83
Views
12
CrossRef citations to date
0
Altmetric
Original

Promises and Limitations of Murine Models in the Development of Anticancer T-Cell Vaccines

&
Pages 269-295 | Published online: 03 Aug 2009

REFERENCES

  • N. Bardeesy, K.K. Wong, R.A. DePinho, and L. Chin, Animal models of melanoma: Recent advances and future prospects, Adv. Cancer Res., 79: 123–156, 2000. [CSA]
  • A. Rangarajan and R.A. Weinberg, Comparative biology of mouse versus human cells: Modelling human cancer in mice, Nat. Rev. Cancer, 3: 952–959, 2003. [CSA], [CROSSREF]
  • J.E. Green and T. Hudson, The promise of genetically engineered mice for cancer prevention studies, Nat. Rev. Cancer, 5: 184–198, 2005. [CSA], [CROSSREF]
  • D.E. Corpet and F. Pierre, How good are rodent models of carcinogenesis in predicting efficacy in humans? A systematic review and meta-analysis of colon chemoprevention in rats, mice and men, Eur. J. Cancer, 41: 1911–1922, 2005. [CSA], [CROSSREF]
  • V.N. Anisimov, S.V. Ukraintseva, and A.I. Yashin, Cancer in rodents: Does it tell us about cancer in humans? Nat. Rev. Cancer, 5: 807–819, 2005. [CSA], [CROSSREF]
  • F.M. Burnet, Immunological aspects of malignant disease, Lancet, 289: 1171–1174, 1967. [CSA], [CROSSREF]
  • J.C. Cerottini and K.T. Brunner, Cell-mediated cytotoxicity, allograft rejection, and tumor immunity, Adv. Immunol., 18: 67–132, 1974. [CSA]
  • J.C. Leclerc, E. Gomard, F. Plata, and J.P. Levy, Cell-mediated immune reaction against tumors induced by oncornaviruses. II. Nature of the effector cells in tumor-cell cytolysis, Int. J. Cancer, 11: 426–432, 1973. [CSA]
  • T. Boon, J. Van Snick, A. Van Pel, C. Uyttenhove, and M. Marchand, Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. II. T lymphocyte-mediated cytolysis, J. Exp. Med., 152: 1184–1193, 1980. [CSA], [CROSSREF]
  • E. De Plaen, C. Lurquin, A.V. Pel, B. Mariame, J.-P. Szikora, T. Wolfel, C. Sibille, P. Chomez, and T. Boon, Immunogenic (tum−) variants of mouse tumor P815: Cloning of the gene of tum− antigen P91A and identification of the tum-mutation, Proc. Natl. Acad. Sci. U. S. A., 85: 2274–2278, 1988. [CSA], [CROSSREF]
  • C. Sibille, P. Chomez, C. Wildmann, A. Van Pel, E. De Plaen, J. Maryanski, V. de Bergeyck, and T. Boon, Structure of the gene of tum− transplantation antigen P198: A point mutation generates a new antigenic peptide, J. Exp. Med., 172: 35–45, 1990. [CSA], [CROSSREF]
  • J.P. Szikora, A. Van Pel, V. Brichard, M. Andre, N. Van Baren, P. Henry, E. De Plaen, and T. Boon, Structure of the gene of tum− transplantation antigen P35B: Presence of a point mutation in the antigenic allele, EMBO J., 9: 1041–1050, 1990. [CSA]
  • B. Van den Eynde, B. Lethe, A. Van Pel, E. De Plaen, and T. Boon, The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice, J. Exp. Med., 173: 1373–1384, 1991. [CSA], [CROSSREF]
  • P. van der Bruggen, C. Traversari, P. Chomez, C. Lurquin, E. De Plaen, B. Van den Eynde, A. Knuth, and T. Boon, A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma, Science, 254: 1643–1647, 1991. [CSA], [CROSSREF]
  • T.F. Greten and E.M. Jaffee, Cancer vaccines, J. Clin. Oncol., 17: 1047–1060, 1999. [CSA]
  • S. Ward, D. Casey, M.-C. Labarthe, M. Whelan, A. Dalgleish, H. Pandha, and S. Todryk, Immunotherapeutic potential of whole tumour cells, Cancer Immunol. Immunother., 51: 351–357, 2002. [CSA], [CROSSREF]
  • B. Gansbacher, K. Zier, B. Daniels, K. Cronin, R. Bannerji, and E. Gilboa, Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity, J. Exp. Med., 172: 1217–1224, 1990. [CSA], [CROSSREF]
  • F. Cavallo, P. Signorelli, M. Giovarelli, P. Musiani, A. Modesti, M.J. Brunda, M.P. Colombo, and G. Forni, Antitumor efficacy of adenocarcinoma cells engineered to produce interleukin 12 (IL-12) or other cytokines compared with exogenous IL-12, J. Natl. Cancer Inst., 89: 1049–1058, 1997. [CSA], [CROSSREF]
