138
Views
32
CrossRef citations to date
0
Altmetric
Research Article

NEUTRALIZING INNATE HOST DEFENSES TO CONTROL VIRAL TRANSLATION IN HSV-1 INFECTED CELLS

Pages 199-220 | Published online: 03 Aug 2009

REFERENCES

  • R. J., Schneider, I., Mohr. Translation initiation and viral tricks. Trends Biochem Sci.. 28: 130–136, 2003, [CSA]
  • T. E., Dever. Gene specific regulation by general translation factors. Cell. 108: 545–556, 2002, [CROSSREF]
  • R., Medzhitov, C. A., Janeway. Decoding the patterns of self and nonself by the innate immune system. Science. 296: 298–300, 2002, [CROSSREF]
  • R. J., Kaufman. Double-stranded RNA-activated protein kinase PKR. Translational Control, N., Sonenberg, J.W.B., Hershey, M. B., Mathews, Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press. 2000; 503–528
  • G. A., Peters, D., Khoo, I., Mohr, G. C., Sen. Inhibition of PACT-mediated activation of PKR by the herpes simplex virus type 1 Us11 protein. J. Virol.. 76: 11054–11064, 2002, [CSA], [CROSSREF]
  • B., Roizman, D., Knipe. Herpes simplex viruses and their replication. Field's Virology, 4th ed., 2, D. M., Knipe, P. M., Howley, Philadelphia, PA, Lippincott, Williams and Wilkins. 2001
  • J., Chou, E. R., Kern, R. J., Whitley, B., Roizman. Mapping of herpes simplex virus-1 neurovirulence to gamma (1) 34.5, a gene nonessential for growth in culture. Science. 250: 1262–1266, 1990
  • A. R., Maclean, M., Ul-Fareed, L., Robertson, J., Harland, S. M., Brown. Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17 + between immediate early gene 1 and the ‘a’ sequence. J. Gen. Virol.. 72: 631–639, 1991, [CSA]
  • C. A., Bolovan, N. M., Sawtell, R. I., Thompson. ICP34.5 mutants of herpes simplex virus type 1 strain 17syn + are attenuated for neurovirulence in mice and for replication in confluent primary mouse embryo cell cultures. J. Virol.. 68: 48–55, 1994, [CSA]
  • J., Chou, B., Roizman. The γ34.5 gene of Herpes Simplex Virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programmed cell death in neuronal cells. Proc. Natl. Acad. Sci. USA. 89: 3266–3270, 1992, [CSA]
  • J., Chou, J. J., Chen, M., Gross, B., Roizman. Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 1 34.5-mutants of herpes simplex virus 1. Proc. Natl. Acad. Sci. USA. 92: 10516–10520, 1995, [CSA]
  • J., Chou, B., Roizman. Herpes simplex virus 1 gamma(1)34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proc. Natl. Acad. Sci. USA. 91: 5247–55251, 1994, [CSA]
  • B., He, M., Gross, B., Roizman. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1 alpha to dephosphorylate the alpha subunit of eukaryotic initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. USA. 94: 843–848, 1997, [CSA], [CROSSREF]
  • B., He, M., Gross, B., Roizman. The gamma(1) 34.5 protein of herpes simplex virus 1 has the structural and functional attributes of a protein phosphatase 1 regulatory subunit and is present in a high molecular weight complex with the enzyme in infected cells. J. Biol. Chem.. 273: 20737–20743, 1998, [CROSSREF]
  • I., Mohr, Y., Gluzman. A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. EMBO J.. 15: 4759–4766, 1996, [CSA]
  • B., He, J., Chou, R., Brandimarti, I., Mohr, Y., Gluzman, B., Roizman. Suppression of the phenotype of gamma(1)34.5-herpes simplex virus 1: Failure of activated RNA-dependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the alpha47 gene. J. Virol.. 71: 6049–6054, 1997, [CSA]
  • M., Mulvey, J., Poppers, A., Ladd, I., Mohr. A herpesvirus ribosome associated, RNA-binding protein confers a growth advantage upon mutants deficient in a GADD34-related function. J. Virol.. 73: 3375–3385, 1999, [CSA]
  • K., Cassady, M., Gross, B., Roizman. The herpes simplex virus Us11 proetin effectively compensates for the gamma1(34.5) gene if present before activation of protein kinase R by precluding its phosphorylation and that of the alpha subunit of eukaryotic initiation factor 2. J. Virol.. 72: 8620–8626, 1998, [CSA]
  • J. J., Diaz, M. D., Dodon, N., Schaerer-Uthurralt, D., Simonin, K., Kindbeiter, L., Gazzolo, J. J., Madjar. Post-transcriptional transactivation of human retroviral envelope glycoprotein expression by herpes simplex virus Us11 protein. Nature (London). 379: 273–277, 1996, [CSA], [CROSSREF]
