167
Views
38
CrossRef citations to date
0
Altmetric
Original

Roadmap to a Better Therapeutic Tumor Vaccine

Pages 415-443 | Published online: 03 Aug 2009

REFERENCES

  • M. Siddiqui and C. Perry, Human papillomavirus quadrivalent (types 6, 11, 16, 18) recombinant vaccine (Gardasil) Drugs, 66: 1263–1271, 2006. [CSA]
  • A. Perez-Diaz, P. Spiess, N. Restifo, P. Matzinger, and F. Marincola, Intensity of the vaccine-elicited immune response determines tumor clearance, J. Immunol., 168: 338–347, 2002. [CSA]
  • A.M. Thomas, L.M. Santarsiero, E.R. Lutz, T.D. Armstrong, Y.C. Chen, L.Q. Huang, D.A. Laheru, M. Goggins, R.H. Hruban, and E.M. Jaffee, Mesothelin-specific CD8(+) T-cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients, J. Exp. Med., 200: 297–306, 2004. [CSA], [CROSSREF]
  • L.A. Emens, R.T. Reilly, and E.M. Jaffee, Cancer vaccines in combination with multimodality therapy, Cancer Treat. Res., 123: 227–245, 2005. [CSA]
  • L.A. Emens and E.M. Jaffee, Leveraging the activity of tumor vaccines with cytotoxic chemotherapy, Cancer Res., 65: 8059–8064, 2005. [CSA], [CROSSREF]
  • S. Broomfield, A. Currie, R. van der Most, M. Brown, I. van Bruggen, B. Robinson, and R. Lake, Partial, but not complete, tumor-debulking surgery promotes protective antitumor memory when combined with chemotherapy and adjuvant immunotherapy, Cancer Res., 65: 7580–7584, 2005. [CSA]
  • R. Lake and B. Robinson, Immunotherapy and chemotherapy—A practical partnership, Nat. Rev. Cancer, 5: 397–405, 2005. [CSA], [CROSSREF]
  • L.A. Emens, R.T. Reilly, and E.M. Jaffee, Breast cancer vaccines: Maximizing cancer treatment by tapping into host immunity, Endocr. Relat. Cancer, 12: 1–17, 2005. [CSA], [CROSSREF]
  • K. Hogquist, T. Baldwin, and S. Jameson, Central tolerance: Learning self-control in the thymus, Nat. Rev. Immunol., 5: 772–782, 2005. [CSA], [CROSSREF]
  • E. Palmer, Negative selection—Clearing out the bad apples from the T-cell repertoire, Nat. Rev. Immunol., 3: 383–391, 2003. [CSA], [CROSSREF]
  • M. McGargill, J. Derbinski, and K. Hogquist, Receptor editing in developing T cells, Nat. Immunol., 1: 336–341, 2000. [CSA], [CROSSREF]
  • F. Wang, C. Huang, and O. Kanagawa, Rapid deletion of rearranged T cell antigen receptor (TCR) Vα-Jα segment by secondary rearrangement in the thymus: Role of continuous rearrangement of TCRα chain gene and positive selection in the T-cell repertoire formation, Proc. Natl. Acad. Sci. U.S.A., 95: 11834–11839, 1998. [CSA], [CROSSREF]
  • G. Hammerling, G. Schonrich, F. Momburg, N. Auphan, M. Malissen, B. Malissen, A. Schmitt-Verhulst, and B. Arnold, Non-deletional mechanisms of peripheral and central tolerance: Studies with transgenic mice with tissue-specific expression of a foreign MHC class I antigen, Immunol. Rev., 122: 47–67, 1991. [CSA], [CROSSREF]
  • T. Baldwin, K. Hogquist, and S. Jameson, The fourth way? Harnessing aggressive tendencies in the thymus, J. Immunol., 173: 6515–6520, 2004. [CSA]
  • M. Anderson, E. Venanzi, L. Klein, Z. Chen, S. Berzins, S. Turley, H. von Boehmer, R. Bronson, A. Dierich, C. Benoist, and D. Mathis, Projection of an immunological self shadow within the thymus by the AIRE protein, Science, 298: 1395–1401, 2002. [CSA], [CROSSREF]
  • B. Kyewski and J. Derbinski, Self-representation in the thymus: An extended view, Nat. Rev. Immunol., 4: 688–698, 2004. [CSA], [CROSSREF]
  • G. Gillard and A. Farr, Contrasting models of promiscuous gene expression by thymic epithelium, J. Exp. Med., 202: 15–19, 2005. [CSA], [CROSSREF]
  • A. Gallegos and M. Bevan, Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation, J. Exp. Med., 200: 1039–1049, 2004. [CSA], [CROSSREF]
  • Y. Takahama, Journey through the thymus: Stromal guides for T-cell development and selection, Nat. Rev. Immunol., 6: 127–135, 2006. [CSA], [CROSSREF]