  • L. Chen, P. McGowan, S. Ashe, J. Johnston, Y. Li, I. Hellstrom, and K.E. Hellstrom, Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity, J. Exp. Med., 179: 523–532, 1994. [CSA], [CROSSREF]
  • G. Dranoff, E. Jaffee, A. Lazenby, P. Golumbek, H. Levitsky, K. Brose, V. Jackson, H. Hamada, D. Pardoll, and R. Mulligan, Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity, Proc. Natl. Acad. Sci. U. S. A., 90: 3539–3543, 1993. [CSA], [CROSSREF]
  • H. Iwaki, Y. Barnavon, J.A. Bash, and M.K. Wallack, Vaccinia virus-infected C-C36 colon tumor cell lysates stimulate cellular responses in vitro and protect syngeneic Balb/c mice from tumor cell challenge, J. Surg. Oncol., 40: 90–96, 1989. [CSA]
  • M. Sivanandham, S.D. Scoggin, N. Tanaka, and M.K. Wallack, Therapeutic effect of a vaccinia colon oncolysate prepared with interleukin-2-gene encoded vaccinia virus studied in a syngeneic CC-36 murine colon hepatic metastasis model, Cancer Immunol. Immunother., 38: 259–264, 1994. [CSA]
  • E.C. Hsueh and D.L. Morton, Antigen-based immunotherapy of melanoma: Canvaxin therapeutic polyvalent cancer vaccine, Semin. Cancer Biol., 13: 401–407, 2003. [CSA], [CROSSREF]
  • J.A. Sosman and V.K. Sondak, Melacine: An allogeneic melanoma tumor cell lysate vaccine, Expert Rev. Vaccines, 2: 353–368, 2003. [CSA], [CROSSREF]
  • M.B. Faries and D.L. Morton, Therapeutic vaccines for melanoma: Current status, Bio. Drugs, 19: 247–260, 2005. [CSA]
  • P.K. Srivastava, Immunotherapy for human cancer using heat shock protein-peptide complexes, Curr. Oncol. Rep., 7: 104–108, 2005. [CSA]
  • E. Reits, A. Griekspoor, J. Neijssen, T. Groothuis, K. Jalink, P. van Veelen, H. Janssen, J. Calafat, J.W. Drijfhout, and J. Neefjes, Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I, Immunity, 18: 97–108, 2003. [CSA], [CROSSREF]
  • P.K. Srivastava, A.B. DeLeo, and L.J. Old, Tumor rejection antigens of chemically induced sarcomas of inbred mice, Proc. Natl. Acad. Sci. U. S. A., 83: 3407–3411, 1986. [CSA], [CROSSREF]
  • N.E. Blachere, H. Udono, S. Janetzki, Z. Li, M. Heike, and P.K. Srivastava, Heat shock protein vaccines against cancer, J. Immunother., 14: 352–356, 1993. [CSA], [CROSSREF]
  • Y. Tamura, P. Peng, K. Liu, M. Daou, and P.K. Srivastava, Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations, Science, 278: 117–120, 1997. [CSA], [CROSSREF]
  • H. Singh-Jasuja, R.E.M. Toes, P. Spee, C. Munz, N. Hilf, S.P. Schoenberger, P. Ricciardi-Castagnoli, J. Neefjes, H.-G. Rammensee, D. Arnold-Schild, and H. Schild, Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis, J. Exp. Med., 191: 1965–1974, 1999. [CSA], [CROSSREF]
  • S. Basu and P.K. Srivastava, Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor- and peptide-specific immunity, J. Exp. Med., 189: 797–802, 1999. [CSA], [CROSSREF]
  • S. Nair, P.A. Wearsch, D.A. Mitchell, J.J. Wassenberg, E. Gilboa, and C.V. Nicchitta, Calreticulin displays in vivo peptide-binding activity and can elicit CTL responses against bound peptides, J. Immunol., 162: 6426–6432, 1999. [CSA]
  • X.-Y. Wang, L. Kazim, E.A. Repasky, and J.R. Subjeck, Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity, J. Immunol., 166: 490–497, 2001. [CSA]
  • S. Janetzki, D. Palla, V. Rosenhauer, H. Lochs, J.J. Lewis, and P.K. Srivastava, Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: A pilot study, Int. J. Cancer, 88: 232–238, 2000. [CSA], [CROSSREF]
  • F. Belli, A. Testori, L. Rivoltini, M. Maio, G. Andreola, M.R. Sertoli, G. Gallino, A. Piris, A. Cattelan, I. Lazzari, M. Carrabba, G. Scita, C. Santantonio, L. Pilla, G. Tragni, C. Lombardo, F. Arienti, A. Marchiano, P. Queirolo, F. Bertolini, A. Cova, E. Lamaj, L. Ascani, R. Camerini, M. Corsi, N. Cascinelli, J.J. Lewis, P. Srivastava, and G. Parmiani, Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: Clinical and immunologic findings, J. Clin. Oncol., 20: 4169–4180, 2002. [CSA], [CROSSREF]
  • J.C. Bystryn, S. Jacobsen, M. Harris, D. Roses, J. Speyer, and M. Levin, Preparation and characterization of a polyvalent human melanoma antigen vaccine, J. Biol. Response Mod., 5: 211–224, 1986. [CSA]
