466
Views
82
CrossRef citations to date
0
Altmetric
Original

GM-CSF Gene-Modifed Cancer Cell Immunotherapies: Of Mice and Men

, &
Pages 321-352 | Published online: 03 Aug 2009

REFERENCES

  • P.F. Robbins and Y. Kawakami, Human tumor antigens recognized by T cells, Curr. Opin. Immunol., 8: 628–636, 1996. [CSA]
  • S.A. Rosenberg, Y. Kawakami, P.F. Robbins, ., et al. Identification of the genes encoding cancer antigens: Implications for cancer immunotherapy, Adv. Cancer Res., 70: 145–177, 1996. [CSA]
  • M. Ahmad, R.C. Rees, and S.A. Ali, Escape from immunotherapy: Possible mechanisms that influence tumor regression/progression, Cancer Immunol. Immunother., 53: 844–854, 2004. [CSA]
  • N. Burdin, B. Guy, and P. Moingeon, Immunological foundations to the quest for new vaccine adjuvants, BioDrugs, 18: 79–93, 2004. [CSA], [CROSSREF]
  • F.M. Marincola, E. Jaffee, and D. Hicklin, Escape of human solid tumors from T-cell recognition: Molecular mechanisms and functional significance, Adv. Immunol., 74: 181–273, 2000. [CSA]
  • A.J. Adler, D.W. Marsh, G.S. Yochum, ., et al. CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells, J. Exp. Med., 187: 1555–1564, 1998. [CSA], [CROSSREF]
  • W.R. Heath, C. Kurts, J.F. Miller, ., et al. Cross-tolerance: A pathway for inducing tolerance to peripheral tissue antigens, J. Exp. Med., 187: 1549–1553, 1998. [CSA], [CROSSREF]
  • R. Soiffer, T. Lynch, M. Mihm, ., et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma, Proc. Natl. Acad. Sci. U.S.A., 95: 13141–13146, 1998. [CSA], [CROSSREF]
  • J.W. Simons, E.M. Jaffee, C.E. Weber, ., et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer, Cancer Res., 57: 1537–1546, 1997. [CSA]
  • A.E. Chang, Q. Li, D.K. Bishop, ., et al. Immunogenetic therapy of human melanoma utilizing autologous tumor cells transduced to secrete granulocyte-macrophage colony-stimulating factor, Hum. Gene. Ther., 11: 839–850, 2000. [CSA], [CROSSREF]
  • G. Dranoff, E. Jaffee, A. Lazenby, ., et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity, Proc. Natl. Acad. Sci. U.S.A., 90: 3539–3543, 1993. [CSA], [CROSSREF]
  • H. Levitsky, J. Montgomery, and M. Ahmadzadeh, Immunization with GM-CSF-transduced, but not B7-1 transduced lymphoma cells primes idiotype specific T cells and generated potent systemic anti-tumor immunity, J. Immunol., 156: 3858–3865, 1996. [CSA]
  • A. VanElsas, A.A. Hurwitz, and J.P. Allison, Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation, J. Exp. Med., 190: 355–366, 1999. [CSA], [CROSSREF]
  • B. Li, A.S. Lalani, T.C. Harding, ., et al. Blockade of vascular endothelial growth factor (VEGF) enhances the therapeutic efficacy of GM-CSF secreting tumor cell vaccines, Proc. Am. Assoc. Cancer Res., 46: abstract #, 268, 2005. [CSA]
  • J.P. Machiels, R.T. Reilly, L.A. Emens, ., et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice, Cancer Res., 61: 3689–3697, 2001. [CSA]
  • R.A. Prell, L. Gearin, A. Simmons, ., et al. The anti-tumor efficacy of a GM-CSF-secreting tumor cell vaccine is not inhibited by docetaxel administration, Cancer Immunol Immunother., 55: 1285–1293, 2006. [CSA], [CROSSREF]
  • I. Borrello and D. Pardoll, GM-CSF-based cellular vaccines: A review of the clinical experience, Cytokine Growth Factor Rev., 13: 185–193, 2002. [CSA], [CROSSREF]
  • J. Simons, M. Carducci, M. Bahar, ., et al. Phase I/II trial of an allogeneic cellular imunotherapy in hormone-naive prostate cancer, Clin. Cancer. Res., 12: 3394–3400, 2006. [CSA], [CROSSREF]
  • J. Simons, C. Higano, J. Corman, ., et al. A phase I/II study of high dose allogenic GM-CSF gene-transduced prostate cancer cell line vaccine in patients with metastatic hormone-refractory prostate cancer, Proc. Am. Soc. Clin. Oncol, 22: 166 (abstr 667), 2003. [CSA]
  • J. Simons, C. Higano, E. Small, ., et al. Clinical and immunologic findings in a phase 2 study of a GM-CSF-secreting prostate cancer cell line vaccine in patients with metastatic hormone-refractory prostate cancer (met HPRC), Proc. Am. Soc. Clin. Oncol., 21: 170s, 2005. [CSA]
  • J. Simons and W. Nelson, Phase II trials of GM-CSF gene transduced prostate cancer, Proc. Am. Soc. Clin. Oncol., 21: 183a, 2002. [CSA]
  • J. Simons, E. Small, W. Nelson, ., et al. Phase II trials of a GM-CSF gene-transduced prostate cancer cell line vaccine (GVAX®) demonstrate anti-tumor activity, Proc. Am. Soc. Clin. Oncol., 20: 269a, 2001. [CSA]
  • I. Borrello, E.M. Sotomayor, F.M. Rattis, ., et al. Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines, Blood, 95: 3011–3019, 2000. [CSA]