  • E. Ladi, X. Yin, T. Chtanova, and E. Robey, Thymic microenvironments for T-cell differentiation and selection, Nat. Immunol., 7: 338–343, 2006. [CSA], [CROSSREF]
  • W. Redmond and L. Sherman, Peripheral tolerance of CD8 lymphocytes, Immunity, 22: 275–284, 2005. [CSA], [CROSSREF]
  • M. Bevan, Helping the CD8+ T-cell response, Nat. Rev. Immunol., 4: 595–602, 2004. [CSA], [CROSSREF]
  • D. Masopust, K. Kaech, E. Wherry, and R. Ahmed, The role of programming in memory T-cell development, Curr. Opin. Immunol., 16: 217–225, 2004. [CSA], [CROSSREF]
  • W. Weninger, M. Crowley, N. Manjunath, and U. von Andrian, Migratory properties of naive, effector, and memory (CD8+) T cells, J. Exp. Med., 194: 953–966, 2001. [CSA], [CROSSREF]
  • W. Heath and F. Carbone, Cross-presentation, dendritic cells, tolerance, and autoimmunity, Ann. Rev. Immunol., 19: 47–64, 2001. [CSA], [CROSSREF]
  • S. Bennett, F. Carbone, F. Karamalis, R. Flavell, J. Miller, and W. Heath, Help for cytotoxic-T-cell responses is mediated by CD40 signalling, Nature, 393: 478–480, 1998. [CSA], [CROSSREF]
  • J. Ridge, R. Di Rosa, and P. Matzinger, A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell, Nature, 393: 474–478, 1998. [CSA], [CROSSREF]
  • S. Schoenberger, R. Toes, E. van der Voort, R. Offringa, and C. Meleif, T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions, Nature, 393: 480–493, 1998. [CSA], [CROSSREF]
  • C. Orabona, U. Grohmann, M. Belladonna, F. Fallarino, C. Vacca, R. Bianchi, S. Bozza, C. Volpi, B. Salomon, M. Fioretti, L. Roman, P. Puccete, CD28 induced immunostimulatory stignals in dendritic cells via CD80 and CD86, Nat. Immunol., 5: 1134–1142, 2004. [CSA], [CROSSREF]
  • R. Sallusto, D. Lenig, R. Forster, M. Lipp, and A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions, Nature, 401: 708–712, 1999. [CSA], [CROSSREF]
  • H. Pircher, U. Rohrer, D. Moskophidis, R. Zinkernagel, and H. Hengartner, Lower receptor avidity required for thymic clonal deletion than for effector T-cell function, Nature, 351: 482–485, 1991. [CSA], [CROSSREF]
  • L. Walker and A. Abbas, The enemy within: Keeping self-reactive T cells at bay in the periphery, Nat. Rev. Immunol., 21: 11–19, 2001. [CSA], [CROSSREF]
  • W. Zou, Regulatory T cells, tumor immunity, and immunotherapy, Nat. Rev. Immunol., 6: 295–307, 2006. [CSA], [CROSSREF]
  • R. Germain, The biochemistry and cell biology of antigen presentation by MHC class I and class II molecules. Implications for development of combination vaccines, Ann. N. Y. Acad. Sci., 754: 114–125, 1995. [CSA]
  • A.Y. Huang, A.T. Bruce, D.M. Pardoll, and H.I. Levitsky, In vivo cross-priming of MHC class I-restricted antigens requires TAP transporter, Immunity, 4: 349–355, 1996. [CSA], [CROSSREF]
  • A.Y. Huang, P. Golumbek, M. Ahmadzadeh, E. Jaffee, D. Pardoll, and H. Levitsky, Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens, Science, 264: 961–965, 1994. [CSA], [CROSSREF]
  • F. Castellino and R. Germain, Cooperation between CD4+ and CD8+ T cells: When, where, and how, Ann. Rev. Immunol., 24: 519–540, 2006. [CSA], [CROSSREF]
  • M. Jenkins and R. Schwartz, Antigen presentation by chemically modified splenocytes induces antigen-specific T-cell unresponsiveness in vitro and in vivo, J. Exp. Med., 165: 302–319, 1987. [CSA], [CROSSREF]
  • D. Pardoll, Spinning molecular immunology into successful immunotherapy, Nat. Rev., 2: 227–238, 2002. [CSA]
  • R. Greenwald, G. Freeman, and A. Sharpe, The B7 family revisited, Ann. Rev. Immunol., 23: 515–548, 2005. [CSA], [CROSSREF]
  • J. Egen, M. Kuhns, and J. Allison, CTLA-4: New insights into its biological function and use in tumor immunotherapy, Nat. Immunol., 3: 611–618, 2002. [CSA], [CROSSREF]
  • T. Pentcheva-Hoang, J. Egen, K. Wojnoonski, and J. Allison, B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse, Immunity, 21: 401–413, 2004. [CSA], [CROSSREF]