  • J. Wolfers, A. Lozier, G. Raposo, A. Regnault, C. Thery, C. Masurier, C. Flament, S. Pouzieux, F. Faure, T. Tursz, E. Angevin, S. Amigorena, and L. Zitvogel, Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming, Nat. Med., 7: 297–303, 2001. [CSA], [CROSSREF]
  • C. Osterlund, V. Tohonen, K.O. Forslund, and K. Nordqvist, Mage-b4, a novel melanoma antigen (MAGE) gene specifically expressed during germ cell differentiation, Cancer Res., 60: 1054–1061, 2000. [CSA]
  • A.J. Simpson, O.L. Caballero, A. Jungbluth, Y.T. Chen, and L.J. Old, Cancer/testis antigens, gametogenesis and cancer, Nat. Rev. Cancer, 5: 615–625, 2005. [CSA], [CROSSREF]
  • P. Chomez, O. De Backer, M. Bertrand, E. De Plaen, T. Boon, and S. Lucas, An overview of the MAGE gene family with the identification of all human members of the family, Cancer Res., 61: 5544–5551, 2001. [CSA]
  • B. Alpen, A.O. Gure, M.J. Scanlan, L.J. Old, and Y.-T. Chen, A new member of the NY-ESO-1 gene family is ubiquitously expressed in somatic tissues and evolutionarily conserved, Gene, 297: 141–149, 2002. [CSA], [CROSSREF]
  • B. Kyewski, J. Derbinski, J. Gotter, and L. Klein, Promiscuous gene expression and central T-cell tolerance: More than meets the eye, Trends Immunol., 23: 364–371, 2002. [CSA], [CROSSREF]
  • C. De Smet, C. Lurquin, B. Lethe, V. Martelange, and T. Boon, DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter, Mol. Cell. Biol., 19: 7327–7335, 1999. [CSA]
  • T. Ono, S. Sato, N. Kimura, M. Tanaka, A. Shibuya, L. J. Old, and E. Nakayama, Serological analysis of BALB/C methylcholanthrene sarcoma Meth A by SEREX: Identification of a cancer/testis antigen, Int. J. Cancer, 88: 845–851, 2000. [CSA], [CROSSREF]
  • Y.-T. Chen, B. Alpen, T. Ono, A. O. Gure, M.A. Scanlan, I. Biggs, H. William, K. Arden, E. Nakayama, and L.J. Old, Identification and characterization of mouse SSX genes: A multigene family on the X chromosome with restricted cancer/testis expression, Genomics, 82: 628–636, 2003. [CSA], [CROSSREF]
  • A.O. Eggert, M.H. Andersen, H. Voigt, D. Schrama, E. Kampgen, P.T. Straten, and J.C. Becker, Characterization of mouse MAGE-derived H-2Kb-restricted CTL epitopes, Eur. J. Immunol., 34: 3285–3290, 2004. [CSA], [CROSSREF]
  • A. Van Pel, E. De Plaen, M.T. Duffour, G. Warnier, C. Uyttenhove, M. Perricaudet, and T. Boon, Induction of cytolytic T lymphocytes by immunization of mice with an adenovirus containing a mouse homolog of the human MAGE-A genes, Cancer Immunol. Immunother., 49: 593–602, 2001. [CSA], [CROSSREF]
  • S. Pascolo, M. Schirle, B. Guckel, T. Dumrese, S. Stumm, S. Kayser, A. Moris, D. Wallwiener, H.-G. Rammensee, and S. Stevanovic, A MAGE-A1 HLA-A*0201 epitope identified by mass spectrometry, Cancer Res., 61: 4072–4077, 2001. [CSA]
  • S. Graff-Dubois, O. Faure, D.-A. Gross, P. Alves, A. Scardino, S. Chouaib, F.A. Lemonnier, and K. Kosmatopoulos, Generation of CTL recognizing an HLA-A*0201-restricted epitope shared by MAGE-A1, -A2, -A3, -A4, -A6, -A10, and -A12 tumor antigens: Implication in a broad-spectrum tumor immunotherapy, J. Immunol., 169: 575–580, 2002. [CSA]
  • E. Bar-Haim, A. Paz, A. Machlenkin, D. Hazzan, B. Tirosh, L. Carmon, B. Brenner, E. Vadai, O. Mor, A. Stein, F.A. Lemonnier, E. Tzehoval, and L. Eisenbach, MAGE-A8 overexpression in transitional cell carcinoma of the bladder: Identification of two tumour-associated antigen peptides, Br. J. Cancer, 91: 398–407, 2004. [CSA]
  • E. Maraskovsky, S. Sjolander, D.P. Drane, M. Schnurr, T.T.T. Le, L. Mateo, T. Luft, K.-A. Masterman, T.-Y. Tai, Q. Chen, S. Green, A. Sjolander, M.J. Pearse, F.A. Lemonnier, W. Chen, J. Cebon, and A. Suhrbier, NY-ESO-1 protein formulated in ISCOMATRIX adjuvant is a potent anticancer vaccine inducing both humoral and CD8+ T-cell-mediated immunity and protection against NY-ESO-1+ tumors, Clin. Cancer Res., 10: 2879–2890, 2004. [CSA]
