reply: primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain. 2011;134(11):e194–e. doi:10.1093/brain/awr096.
  • Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering. 2018;2(3):158–64. doi:10.1038/s41551-018-0195-0.
  • Tseng RMWW, Rim TH, Shantsila E, Yi JK, Park S, Kim SS. Validation of a deep-learning-based retinal biomarker (reti-CVD) in the prediction of cardiovascular disease: data from UK Biobank. BMC Med. 2023;21(1):28. doi:10.1186/s12916-022-02684-8.
  • Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM. Multiple sclerosis diagnosis using machine learning and deep learning: challenges and opportunities. Sensors. 2022;22(20):7856. doi:10.3390/s22207856.
  • Diaz O, Kushibar K, Osuala R, Linardos A, Garrucho L, Igual L. Data preparation for artificial intelligence in medical imaging: a comprehensive guide to open-access platforms and tools. Physica Medica. 2021;83:25–37. doi:10.1016/j.ejmp.2021.02.007.
  • Meng C, Trinh L, Xu N, Enouen J, Liu Y. Interpretability and fairness evaluation of deep learning models on MIMIC-IV dataset. Sci Rep. 2022;12(1):7166. doi:10.1038/s41598-022-11012-2.
  • Keskinbora KH. Medical ethics considerations on artificial intelligence. J Clin Neurosci. 2019;64:277–282. doi:10.1016/j.jocn.2019.03.001.
  • Wang W, Li X, Qiu X, Zhang X, Brusic V, Zhao J. A privacy preserving framework for federated learning in smart healthcare systems. Information Processing & Management. 2023;60(1):103167. doi:10.1016/j.ipm.2022.103167.
  • Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul R. Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility? Front Surg. 2022;9:862322. doi:10.3389/fsurg.2022.862322.
  • Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul R. Front Surg 2022. 9. 10.3389/fsurg.2022.862322.
  • Kumar P, Chauhan S, Awasthi LK. Artificial intelligence in healthcare: review, ethics, trust challenges & future research directions. Engineering Applications Of Artificial Intelligence. 2023;120:105894. doi:10.1016/j.engappai.2023.105894.
  • Garcia-Martin E, Herrero R, Bambo MP, Ara JR, Martin J, Polo V. Artificial neural network techniques to improve the ability of optical coherence tomography to detect optic neuritis. Artificial Neural Network Techniques To Improve The Ability Of Optical Coherence Tomography To Detect Optic Neuritis Seminars In Ophthalmology. 2015;30(1):11–19. doi:10.3109/08820538.2013.810277.
  • Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–164. doi:10.1038/s41551-018-0195-0.
  • Cavaliere C, Vilades E, Alonso-Rodríguez MC, Rodrigo MJ, Pablo LE, Miguel JM. Computer-aided diagnosis of multiple sclerosis using a support vector machine and optical coherence tomography features. Sensors (Basel). 2019;19(23):5323. doi:10.3390/s19235323.
  • Montolío A, Cegoñino J, Garcia-Martin E, Pérez Del Palomar A. Comparison of machine learning methods using spectralis OCT for diagnosis and disability progression prognosis in multiple sclerosis. Ann Biomed Eng. 2022;50(5):507–528. doi:10.1007/s10439-022-02930-3.
  • López-Dorado A, Ortiz M, Satue M, Rodrigo MJ, Barea R, Sánchez-Morla EM. Early diagnosis of multiple sclerosis using swept-source optical coherence tomography and convolutional neural networks trained with data augmentation. Sensors. 2022;22(1):167. doi:10.3390/s22010167.
  • Kauer-Bonin J, Yadav SK, Beckers I, Gawlik K, Motamedi S, Zimmermann HG. Modular deep neural networks for automatic quality control of retinal optical coherence tomography scans. Comput Biol Med. 2022;141:104822. doi:10.1016/j.compbiomed.2021.104822.
  • Khodabandeh Z, Rabbani H, Ashtari F, Zimmermann HG, Motamedi S, Brandt AU. Discrimination of multiple sclerosis using OCT images from two different centers. Mult Scler Relat Disord. 2023;77:104846. doi:10.1016/j.msard.2023.104846.
  • Hernandez M, Ramon-Julvez U, Vilades E, Cordon B, Mayordomo E, Garcia-Martin E Explainable artificial intelligence toward usable and trustworthy computer-aided early diagnosis of multiple sclerosis from optical coherence tomography. arXiv preprint arXiv:230206613. 2023.
  • Estefanía Rivas V, María Noelia Barreira R, Emilio L-V, Manuel GP. Deep learning for segmentation of optic disc and retinal layers in peripapillary optical coherence tomography images. ProcSpie. 2023;12701:381–388. SPIE.
  • Nabizadeh F, Ramezannezhad E, Kargar A, Sharafi AM, Ghaderi A. Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis. Neurol Sci. 2023;44(2):499–517. doi:10.1007/s10072-022-06460-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.