  • S. Khoury and M. Sayegh, The roles of the new negative T-cell costimulatory pathways in regulating autoimmunity, Immunity, 20: 529–538, 2004. [CSA], [CROSSREF]
  • T. Shin, G. Kennedy, K. Gorski, H. Tsuchiya, H. Koseki, M. Azuma, H. Yagita, L. Chen, J. Powell, D. Pardoll, and F. Housseau, Cooperative B7-1/2 (CD80/Cd86) and B7-DC costimulation of CD4+ T cells independent of the PD-1 receptor, J. Exp. Med., 198: 31–38, 2003. [CSA], [CROSSREF]
  • T. Shin, K. Yoshimura, T. Shin, E. Crafton, H. Tsuchiya, F. Housseau, H. Koseki, R. Schulick, L. Chen, and D. Pardoll, In vivo co-stimulatory role of B7-DC in tuning T helper cell1 and cytotoxic T lymphocyte responses, J. Exp. Med., 201: 1531–1541, 2005. [CSA], [CROSSREF]
  • S. Tseng, M. Otsuji, K. Gorski, X. Huang, J. Slansky, S. Pai, A. Shalabi, T. Shin, D. Pardoll, and H. Tsuchiya, B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells, J. Exp. Med., 193: 839–846, 2001. [CSA], [CROSSREF]
  • G. Freeman, A. Long, Y. Iwai, K. Bourque, T. Chernova, H. Nishimura, L. Fitz, N. Malenkovich, T. Okazaki, M. Byrne, H. Horton, L. Fouser, L. Carter, V. Ling, M. Bowman, B. Carreno, M. Collins, C. Wood, and T. Honjo, Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation, J. Exp. Med., 192: 1027–1034, 2000. [CSA], [CROSSREF]
  • Y. Latchman, C. Wood, T. Chernova, D. Chaudhary, M. Borde, I. Chernova, Y. Iwai, A. Long, J. Brown, R. Nunes, E. Greenfield, K. Bourque, V. Boussiotis, L. Carter, B. Carreno, N. Malenkovich, H. Nishimura, T. Okazaki, T. Honjo, A. Sharpe, and G. Freeman, PD-L2 is a second ligand for PD-1 and inhibits T-cell activation, Nat. Immunol., 2: 261–268, 2001. [CSA], [CROSSREF]
  • G. Sica, I. Choi, G. Zhu, K. Tamada, S. Wang, H. Tamura, A. Chapoval, D. Flies, J. Bajorath, and L. Chen, B7-H4, a molecule of the B7 family, negatively regulates T-cell immunity, Immunity, 18: 849–861, 2003. [CSA], [CROSSREF]
  • A. Krambeck, R. Thompson, H. Dong, C. Lohse, E. Park, S. Kuntz, B. Leibovich, M. Blute, J. Cheville, and E. Kwon, B7-H4 expression in renal cell carcinoma and tumor vasculature: Associations with cancer progression and survival, Proc. Natl. Acad. Sci. U. S. A., 103: 10391–10396, 2006. [CSA], [CROSSREF]
  • S. Salceda, T. Tang, M. Kmet, A. Munteanu, M. Ghosh, R. Macina, W. Liu, G. Pilkington, and J. Papkoff, The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation, Experimental Cell Research, 306: 128–141, 2005. [CSA]
  • B. Tringler, S. Zhuo, G. Pilkington, K. Torkko, M. Singh, M. Lucia, D. Heinz, J. Papkoff, and K. Shroyer, B7-H4 is highly expressed in ductal and lobular breast cancer, Clin. Cancer Res., 11: 1842–1848, 2005. [CSA]
  • I. Kryczek, S. Wei, L. Zou, G. Zhu, P. Mottram, H. Xu, L. Chen, and W. Zou, Cutting edge: Induction of B7-H4 on APCs through IL-10: Novel suppressive mode for regulatory T cells, J. Immunol., 177: 40–44, 2006. [CSA]
  • I. Kryczek, L. Zou, P. Rodriguez, G. Zhu, S. Wei, P. Mottram, M. Brumlik, P. Cheng, T. Curiel, L. Myers, A. Lackner, X. Alzarez, A. Ochoa, L. Chen, and W. Zou, B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma, J. Exp. Med., 203: 871–881, 2006. [CSA], [CROSSREF]
  • A. Chapoval, J. Ni, J. Lau, R. Wilcox, D. Flies, D. Liu, H. Dong, G. Sica, G. Zhu, K. Tamada, and L. Chen, B7-H3: A costimulatory molecule for T-cell activation and IFN-gamma production, Nat. Immunol., 2: 269–274, 2001. [CSA], [CROSSREF]
  • L. Luo, A. Chapoval, D. Flies, G. Zhu, F. Hirano, S. Wang, J. Lau, H. Dong, K. Tamada, A. Flies, Y. Liu, and L. Chen, B7-H3 enhances tumor immunity in vivo by co-stimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells, J. Immunol., 173: 5445–5450, 2004. [CSA]
  • D. Prasad, T. Nguyen, Z. Li, Y. Yang, J. Duong, Y. Wang, and C. Dong, Murine B7-H3 is a negative regulator of T cells, J. Immunol., 173: 2500–2506, 2004. [CSA]