  • M.J. Palmowski, L. Lopes, Y. Ikeda, M. Salio, V. Cerundolo, and M.K. Collins, Intravenous injection of a lentiviral vector encoding NY-ESO-1 induces an effective CTL response, J. Immunol., 172: 1582–1587, 2004. [CSA]
  • Y. Miyahara, H. Naota, L. Wang, A. Hiasa, M. Goto, M. Watanabe, S. Kitano, S. Okumura, T. Takemitsu, A. Yuta, Y. Majima, F.A. Lemonnier, T. Boon, and H. Shiku, Determination of cellularly processed HLA-A2402-restricted novel CTL epitopes derived from two cancer germ line genes, MAGE-A4 and SAGE, Clin. Cancer Res., 11: 5581–5589, 2005. [CSA], [CROSSREF]
  • T.J. de Vries, M. Smeets, R. de Graaf, K. Hou-Jensen, E.B. Bröcker, N. Renard, A.M.M. Eggermont, G.N.P. van Muijen, and D.J. Ruiter, Expression of gp100, MART-1, tyrosinase, and S100 in paraffin-embedded primary melanomas and locoregional, lymph node, and visceral metastases: Implications for diagnosis and immunotherapy. A study conducted by the EORTC Melanoma Cooperative Group, J. Pathol., 193: 13–20, 2001. [CSA], [CROSSREF]
  • B.S. Kwon, M. Wakulchik, A.K. Haq, R. Halaban, and D. Kestler, Sequence analysis of mouse tyrosinase cDNA and the effect of melanotropin on its gene expression, Biochem. Biophys. Res. Comm., 153: 1301–1309, 1988. [CSA], [CROSSREF]
  • Y. Zhai, J.C. Yang, P. Spiess, M.I. Nishimura, W.W. Overwijk, B. Roberts, N.P. Restifo, and S.A. Rosenberg, Cloning and characterization of the genes encoding the murine homologues of the human melanoma antigens MART1 and gp100, J. Immunother., 20: 15–25, 1997. [CSA], [CROSSREF]
  • H. Takase, C.-R. Yu, R.M. Mahdi, D.C. Douek, G.B. DiRusso, F.M. Midgley, R. Dogra, G. Allende, E. Rosenkranz, A. Pugliese, C.E. Egwuagu, and I. Gery, Thymic expression of peripheral tissue antigens in humans: A remarkable variability among individuals, Int. Immunol., 17: 1131–1140, 2005. [CSA], [CROSSREF]
  • T.A. Colella, T.N.J. Bullock, L.B. Russell, D.W. Mullins, W.W. Overwijk, C.J. Luckey, R.A. Pierce, N.P. Restifo, and V.H. Engelhard, Self-tolerance to the murine homologue of a tyrosinase-derived melanoma antigen: Implications for tumor immunotherapy, J. Exp. Med., 191: 1221–1232, 2000. [CSA], [CROSSREF]
  • C. Lotz, E. Antunes Ferreira, I. Drexler, S. Abdel Mutallib, C. Huber, G. Sutter, and M. Theobald, Partial tyrosinase-specific self tolerance by HLA-A*0201-restricted cytotoxic T lymphocytes in mice and man, Int. J. Cancer, 108: 571–579, 2004. [CSA], [CROSSREF]
  • V.H. Engelhard, T.N.J. Bullock, T.A. Colella, S.L. Sheasley, and D.W. Mullins, Antigens derived from melanocyte differentiation proteins: Self-tolerance, autoimmunity, and use for cancer immunotherapy, Immunol. Rev., 188: 136–146, 2002. [CSA], [CROSSREF]
  • S. Colombetti, T. Fagerberg, P. Baumgärtner, L. Chapatte, D. Speiser, N. Rufer, O. Michielin, and F. Lévy, Impact of orthologous Melan-A peptide immunization on the anti-self Melan-A/HLA-A2 T cell cross-reactivity, J. Immunol., 176: 6560–6567, 2006. [CSA]
  • M.W.J. Schreurs, A.A.O. Eggert, A.J. de Boer, J.L.M. Vissers, T. van Hall, R. Offringa, C.G. Figdor, and G.J. Adema, Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model, Cancer Res., 60: 6995–7001, 2000. [CSA]
  • J.A. McWilliams, S.M. McGurran, S.W. Dow, J.E. Slansky, and R.M. Kedl, A modified tyrosinase-related protein 2 epitope generates high-affinity tumor-specific T cells but does not mediate therapeutic efficacy in an intradermal tumor model, J. Immunol., 177: 155–161, 2006. [CSA]
  • K.R. Irvine, M.R. Parkhurst, E.P. Shulman, J.P. Tupesis, M. Custer, C.E. Touloukian, P.F. Robbins, A.G. Yafal, P. Greenhalgh, R.P.M. Sutmuller, R. Offringa, S.A. Rosenberg, and N.P. Restifo, Recombinant virus vaccination against “self ” antigens using anchor-fixed immunogens, Cancer Res., 59: 2536–2540, 1999. [CSA]
  • S.A. Rosenberg, J.C. Yang, and N.P. Restifo, Cancer immunotherapy: Moving beyond current vaccines, Nat. Med., 10: 909–915, 2004. [CSA], [CROSSREF]