  • N., Schaerer-Uthurralt, M., Erard, K., Kindbeiter, J. J., Madjar, J. J., Diaz. Distinct domains in herpes simplex virus type 1 Us11 protein mediate post transcriptional transactivation of human T-lymphotropic virus type 1 envelope glycoprotein gene expression and specific binding to the Rex responsive element. J. Gen. Virol.. 79: 1593–1602, 1998, [CSA]
  • R. J., Roller, L. L., Monk, D., Stuart, B., Roizman. Structure and function in the herpes simplex virus 1 RNA-binding protein Us11: Mapping of the domain required for ribosomal and nuclolar association and RNA binding in vitro. J. Virol.. 70: 2842–2851, 1996, [CSA]
  • R. J., Roller, B., Roizman. The herpes simplex virus Us11 open reading frame encodes a sequence-specific RNA-binding protein. J. Virol.. 64: 3463–3470, 1990, [CSA]
  • R. J., Roller, B., Roizman. The herpes simplex virus 1 RNA binding protin Us11 is a virion component and associates with 60S ribosomal subunits. J. Virol.. 66: 3624–3632, 1992, [CSA]
  • F., Catez, M., Erard, N., Schaerer-Uthurralt, K., Kinderbeiter, J. J., Madjar, J. J., Diaz. Unique motif for nucleolar retention and nuclear export regulated by phosphorylation. Mol. Cell. Biol.. 22: 1126–1139, 2002, [CROSSREF]
  • J., Poppers, M., Mulvey, D., Khoo, I., Mohr. Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein. J. Virol.. 74: 11215–11221, 2000, [CSA], [CROSSREF]
  • K., Oshawa, D. H., Black, H., Sato, R., Eberle. Sequence and genetic arrangement of the U(S) region of the monkey B virus (cercopithecine herpesvirus 1) genome and comparison with the U(S) regions of other primate herpesviruses. J. Virol.. 76: 1516–1520, 2002, [CSA]
  • M., Buisson, F., Hans, I., Kusters, N., Duran, A., Sergeant. The C-terminal region but not the Arg-X-Pro repeat of Epstein-Barr virus protein EB2 is required for its effect on RNA splicing and transport. J. Virol.. 73: 4090–4100, 1999, [CSA]
  • H., Gruffat, J., Batisse, D., Pich, B., Neuhierl, E., Manet, W., Hammerschmidt, A., Sergeant. Epstein-Barr virus mRNA export factor EB2 is essential for production of infectious virus. J. Virol.. 76: 9635–9644, 2002, [CSA], [CROSSREF]
  • J., Poppers, M., Mulvey, C., Perez, D., Khoo, I., Mohr. Identification of a Lytic-Cycle Epstein-Barr Virus Gene Product That Can Regulate PKR Activation. J. Virol.. 77: 228–236, 2003, [CSA], [CROSSREF]
  • K. A., Cassady, M., Gross. The herpes simplex virus type 1 Us11 protein interacts with protein kinase R in infected cells and requires a 30 amino acid sequence adjacent to a kinase substrate domain. J. Virol.. 76: 2029–2035, 2002, [CSA], [CROSSREF]
  • R. J., Roller, B., Roizman. Herpes simplex virus 1 RNA binding protein Us11 negatively regulates the accumulation of a truncated viral mRNA. J. Virol.. 65: 5873–5879, 1991, [CSA]
  • H. L., Attrill, S. A., Cumming, J. B., Clements, S. V., Graham. The herpes simplex virus type 1 US11 protein binds the coterminal UL12, UL13, and UL14 RNAs and regulates UL13 expression in vivo. J. Virol.. 76: 8090–8100, 2002, [CSA], [CROSSREF]
  • D., Khoo, C., Perez, I., Mohr. Characterization of RNA determinants recognized by the arginine- and proline-rich region of Us11, a herpes simplex virus type 1-encoded double-stranded RNA binding protein that prevents PKR activation. J. Virol.. 76: 11971–11981, 2002, [CSA], [CROSSREF]
  • L., Manche, S. R., Green, C., Schmedt, M., Mathews. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell. Biol.. 15: 358–364, 1992
  • W. D., Hunter. R.l. Martuza, F. Feigenbaum, et al. Attenuated, replication- competent herpes simplex virus type 1 mutant G207: Safety evaluation of intracerebral injection in nonhuman primates. J. Virol.. 73: 6319–6326, 1999, [CSA]
  • N. S., Markovitz, D., Baunoch, B., Roizman. The range and distribution of murine central nervous system cells infected with the gamma(1)34.5-mutant of herpes simplex virus 1. J. Virol.. 71: 5560–5569, 1997, [CSA]
  • S., Kesari, T. M., Lasner, K. R., Balsara, et al, A neuroattenuated ICP34.5-deficient herpes simplex virus type 1 replicates in ependymal cells of the murine central nervous system. J. Gen. Virol.. 79: 525–536, 1998, [CSA]
  • R. J., Whitely, E. R., Kern, S., Chatterjee, J., Chou, B., Roizman. Replication, establishment of latency, and induced reactivation of herpes simplex virus gamma 1 34.5 deletion mutants in rodent models. J. Clin. Invest.. 91: 2837–2843, 1993, [CSA]