  • W. Suh, B. Gajewska, H. Okada, M. Gronski, E. Bertram, W. Dawicki, G. Duncan, J. Bukczynski, S. Plyte, A. Elia, A. Wakeham, A. Itie, S. Chung, J. Da Costa, S. Arya, T. Horan, P. Campbell, K. Gaida, P. Ohashi, T. Watts, S. Yoshinaga, M. Bray, M. Jordana, and T. Mak, The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses, Nat. Immunol., 4: 899–906, 2003. [CSA], [CROSSREF]
  • A. McAdam, R. Greenwald, M. Levin, T. Chernova, N. Malenkovich, V. Ling, G. Freeman, and A. Sharpe, ICOS is critical for CD40-mediated antibody class-switching, Nature, 409: 102–105, 2001. [CSA], [CROSSREF]
  • J. Wallin, L. Liang, A. Bakardjiev, and W. Sha, Enhancement of CD8+ T-cell responses by ICOS/B7h costimulation, J. Immunol., 167: 123–139, 2001. [CSA]
  • T. Watts, TNF-TNFR family members in costimulation of T-cell responses, Ann. Rev. Immunol., 23: 23–68, 2005. [CSA], [CROSSREF]
  • A. Tong and M. Stone, Prospects for CD-40-directed experimental therapy of human cancer, Cancer Gene Ther., 10: 1–13, 2002. [CSA]
  • Z. Fan, P. Yu, Y. Wang, Y. Wang, M. Fu, W. Liu, Y. Sun, and Y. Fu, NK-cell activation by LIGHT triggers tumor-specific CD8+ T-cell immunity to reject established tumors, Blood, 107: 1342–1351, 2006. [CSA], [CROSSREF]
  • P. Yu, Y. Lee, W. Liu, R. Chin, J. Wang, Y. Wang, A. Schietinger, A. Phillip, H. Schreiber, and Y. Fu, Priming of naive T cells inside tumors leads to eradication of established tumors, Nat. Immunol., 5: 141–149, 2004. [CSA], [CROSSREF]
  • L. Gonzalez, K. Loyet, J. Calemine-Fenaux, V. Chauhan, B. Wranik, W. Ouyang, and D. Eaton, A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attentuator and herpesvirus entry mediator, Proc. Natl. Acad. Sci. U. S. A., 102: 1116–11121, 2005. [CSA], [CROSSREF]
  • J. Sedy, M. Gavrieli, K. Potter, M. Hurchla, R. Lindsley, K. Hildner, S. Scheu, K. Pfeffer, C. Ware, T. Murphy, and K. Murphy, B and T lymphocyte attentuator regulates T-cell activation through interaction with herpesvirus entry mediator, Nat. Immunol., 6: 90–98, 2005. [CSA], [CROSSREF]
  • D. Barber, E. Wherry, D. Masopust, B. Zhu, J. Allison, A. Sharpe, G. Freeman, and R. Ahmed, Restoring function in exhausted CD8 T cells during chronic viral infection, Nature, 439: 682–687, 2006. [CSA], [CROSSREF]
  • M. Alexander-Miller, High-avidity CD8+ T cells: Optimal soldiers in the war against viruses and tumors, Immunol. Res., 31: 13–24, 2005. [CSA], [CROSSREF]
  • M. Alexander-Miller, G. Leggatt, and J. Berzofsky, Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy, Proc. Natl. Acad. Sci. U. S. A., 93: 4102–4107, 1996. [CSA], [CROSSREF]
  • S. Walter, L. Herrgen, O. Schoor, G. Jung, D. Wernet, J. Buhring, H. Rammensee, and S. Stevanovic, Cutting edge: Predetermined avidity of human CD8+ T cells expanded on calibrated MHC/anti-CD28-coated microspheres, J. Immunol., 171: 4974–4978, 2003. [CSA]
  • V. Dutoit, V. Rubio-Godoy, P. Dietrich, A. Quiqueres, V. Shcnuriger, and D. Rimoldi, Heterogeneous T-cell response to MAGE-A10(254–262): High avidity specific cytolytic T lymphocytes show supreior antitumor activity, Cancer Res., 61: 5850–5856, 2001. [CSA]
  • A. Ercolini, B. Ladle, E. Manning, L. Pfannenstiel, T. Armstrong, J. Machiels, J. Bieler, L. Emens, R. Reilly, and E. Jaffee, Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response, J. Exp. Med., 201: 1591–1602, 2005. [CSA], [CROSSREF]
  • H. Zeh, D. Perry-Lalley, M. Dudley, S. Rosenberg, and J. Yang, High-avidity CTLs for two self antigens demonstrate superior in vitro and in vivo antitumor efficacy, J. Immunol., 162: 989–994, 1999. [CSA]
  • M. Derby, M. Alexander-MIller, R. Tse, and J. Berzofsky, High-avidity CTL exploit two complementary mechanisms to provide better protection against viral infection than low-avidity CTL, J. Immunol., 166: 1690–1697, 2001. [CSA]
  • C. Yee, P. Savage, P. Lee, M. Davis, and P. Greenberg, Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers, J. Immunol., 162: 2227–2234, 1999. [CSA]