  • S.A. Rosenberg, R.M. Sherry, K.E. Morton, W.J. Scharfman, J.C. Yang, S.L. Topalian, R.E. Royal, U. Kammula, N.P. Restifo, M.S. Hughes, D. Schwartzentruber, D.M. Berman, S.L. Schwarz, L.T. Ngo, S.A. Mavroukakis, D.E. White, and S.M. Steinberg, Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma, J. Immunol., 175: 6169–6176, 2005. [CSA]
  • D.E. Speiser, D. Lienard, N. Rufer, V. Rubio-Godoy, D. Rimoldi, F. Lejeune, A.M. Krieg, J.C. Cerottini, and P. Romero, Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909, J. Clin. Invest., 115: 739–746, 2005. [CSA], [CROSSREF]
  • D. Valmori, V. Dutoit, V. Schnuriger, A.L. Quiquerez, M.J. Pittet, P. Guillaume, V. Rubio-Godoy, P.R. Walker, D. Rimoldi, D. Lienard, J.C. Cerottini, P. Romero, and P.Y. Dietrich, Vaccination with a Melan-A peptide selects an oligoclonal T cell population with increased functional avidity and tumor reactivity, J. Immunol., 168: 4231–4240, 2002. [CSA]
  • A. Zippelius, P. Batard, V. Rubio-Godoy, G. Bioley, D. Lienard, F. Lejeune, D. Rimoldi, P. Guillaume, N. Meidenbauer, A. Mackensen, N. Rufer, N. Lubenow, D. Speiser, J.-C. Cerottini, P. Romero, and M.J. Pittet, Effector function of human tumor-specific CD8 T cells in melanoma lesions: A state of local functional tolerance, Cancer Res., 64: 2865–2873, 2004. [CSA], [CROSSREF]
  • T.N.J. Bullock, T.A. Colella, and V.H. Engelhard, The density of peptides displayed by dendritic cells affects immune responses to human tyrosinase and gp100 in HLA-A2 transgenic mice, J. Immunol., 164: 2354–2361, 2000. [CSA]
  • S. Mocellin, S. Mandruzzato, V. Bronte, M. Lise, and D. Nitti, Part I: Vaccines for solid tumours, Lancet Oncol., 5: 681–689, 2004. [CSA], [CROSSREF]
  • S. Ostrand-Rosenberg, CD4+ T lymphocytes: A critical component of antitumor immunity, Cancer Invest., 23: 413–419, 2005. [CSA], [CROSSREF]
  • S. Pascolo, N. Bervas, J.M. Ure, A.G. Smith, F.A. Lemonnier, and B. Perarnau, HLA-A2.1-restricted education and cytolytic activity of CD8+ T lymphocytes from beta 2 microglobulin (β2m) HLA-A2.1 monochain transgenic H-2Db β2m double knockout mice, J. Exp. Med., 185: 2043–2051, 1997. [CSA], [CROSSREF]
  • M.J. Pittet, D. Valmori, P.R. Dunbar, D.E. Speiser, D. Lienard, F. Lejeune, K. Fleischhauer, V. Cerundolo, J. C. Cerottini, and P. Romero, High frequencies of naive Melan-A/MART-1-specific CD8+ T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals, J. Exp. Med., 190: 705–715, 1999. [CSA], [CROSSREF]
  • D. Valmori, U. Gileadi, C. Servis, P.R. Dunbar, J.-C. Cerottini, P. Romero, V. Cerundolo, and F. Lévy, Modulation of proteasomal activity required for the generation of a CTL-defined peptide derived from the tumor antigen MAGE-3, J. Exp. Med., 189: 895–905, 1999. [CSA], [CROSSREF]
  • C. Noppen, F. Lévy, L. Burri, P. Zajac, E. Remmel, C. Schaefer, U. Lüscher, M. Heberer, and G.C. Spagnoli, Naturally processed and concealed HLA-A2.1 restricted epitopes from tumor associated antigen tyrosinase-related protein-2, Int. J. Cancer, 87: 241–246, 2000. [CSA], [CROSSREF]
  • M. Ayyoub, M. Migliaccio, P. Guillaume, D. Liénard, J.-C. Cerottini, P. Romero, F. Lévy, D.E. Speiser, and D. Valmori, Lack of tumor recognition by hTERT peptide 540–548 specific CD8+ T cells from melanoma patients reveals inefficient antigen processing, Eur. J. Immunol., 31: 2642–2651, 2001. [CSA], [CROSSREF]
  • S. Morel, F. Lévy, O. Burlet-Schiltz, F. Brasseur, M. Probst-Kepper, A.-L. Peitrequin, B. Monsarrat, R. Van Velthoven, J.-C. Cerottini, T. Boon, J.E. Gairin, and B.J. Van den Eynde, Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells, Immunity, 12: 107–117, 2000. [CSA], [CROSSREF]
  • L. Chapatte, M. Ayyoub, S. Morel, A.-L. Peitrequin, N. Lévy, C. Servis, B.J. Van den Eynde, D. Valmori, and F. Lévy, Processing of tumor-associated antigen by the proteaosmes of dendritic cells controls in vivo T-cell responses, Cancer Res., 66: 5461–5468, 2006. [CSA], [CROSSREF]