  • I., Mohr. Genetic metamorphosis of herpes simplex virus-1 into a biological therapeutic for human cancer. Expert Opin. Biol. Therapy. 3: 113–125, 2003, [CSA], [CROSSREF]
  • S., Taneja, J., Macgregor, S., Markus, S., Ha, I., Mohr. Enhanced antitumor efficacy of a herpes simplex virus mutant isolated by genetic selection in cancer cells. Proc. Natl. Acad. Sci. USA. 98: 8804–8808, 2001, [CSA], [CROSSREF]
  • T., Todo, R. l., Martuza, S. D., Rabkin, P. A., Johnson. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc. Natl. Acad. Sci. USA. 98: 6396–6401, 2001, [CSA], [CROSSREF]
  • I., Mohr, D., Sternberg, S., Ward, D., Leib, M., Mulvey, Y., Gluzman. A herpes simplex virus type 1 gamma 34.5 second-site suppressor mutant that exhibits enhanced growth in cultured glioblastoma cells is severely attenuated in animals. J. Virol.. 75: 5189–5196, 2001, [CSA], [CROSSREF]
  • S. L., Ward, D., Scheuner, J., Poppers, R. J., Kaufman, I., Mohr, D. A., Leib. In vivo replication of an ICP34.5 second-site suppressor mutant following corneal infection correlates with in vitro regulation of eIF2 alpha phosphorylation. J. Virol.. 77: 4626–4634, 2003, [CSA], [CROSSREF]
  • S., Andreansky, L., Soroceanu, E. R., Flotte, J., Chou, J. M., Markert, G. Y., Gillespie, B., Roizman, R. J., Whitely. Evaluation of genetically engineered herpes simplex viruses as oncolytic agents for human malignant brain tumors. Cancer Res.. 57: 1502–1509, 1997
  • B., He, J., Chou, D. A., Liebermann, B., Hoffman, B., Roizman. The carboxyl terminus of the murine MyD116 gene substitutes for the corresponding domain of the 34.5 gene of herpes simplex virus to preclude the premature shutoff of total protein synthesis in infected human cells. J. Virol.. 70: 84–90, 1996, [CSA]
  • S., Andreansky, B., He, G. Y., Gillespie, L., Soroceanu, J., Markert, J., Chou, B., Roizman, R. J., Whitley. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc. Natl. Acad. Sci. USA. 93: 11313–11318, 1996, [CSA], [CROSSREF]
  • D. A., Leib, T. E., Harrison, K. M., Laslo, M. A., Machalek, N. J., Moorman, H. W., Virgin. Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J. Exp. Med.. 189: 663–672, 1999, [CROSSREF]
  • D. A., Leib, M. A., Machalek, B. R., Williams, R. H., Silverman, H. W., Virgin. Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc. Natl. Acad. Sci. USA. 97: 6097–6101, 2000, [CSA], [CROSSREF]
  • D., Baltzis, S., Li, A. E., Koromilas. Functional characterization of pkr gene products expressed in cells from mice with a targeted deletion of the N terminus or C terminus domain of PKR. J. Biol. Chem.. 277: 38364–38372, 2002, [CROSSREF]
  • D. J., Klionsky, S. D., Emr. Autophagy as a regulated pathway of cellular degradation. Science. 290: 1717–1721, 2000, [CROSSREF]
  • Z., Talloczy, W., Jiang, H. W., Virgin, IV, D. A., Leib, D., Scheuner, R. J., Kaufman, E., Eskelinen, B., Levine. Regulation of starvation- and virus-induced autophagy by the eIF2 alpha kinase signaling pathway. Proc. Natl. Acad. Sci. USA. 99: 190–195, 2002, [CSA], [CROSSREF]
  • Y., Nishiyama, R., Kurachi, T., Daikoku, K., Umene. The Us 9, 10, 11, and 12 genes of herpes simplex virus type 1 are of no importance for its neurovirulence and latency in mice. Virology. 194: 419–423, 1993, [CSA], [CROSSREF]
  • K., Igarashi, R., Fawl, R. J., Roller, B., Roizman. Construction and properties of a recombinant herpes simplex virus 1 lacking both S-component origins of DNA synthesis. J. Virol.. 67: 2123–2132, 1993, [CSA]
  • R., Longnecker, B., Roizman. Generation of an inverting herpes simplex virus 1 mutant lacking the L-S junction sequences, an origin of DNA synthesis, and several genes including those specifying glycoprotein E and the alpha 47 gene. J. Virol.. 58: 583–591, 1986
  • M., Mulvey, J., Poppers, D., Sternberg, I., Mohr. Regulation of eIF2 alpha phosphorylation by different functions that act during discrete phases of the herpes simplex virus type 1 life cycle. J. Virol.. 77: 10917–10928, 2003, [CSA], [CROSSREF]
  • B., Jacquemont, B., Roizman. RNA synthesis in cells infected with herpes simplex virus. X. Properties of viral symmetric transcripts and of double-stranded RNA prepared from them. J. Virol.. 15: 707–713, 1975
  • T. C., Mettenleiter. Herpesvirus assembly and egress. J. Virol.. 76: 1537–1547, 2002, [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.