  • B. al Ramadi, M. Jelonek, L. Boyd, D. Margulies, and A. Bothwell, Lack of strict correlation of functional sensitization with the apparent affinity of MHC/peptide complexes for the TCR, J. Immunol., 155: 662–673, 1995. [CSA]
  • T. Bullock, D. Mullins, T. Collella, and V. Engelhard, Manipulation of avidity to improve effectiveness of adoptively transferred CD8+ T cells for melanoma immunotherapy in human MHC class I transgenic mice, J. Immunol., 167: 5824–5831, 2001. [CSA]
  • H. Echchakir, G. Dorothee, I. Vergnon, J. Menez, S. Chjousaib, and F. Mami-Chouaib, Cytotoxic T lymphocytes directed against a tumor-specific mutated antigen display similar HLA tetramer binding but distinct functional avidity and tissue distribution, Proc. Natl. Acad. Sci. U. S. A., 99: 9358–9363, 2002. [CSA], [CROSSREF]
  • B. Palermo, R. Campanelli, S. Mantovani, E. Lantelme, A. Manganoni, and G. Carella, Diverse expansion potential and heterogeneous avidity in tumor-associated antigne-specific T lymphocytes from primary melanoma patients, Eur. J. Immunol., 31: 412–420, 2001. [CSA], [CROSSREF]
  • S. Reignat, G. Webster, D. Brown, G. Ogg, A. King, and S. Seneviratne, Escaping high viral load exhaustion: CD8 cells with altered tetramer binding in chronic hepatitis B virus infection, J. Exp. Med., 195: 1089–1101, 2002. [CSA], [CROSSREF]
  • D.I. Drake and T. Braciale, Cutting edge: Lipid raft integrity affects the efficiency of MHC class I tetramer binding and cell surface TCR arrangement on CD8+ T cells, J. Immunol., 166: 7009–7013, 2001. [CSA]
  • T. Fahmy, J. Bieler, M. Edidin, and J. Schneck, Increased TCR avidity after T-cell activation: A mechanism for sensing low-density antigen, Immunity, 14: 135–143, 2001. [CSA]
  • A. Cawthon and M. Alexander-Miller, Optimal co-localization of TCR and CD8 as a novel mechanism for the control of functional avidity, J. Immunol., 169: 3492–3498, 2002. [CSA]
  • A. Cawthon, H. Lu, and M. Alexander-Miller, Peptide requirement for CTL activation reflects the sensitivity to CD3 engagement: Correlation with CD8αβ versus CD8ααexpression, J. Immunol., 167: 2577–2584, 2001. [CSA]
  • T. Bullock, D. Mullins, and V. Engelhard, Antigen dnesity presented by dendritic cells in vivo iefferentially affects the number and avidity of primary, memory, and recall CD8+ T cells, J. Immunol., 170: 1822–4461, 2003. [CSA]
  • J. Hodge, M. Chakraborty, C. Kudo-Saito, C. Garnett, and J. Schlom, Multiple costimulatory modalities enhance CTL avidity, J. Immunol., 174: 5994–6004, 2005. [CSA]
  • S. Oh, J. Hodge, J. Ahlers, D. Burke, J. Schlom, and J. Berzofsky, Selective induction of high-avidity CTL by altering the balance of signals from APC. J. Immunol., 170: 2523–2530, 2003. [CSA]
  • S. Yang, J. Hodge, D. Grosenbach, and J. Schlom, Vaccines with enhanced costimulation maintain high avidity memory CTL, J. Immunol., 175: 3715–3723, 2005. [CSA]
  • M. Lyman, C. Nugent, K. Marquardt, J. Biggs, E. Pamer, and L. Sherman, The fate of low affinity tumor-specific CD8+ T cells in tumor-bearing mice, J. Immunol., 174: 2563–2572, 2005. [CSA]
  • P. Otahal, S. Hutchinson, L. Mylin, M. Tevethia, S. Tevethia, and T. Schell, Inefficient cross-presentation limits the CD8+ T-cell response to a subdominant tumor antigen epitope, J. Immunol., 175: 700–712, 2005. [CSA]
  • Y. Liu, S. Daley, V. Evdokimova, D. Zdobinski, D. Potter, and L. Butterfield, Hierarchy of α fetoprotein (AFP)-specific T-cell responses in subjects with AFP-positive hepatocellular cancer, J. Immunol., 177: 712–721, 2006. [CSA]
  • H. Jackson, N. Dimopoulos, N. MIfsud, T. Tai, Q. Chen, S. Svobodova, J. Browning, I. Luescher, L. Stockert, L. Old, I. Davis, J. Cebon, and W. Chen, Striking immunodominance hierarchy of naturally occurring CD8+ and CD4+ T-cell responses to tumor antigen NY-ESO-1, J. Immunol., 176: 5908–5917, 2006. [CSA]