  • J. Chapiro, S. Claverol, F. Piette, W. Ma, V. Stroobant, B. Guillaume, J.-E. Gairin, S. Morel, O. Burlet-Schiltz, B. Monsarrat, T. Boon, and B.J. Van den Eynde, Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation, J. Immunol., 176: 1053–1061, 2006. [CSA]
  • G. Niedermann, R. Grimm, E. Geier, M. Maurer, C. Realini, C. Gartmann, J. Soll, S. Omura, M.C. Rechsteiner, W. Baumeister, and K. Eichmann, Potential immunocompetence of proteolytic fragments produced by proteasomes before evolution of the vertebrate immune system, J. Exp. Med., 186: 209–220, 1997. [CSA], [CROSSREF]
  • O. Boyman, M. Kovar, M.P. Rubinstein, C.D. Surh, and J. Sprent, Selective stimulation of T cell subsets with antibody-cytokine immune complexes, Science, 311: 1924–1927, 2006. [CSA], [CROSSREF]
  • I. Borrello and D. Pardoll, GM-CSF-based cellular vaccines: A review of the clinical experience, Cytokine Growth Factor Rev., 13: 185–193, 2002. [CSA], [CROSSREF]
  • E. Di Carlo, A. Comes, A.M. Orengo, O. Rosso, R. Meazza, P. Musiani, M.P. Colombo, and S. Ferrini, IL-21 induces tumor rejection by specific CTL and IFN-γ-dependent CXC chemokines in syngeneic mice, J. Immunol., 172: 1540–1547, 2004. [CSA]
  • A. Moroz, C. Eppolito, Q. Li, J. Tao, C.H. Clegg, and P.A. Shrikant, IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: Comparative evaluation of IL-2, IL-15, and IL-21, J. Immunol., 173: 900–909, 2004. [CSA]
  • B.D. Curti, Immunomodulatory and antitumor effects of interleukin-21 in patients with renal cell carcinoma, Expert Rev. Anticancer Ther., 6: 905–909, 2006. [CSA], [CROSSREF]
  • H. Nakano, T. Kishida, H. Asada, M. Shin-Ya, T. Shinomiya, J. Imanishi, T. Shimada, S. Nakai, M. Takeuchi, Y. Hisa, and O. Mazda, Interleukin-21 triggers both cellular and humoral immune responses leading to therapeutic antitumor effects against head and neck squamous cell carcinoma, J. Gene Med., 8: 90–99, 2006. [CSA], [CROSSREF]
  • A. Iwasaki and R. Medzhitov, Toll-like receptor control of the adaptive immune responses, Nat. Immunol., 5: 987–995, 2004. [CSA], [CROSSREF]
  • A.D. Edwards, S.S. Diebold, E.M.C. Slack, H. Tomizawa, H. Hemmi, T. Kaisho, S. Akira, and C. Reise Sousa, Toll-like receptor expression in murine DC subsets: Lack of TLR7 expression by CD8α+ DC correlates with unresponsiveness to imidazoquinolines, Eur. J. Immunol., 33: 827–833, 2003. [CSA], [CROSSREF]
  • I. Miconnet, S. Koenig, D. Speiser, A. Krieg, P. Guillaume, J.-C. Cerottini, and P. Romero, CpG are efficient adjuvants for specific CTL induction against tumor antigen-derived peptide, J. Immunol., 168: 1212–1218, 2002. [CSA]
  • S. Cornet, J. Menez-Jamet, F. Lemonnier, K. Kosmatopoulos, and I. Miconnet, CpG oligodeoxynucleotides activate dendritic cells in vivo and induce a functional and protective vaccine immunity against a TERT derived modified cryptic MHC class I-restricted epitope, Vaccine, 24: 1880–1888, 2006. [CSA], [CROSSREF]
  • D.E. Speiser, R. Miranda, A. Zakarian, M.F. Bachmann, K. McKall-Faienza, B. Odermatt, D. Hanahan, R.M. Zinkernagel, and P.S. Ohashi, Self antigens expressed by solid tumors do not efficiently stimulate naive or activated T cells: Implications for immunotherapy, J. Exp. Med., 186: 645–653, 1997. [CSA], [CROSSREF]
  • L. Zitvogel, A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena, Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes, Nat. Med., 4: 594–600, 1998. [CSA], [CROSSREF]
  • S. Ali, K. Mulryan, T. Taher and P.L. Stern, Immunotherapy success in prophylaxis cannot predict therapy: Prime-boost vaccination against the 5T4 oncofoetal antigen, Cancer Immunol. Immunother., 2006 ( in press). [CSA]
  • V. Shankaran, H. Ikeda, A.T. Bruce, J.M. White, P.E. Swanson, L.J. Old, and R.D. Schreiber, IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity, Nature, 410: 1107–1111, 2001. [CSA], [CROSSREF]
  • G.P. Dunn, L.J. Old, and R.D. Schreiber, The immunobiology of cancer immunosurveillance and immunoediting, Immunity, 21: 137–148, 2004. [CSA], [CROSSREF]