  • F. Melchionda, T. Fry, M. Milliron, M. McKirdy, Y. Tagaya, and C. Mackall, Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the memory CD8+ T-cell pool, J. Clin. Invest., 115: 1177–1187, 2005. [CSA], [CROSSREF]
  • A. Moore, A. Gallimore, S. Draper, K. Watkins, S. Gilbert, and A. Hill, Anti-CD25 antibody enhancement of vaccine-induced immunogenicity: Increased durable cellular immunity with reduced immunodominance, J. Immunol., 175: 7264–7273, 2005. [CSA]
  • T. Curiel, G. Coukos, L. Zou, X. Alvarez, P. Cheng, P. Mottram, M. Evdmon-Hogan, J. Conejo-Garcia, L. Zhang, M. Burow, Y. Zhu, S. Wei, I. Kryczek, B. Daniel, A. Gordon, L. Myers, A. Lackner, M. Disis, K. Knutson, and L. Z. Chen. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival, Nat. Med., 10: 942–949, 2004. [CSA], [CROSSREF]
  • W. Zou, Immunosuppressive networks in the tumor environment and their therapeutic relevance, Nat. Rev. Cancer, 5: 263–274, 2005. [CSA], [CROSSREF]
  • U. Grohmann, C. Orabona, F. Fallarino, C. Vacca, F. Calcinaro, A. Falorni, P. Candeloro, M. Belladonna, R. Bianchi, M. Fioretti, and P. Puccetti, CTLA-4 Ig regulates tryptophan catabolism in vivo, Nat. Immunol., 3: 1097–1101, 2002. [CSA], [CROSSREF]
  • A. Mellor and D. Munn, Tryptophan catabolism and regulation of adaptive immunity, J. Immunol., 170: 5809–5813, 2003. [CSA]
  • A. Mazzoni, V. Bronte, A. Visintin, J. Spitzer, E. Apolioni, P. Serafini, P. Zanovello, and D. Segal, Myeloid suppressor cells inhibit T-cell response by an NO-dependent mechanism, J. Immunol., 168: 689–695, 2002. [CSA]
  • L. Diehl, A. den Boer, S. Schoenberger, E. van der Voort, T. Schumacher, C. Melief, R. Offringa, and R. Toes, CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy, Nat. Med., 5: 774–779, 1999. [CSA], [CROSSREF]
  • L. Diehl, A. den Boer, E. van der Voort, C. Melief, R. Offringa, and R. Toes, The role of CD40 in peripheral T-cell tolerance and immunity, J. Mol. Med., 78: 363–371, 2000. [CSA], [CROSSREF]
  • E.M. Sotomayor, I. Borrello, E. Tubb, F.-M. Rattis, H. Bien, Z. Lu, S. Fein, S. Schoenberger, and H.I. Levitsky, Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40, Nat. Med., 5: 780–787, 1999. [CSA]
  • S. Radhakrishnan, L. Nguyen, B. Ciric, D. Flies, V. Van Keulen, K. Tamada, L. Chen, M. Rodriguez, and L. Pease, Immunotherapeutic potential of B7-DC (PD-L2) cross-linking antibody in conferring antitumor immunity, Cancer Res., 64: 4965–4972, 2004. [CSA]
  • S. Radhakrishnan, E. Celis, and L. Pease, B7-DC cross-linking restores antigen uptake and augments antigen-presenting cell function by matured dendritic cells, Proc. Natl. Acad. Sci. U. S. A., 102: 11438–11443, 2005. [CSA], [CROSSREF]
  • H. Dong, S.E. Strome, D.R. Salomao, H. Tamura, F. Hirano, D.B. Flies, P.C. Roche, J. Lu, G. Zhu, K. Tamada, V.A. Lennon, E. Celis, and L. Chen, Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion, Nat. Med., 8: 793–800, 2002. [CSA]
  • T. Curiel, S. Wei, H. Dong, X. Alvarez, P. Cheng, P. Mottram, R. Krzysiek, K. Knutson, B. Daniel, M. Zimmermann, O. David, M. Burow, A. Gordon, N. Dhurandhar, L. Myers, R. Berggren, A. Hemminki, R. Alvarez, D. Emilie, D. Curiel, L. Chen, and W. Zou, Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity, Nat. Med., 9: 562–567, 2003. [CSA], [CROSSREF]
  • S. Strome, H. Dong, H. Tamura, S. Voss, D. Flies, K. Tamada, D. Salomao, J. Cheville, F. Hirano, W. Lin, J. Kasperbauer, K. Ballman, and L. Chen, B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma, Cancer Res., 63: 6501–6505, 2003. [CSA]
  • J. Maxwell, A. Weinberg, R. Prell, and A. Vella, Danger and OX40 receptor signaling synergize to enhance memory T-cell survival by inhibiting peripheral deletion, J. Immunol., 164: 107–112, 2000. [CSA]
  • I. Takeda, S. Ine, N. Killeen, L. Ndhlovu, K. Murata, S. Satomi, K. Sugamura, and N. Ishii, Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells, J. Immunol., 172: 3580–3589, 2004. [CSA]
  • B. Valzasina, C. Guiducci, H. Dislich, N. Killeen, A. Weinberg, and M. Colombo, Triggering of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: A novel regulatory role for OX40 and its comparison with GITR, Blood, 105: 2845–2851, 2005. [CSA], [CROSSREF]
  • K. Sugamura, N. Ishii, and A. Weinberg, Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40, Nat. Rev. Immunol., 4: 420–431, 2004. [CSA], [CROSSREF]
  • S. Murata, B. Ladle, P. Kim, E. Lutz, M. Wolpoe, S. Ivie, H. Smith, T. Armstrong, L. Emens, E. Jaffee, and R. Reilly, OX40 costimulation synergizes with GM-CSF whole-cell vaccination to overcome established CD8+ T-cell tolerance to an endogenous tumor antigen, J. Immunol., 176: 974–983, 2006. [CSA]
  • G. Gri, E. Galo, E. Di Carlo, P. Musiani, and M. Colombo, OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-APC signaling to boost the host T-cell antitumor response, J. Immunol., 170: 99–106, 2003. [CSA]
  • P. Soroosh, S. Ine, K. Sugamura, and N. Ishii, OX40-OX40 ligand interaction through T cell-T-cell contact contributes to CD4 T-cell longevity, J. Immunol., 176: 5975–5987, 2006. [CSA]
  • I. Melero, W. Shuford, S. Newby, A. Aruffo, J. Ledbetter, K. Hellstrom, R. Mittler, and L. Chen, Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors, Nat. Med., 3: 682–685, 1997. [CSA], [CROSSREF]
  • F. Ito, Q. Li, A. Shreiner, R. Okuyama, M. Jure-Kunkel, S. Teitz-Tennenbaum, and A. Chang, Anti-CD137 monoclonal antibody administration augments the antitumor efficacy of dendritic cell-based vaccines, Cancer Res., 64: 8411–8419, 2004. [CSA], [CROSSREF]
  • R. Wilcox, D. Flies, G. Zhu, A. Johnson, K. Tamada, A. Chapoval, S. Strome, L. Pease, and L. Chen, Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors, J. Clin. Invest., 109: 651–659, 2002. [CSA], [CROSSREF]
  • O. Murillo, A. Arina, I. Tirapu, C. Alfaro, A. Mazzolini, B. Palencia, A. Lopez-Diaz De Cerio, J. Prieto, M. Bendandi, and I. Melero, Potentiation of therapeutic immune responses against malignancies with monoclonal antibodies, Clin. Cancer Res., 9: 5454–5464, 2003. [CSA]
  • K. Knutson, Y. Dang, H. Lu, J.A. Lukas, B.E. Gad, E. Azeke, and M. Disis, IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice, J. Immunol., 177: 84–91, 2006. [CSA]
  • K. Ko, K. Yamazaki, K.N.T. Nakamura, K.Y. Hirota, T.J. Shimizu, T. Nomura, T. Chiba, and S. Sakaguchi, Treatment of advanced tumors wtih agonistic anti-GITR MAb and its effects on tumor-infiltrating FoxP3+C25+CD4+ regulatory T cells, J. Exp. Med., 202: 885–891, 2005. [CSA], [CROSSREF]
  • A. Cohen, A. Diab, M. Perales, J. Wolchok, G. Rizzuto, T. Merghoub, D. Huggins, C. Liu, M. Turk, N. Restifo, S. Sakaguchi, and A. Houghton, Agonist anti-GITR antibody enhances vaccine-induced CD8+ T-cell responses and anti-tumor immunity, Cancer Res., 66: 4904–4912, 2006. [CSA], [CROSSREF]
  • A. Hurwitz, T. Yu, D. Leach, and J. Allison, CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma, Proc. Natl. Acad. Sci. U. S. A., 18: 10067–10071, 1998. [CSA], [CROSSREF]
  • A. van Elsas, A. Hurwitz, and J. Allison, Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation, J. Exp. Med., 190: 355–366, 1999. [CSA], [CROSSREF]
  • S. Quezada, K. Peggs, M. Curran, and J. Allison, CTLA-4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells, J. Clin. Invest., 116: 1935–1945, 2006. [CSA], [CROSSREF]
  • R. Sutmuller, L. van Duivenvoorde, A. van Elsas, T. Schumacher, M. Wildenberg, J. Allison, R. Toes, R. Offringa, and C. Melief, Synergism of cytotoxic T lymphocyte-associated antigen-4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alterntive pathways for suppression of autoreactive cytotoxic T lymphocyte responses, J. Exp. Med., 194: 823–832, 2001. [CSA], [CROSSREF]
  • M. Loeffler, J. Kruger, and R. Reisfeld, Immunostimulatory effects of low-dose cyclophosphamide are controlled by inducible nitric oxide synthase, Cancer Res., 65: 5027–5030, 2005. [CSA], [CROSSREF]