  • C.T. Conrad, N.R. Ernst, W. Dummer, E.B. Brocker, and J.C. Becker, Differential expression of transforming growth factor beta 1 and interleukin 10 in progressing and regressing areas of primary melanoma, J. Exp. Clin. Cancer Res., 18: 225–232, 1999. [CSA]
  • N. Seo, S. Hayakawa, M. Takigawa, and Y. Tokura, Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4+ T-regulatory cells and systemic collapse of antitumour immunity, Immunology, 103: 449–457, 2001. [CSA], [CROSSREF]
  • W. Zou, Immunosuppressive networks in the tumour environment and their therapeutic relevance, Nat. Rev. Cancer, 5: 263–274, 2005. [CSA], [CROSSREF]
  • C. Uyttenhove, L. Pilotte, I. Theate, V. Stroobant, D. Colau, N. Parmentier, T. Boon, and B.J. Van den Eynde, Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase, Nat. Med., 9: 1269–1274, 2003. [CSA], [CROSSREF]
  • V. Bronte, T. Kasic, G. Gri, K. Gallana, G. Borsellino, I. Marigo, L. Battistini, M. Iafrate, T. Prayer-Galetti, F. Pagano, and A. Viola, Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers, J. Exp. Med., 201: 1257–1268, 2005. [CSA]
  • U.K. Liyanage, T.T. Moore, H.G. Joo, Y. Tanaka, V. Herrmann, G. Doherty, J.A. Drebin, S.M. Strasberg, T.J. Eberlein, P.S. Goedegebuure, and D.C. Linehan, Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma, J. Immunol., 169: 2756–2761, 2002. [CSA]
  • F. Ghiringhelli, P.E. Puig, S. Roux, A. Parcellier, E. Schmitt, E. Solary, G. Kroemer, F. Martin, B. Chauffert, and L. Zitvogel, Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation, J. Exp. Med., 202: 919–929, 2005. [CSA], [CROSSREF]
  • P.L. Lollini, F. Cavallo, P. Nanni, and G. Forni, Vaccines for tumour prevention, Nat. Rev. Cancer, 6: 204–216, 2006. [CSA], [CROSSREF]
  • D. Hanahan, Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes, Nature, 315: 115–122, 1985. [CSA], [CROSSREF]
  • F. Lucchini, M.G. Sacco, N. Hu, A. Villa, J. Brown, L. Cesano, L. Mangiarini, G. Rindi, S. Kindl, F. Sessa, P. Vezzoni, and L. Clerici, Early and multifocal tumors in breast, salivary, harderian and epididymal tissues developed in MMTY-Neu transgenic mice, Cancer Lett., 64: 203–209, 1992. [CSA], [CROSSREF]
  • N. Greenberg, F. DeMayo, M. Finegold, D. Medina, W. Tilley, J. Aspinall, G. Cunha, A. Donjacour, R. Matusik, and J. Rosen, Prostate cancer in a transgenic mouse, Proc. Natl. Acad. Sci. U. S. A., 92: 3439–3443, 1995. [CSA], [CROSSREF]
  • M. Broome Powell, P.R. Gause, P. Hyman, J. Gregus, M. Lluria-Prevatt, R. Nagle, and G.T. Bowden, Induction of melanoma in TPras transgenic mice, Carcinogenesis, 20: 1747–1753, 1999. [CSA], [CROSSREF]
  • M. Lucchiari-Hartz, P.M. van Endert, G. Lauvau, R. Maier, A. Meyerhans, D. Mann, K. Eichmann, and G. Niedermann, Cytotoxic T lymphocytes epitopes of HIV-1 Nef: Generation of multiple definitive major histocompatibility complex class I ligands by proteasomes, J. Exp. Med., 191: 239–252, 2000. [CSA], [CROSSREF]
  • H. Horig, A. Wainstein, L. Long, D. Kahn, S. Soni, A. Marcus, W. Edelmann, R. Kucherlapati, and H.L. Kaufman, A new mouse model for evaluating the immunotherapy of human colorectal cancer, Cancer Res., 61: 8520–8526, 2001. [CSA]
  • T. Iinuma, S. Homma, T. Noda, D. Kufe, T. Ohno, and G. Toda, Prevention of gastrointestinal tumors based on adenomatous polyposis coli gene mutation by dendritic cell vaccine, J. Clin. Invest., 113: 1307–1317, 2004. [CSA], [CROSSREF]
  • J. Ackermann, M. Frutschi, K. Kaloulis, T. McKee, A. Trumpp, and F. Beermann, Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background, Cancer Res., 65: 4005–4011, 2005. [CSA], [CROSSREF]
  • T. Bianchi, N. Rufer, H.R. MacDonald, and M. Migliaccio, The tumor suppressor p16Ink4a regulates T lymphocyte survival, Oncogene, 25: 4110–4115, 2006. [CSA], [CROSSREF]
  • I.J. Huijbers, P. Krimpenfort, P. Chomez, M.A. van der Valk, J.Y. Song, E.M. Inderberg-Suso, A.M. Schmitt-Verhulst, A. Berns, and B.J. Van den Eynde, An inducible mouse model of melanoma expressing a defined tumor antigen, Cancer Res., 66: 3278–3286, 2006. [CSA], [CROSSREF]