  • J. Machiels, R. Reilly, L. Emens, A. Ercolini, R. Lei, D. Weintraub, F. Okoye, and E. Jaffee, Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice, Cancer Res., 61: 3689–3697, 2001. [CSA]
  • G. Schiavoni, F. Mattei, T. Di Puchio, S. Santini, L. Bracci, F. Belardelli, and E. Proietti, Cyclophosphamide induces type I interferon and augments the number of CD44high T lymphocytes in mice: Implications for strategies of chemoimmunotherapy of cancer, Blood, 95: 2024–2030, 2000. [CSA]
  • F. Hodi, M. Mihm, R. Soiffer, F. Haluska, M. Butler, M. Seiden, T. Davis, R. Henry-Spires, S. MacRae, A. Willman, R. Padera, M. Jaklitsch, S. Shankar, T. Chen, A. Korman, J. Allison, and G. Dranoff, Biologic activity of cytotoxic T lymphocyte-associated antigen-4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients, Proc. Natl. Acad. Sci. U.S.A., 100: 4712–4717, 2003. [CSA], [CROSSREF]
  • P. Attia, G. Phan, A. Maker, M. Robinson, Q. MM, J. Yang, R. Sherry, S. Topalian, U. Kammula, R. Royal, N. Restifo, L. Haworth, C. Levy, S. Mavroukakis, G. Nichol, M. Yellin, and S. Rosenberg, Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4, J. Clin. Oncol., 23: 6043–6053, 2005. [CSA], [CROSSREF]
  • K. Beck, J. Blansfield, K. Tran, A. Feldman, M. Hughes, R. Royal, U. Kammula, S. Topalian, R. Sherry, D. Kleiner, M. Quezado, I. Lowy, M. Yellin, S. Rosenberg, and J. Yang, Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen-4, J. Clin. Oncol., 24: 2283–2289, 2006. [CSA], [CROSSREF]
  • A. Maker, G. Phan, P. Attia, J. Yang, R. Sherry, S. Topalian, U. Kammula, R. Royal, L. Haworth, C. Levy, D. Kleiner, K. Mavroukakis, M. Yelin, and S. Rosenberg, Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen-4 blockade and interleukin-2: A phase I/II study, Ann. Surg. Oncol., 12: 1005–1016, 2005. [CSA], [CROSSREF]
  • K. Sanderson, R. Scotland, P. Lee, D. Liu, S. Groshen, J. Snively, S. Sian, G. Nichol, T. Davis, T. Keler, M. Yellin, and J. Weber, Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte-antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma, J. Clin. Oncol., 23: 741–750, 2005. [CSA], [CROSSREF]
  • A. Ribas, L. Camacho, G. Lopez-Berestein, D. Pavlov, C. Bulanhagul, R. Millham, B. Comin-Anduix, J. Reuben, E. Seja, C. Parker, A. Sharma, J. Glaspy, and J. Gomez-Navarro, Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206, J. Clin. Oncol., 23: 8968–8977, 2005. [CSA], [CROSSREF]
  • J. Dannull, Z. Su, D. Rizzieri, B. Yang, D. Coleman, D. Yancey, A. Zhang, P. Dahm, N. Chao, E. Gilboa, and J. Vieweg, Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells, J. Clin. Invest., 115: 3623–2633, 2005. [CSA], [CROSSREF]
  • J. Schiller, J. Nemunaitis, H. Ross, , et al. A phase 2 randomized study of GM-CSF gene-modified autologous tumor vaccine (CG8123) with and without low dose Cyclophosphamide in advanced stage non-small cell lung cancer (NSCLC), Presented at the International Association for the Study of Lung Cancer, 2005 Barcelona, Spain.
  • D. Laheru, J. Nemunaitis, B. Biedrzycki, , et al. A feasibility study of a GM-CSF-secreting irradiated whole cell allogeneic vaccine (GVAX) alone or in sequence wtih Cytoxan for patients with locally advanced or metastatic pancreatic cancer, Presented at the Proceeding of the AACR: Pancreatic Cancer 2004—Advances and Challenges, 2005 San Francisco, California, USA.
  • L. Emens, D. Armstrong, B. Biedrzycki, N. Davidson, J. Davis-Sproul, J. Fetting, E. Jaffee, B. Onners, S. Piantadosi, R. Reilly, V. Stearns, I. Tartakovsky, K. Visvanathan, and A. Wolff, A phase I vaccine safety and chemotherapy dose-finding trial of an allogeneic GM-CSF-secreting breast cancer vaccine given in a specifically timed sequence with immunomodulatory doses of cyclophosphamide and doxorubicin, Hum. Gene Ther., 15: 313–337, 2004. [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.