  • E. Degl'Innocenti, M. Grioni, A. Boni, A. Camporeale, M.T. Bertilaccio, M. Freschi, A. Monno, C. Arcelloni, N. M. Greenberg, and M. Bellone, Peripheral T cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization, Eur. J. Immunol., 35: 66–75, 2005. [CSA], [CROSSREF]
  • M.E. Grossmann, E. Davila, and E. Celis, Avoiding tolerance against prostatic antigens with subdominant peptide epitopes, J. Immunother., 24: 237–241, 2001. [CSA], [CROSSREF]
  • P.R. Hess, D. Boczkowski, S.K. Nair, D. Snyder, and E. Gilboa, Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen, Cancer Immunol. Immunother., 55: 672–683, 2006. [CSA], [CROSSREF]
  • S. Rovero, A. Amici, E.D. Carlo, R. Bei, P. Nanni, E. Quaglino, P. Porcedda, K. Boggio, A. Smorlesi, P.-L. Lollini, L. Landuzzi, M.P. Colombo, M. Giovarelli, P. Musiani, and G. Forni, DNA vaccination against rat Her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice, J. Immunol., 165: 5133–5142, 2000. [CSA]
  • J. Steitz, S. Buchs, D. Tormo, A. Ferrer, J. Wenzel, C. Huber, T. Wolfel, M. Barbacid, M. Malumbres, and T. Tuting, Evaluation of genetic melanoma vaccines in cdk4-mutant mice provides evidence for immunological tolerance against authochthonous melanomas in the skin, Int. J. Cancer, 118: 373–380, 2006. [CSA], [CROSSREF]
  • D. Tormo, A. Ferrer, P. Bosch, E. Gaffal, E. Basner-Tschakarjan, J. Wenzel, and T. Tuting, Therapeutic efficacy of antigen-specific vaccination and toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice, Cancer Res., 66: 5427–5435, 2006. [CSA], [CROSSREF]
  • W.W. Overwijk, M.R. Theoret, S.E. Finkelstein, D.R. Surman, L.A. de Jong, F.A. Vyth-Dreese, T.A. Dellemijn, P.A. Antony, P.J. Spiess, D.C. Palmer, D.M. Heimann, C.A. Klebanoff, Z. Yu, L.N. Hwang, L. Feigenbaum, A.M. Kruisbeek, S.A. Rosenberg, and N.P. Restifo, Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells, J. Exp. Med., 198: 569–580, 2003. [CSA], [CROSSREF]
  • D.C. Palmer, S. Balasubramaniam, K.-i. Hanada, C. Wrzesinski, Z. Yu, S. Farid, M.R. Theoret, L.N. Hwang, C.A. Klebanoff, L. Gattinoni, A.L. Goldstein, J.C. Yang, and N.P. Restifo, Vaccine-stimulated, adoptively transferred CD8+ T cells traffic indiscriminately and ubiquitously while mediating specific tumor destruction, J. Immunol., 173: 7209–7216, 2004. [CSA]
  • N.P. Restifo and S.A. Rosenberg, Use of standard criteria for assessment of cancer vaccines, Lancet Oncol., 6: 3–4, 2005. [CSA]
  • L. Chapatte, S. Colombetti, J.C. Cerottini, and F. Lévy, Efficient induction of tumor antigen specific CD8+ memory T cells by recombinant lentivectors, Cancer Res., 66: 1155–1160, 2006. [CSA], [CROSSREF]
  • B. Wittig, A. Marten, T. Dorbic, S. Weineck, H. Min, S. Niemitz, B. Trojaneck, D. Flieger, S. Kruopis, A. Albers, J. Loffel, A. Neubauer, P. Albers, S. Muller, T. Sauerbruch, T. Bieber, D. Huhn, and I.G. Schmidt-Wolf, Therapeutic vaccination against metastatic carcinoma by expression-modulated and immunomodified autologous tumor cells: A first clinical phase I/II trial, Hum. Gene Ther., 12: 267–278, 2001. [CSA], [CROSSREF]
  • D.-A. Gross, S. Graff-Dubois, P. Opolon, S. Cornet, P. Alves, A. Bennaceur-Griscelli, O. Faure, P. Guillaume, H. Firat, S. Chouaib, F.A. Lemonnier, J. Davoust, I. Miconnet, R.H. Vonderheide, and K. Kosmatopoulos, High vaccination efficiency of low-affinity epitopes in antitumor immunotherapy, J. Clin. Invest., 113: 425–433, 2004. [CSA], [CROSSREF]
  • S. Olver, P. Groves, K. Buttigieg, E.S. Morris, M.L. Janas, A. Kelso, and N. Kienzle, Tumor-derived interleukin-4 reduces tumor clearance and deviates the cytokine and granzyme profile of tumor-induced CD8+ T cells, Cancer Res., 66: 571–580, 2006. [CSA], [CROSSREF]
  • P. Wolint, M.R. Betts, R.A. Koup, and A. Oxenius, Immediate cytotoxicity but not degranulation distinguishes effector and memory subsets of CD8+ T cells, J. Exp. Med., 199: 925–936, 2004. [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.