  • M. Sanda, S. Ayyagari, E. Jaffee, ., et al. Demonstration of a rational strategy for human prostate cancer gene therapy, J. Urol., 151: 622–628, 1994. [CSA]
  • K. Dunussi-Joannopoulos, G. Dranoff, H.J. Weinstein, ., et al. Gene immunotherapy in murine acute myeloid leukemia: Granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines, Blood, 91: 222–230, 1998. [CSA]
  • E. Jaffee, M. Thomas, A. Huang, ., et al. Enhanced immune priming with spatial distribution of paracrine cytokine vaccines, J. Immunother. Emphasis Tumor Immunol., 19: 176–183, 1996. [CSA]
  • K. Inaba, M. Inaba, N. Romani, ., et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte-macrophage colony-stimulating factor, J. Exp. Med., 176: 1693–1702, 1992. [CSA], [CROSSREF]
  • A. Simmons, B. Li, M. Gonzalez-Edick, ., et al GM-CSF secreting cancer immunotherapies require persistent and local secretion of cytokine for optimal anti-tumor responses Cancer Lmmunol. Immunother. (under review). [CSA]
  • A. Huang, P. Golumbek, M. Ahmadzadeh, ., et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens, Science, 264: 961–965, 1994. [CSA], [CROSSREF]
  • G. Dranoff, GM-CSF based cancer vaccines, Immunol. Rev., 188: 147–154, 2002. [CSA], [CROSSREF]
  • D.J. Slamon, W. Godolphin, L.A. Jones, ., et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer, Science, 244: 707–712, 1989. [CSA], [CROSSREF]
  • T. Hunter and J. Pines, Cyclins and cancer, Cell, 66: 1071–1074, 1991. [CSA], [CROSSREF]
  • R.E. Toes, R.J. Blom, E. van der Voort, ., et al. Protective anti-tumor immunity induced by immunization with competely allogeneic tumor cells, Cancer Res., 56: 3782–3787, 1996. [CSA]
  • A.M. Thomas, L.M. Santarsiero, E.R. Lutz, ., et al. Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients, J. Exp. Med., 200: 297–306, 2004. [CSA], [CROSSREF]
  • J. Bancherau and R.M. Steinman, Dendritic cells and the control of immunity, Nature, 392: 245–252, 1998. [CSA], [CROSSREF]
  • K. Tamada and L. Chen, Renewed interest in cancer immunotherapy with the tumor necrosis factor superfamily molecules, Cancer Immunol Immunother., 55: 355–362, 2006. [CSA], [CROSSREF]
  • S. Dessureault, M. Alsarraj, S. McCarthy, ., et al. A GM-CSF/CD40L producing cell augments anti-tumor T cell responses, J. Surg. Res., 125: 173–181, 2005. [CSA], [CROSSREF]
  • A.G. Cuenca, P. Horna, M. Alsarraj, ., et al A universal GM-CSF-secreting/CD40 ligand-expressing bystander cell used in combination with autologous tumor cells is an effective vaccine formulation that prevents antigen-specific t-cell tolerance and elicits strong anti-lymphoma effect. Abstract #2266, 44th Annual Meeting of the American Society of Hematology, Dec. 6–10: 2002. [CSA]
  • A.M. Krieg, Therapeutic potential of Toll-like receptor 9 activation, Nat. Rev. Drug Discov., 5: 471–484, 2006. [CSA], [CROSSREF]
  • A.D. Sandler, H. Chihara, G. Kobayashi, ., et al. CpG oligonucleotides enhance the tumor antigen-specific immune response of a granulocyte macrophage colony-stimulating factor-based vaccine strategy in neuroblastoma, Cancer Res., 63: 394–399, 2003. [CSA]
  • P.S. Linsley, W. Brady, M. Urnes, ., et al. CTLA-4 is a second receptor for the B cell activation antigen B7, J. Exp. Med., 174: 561–569, 1991. [CSA], [CROSSREF]
  • E.A. Tivol, F. Borriello, A.N. Schweitzer, ., et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4, Immunity, 3: 541–547, 1995. [CSA], [CROSSREF]
  • A. Van Elsas, R.P. Sutmuller, A.A. Hurwitz, ., et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy, J. Exp. Med., 194: 481–489, 2001. [CSA], [CROSSREF]
  • A.A. Hurwitz, B.A. Foster, E.D. Kwon, ., et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade, Cancer Res., 60: 2444–2448, 2000. [CSA]
  • K. Ko, S. Yamazaki, K. Nakamura, ., et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3 + CD25 + CD4 + regulatory T cells, J. Exp. Med., 202: 885–891, 2005. [CSA], [CROSSREF]
  • P. Prigent, S. El Mir, M. Dreano, ., et al. Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses, Eur. J. Immunol., 29: 3867–3876, 1999. [CSA], [CROSSREF]
  • J.E. Ohm and D.P. Carbone, VEGF as a mediator of tumor-associated immunodeficiency, Immunol. Res., 23: 263–272, 2001. [CSA], [CROSSREF]
  • M.M. Dikov, J.E. Ohm, N. Ray, ., et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation, J. Immunol., 174: 215–222, 2005. [CSA]
  • R.A. Prell, B. Li, J.M. Lin, ., et al. Administration of IFN-alpha enhances the efficacy of a granulocyte macrophage colony stimulating factor-secreting tumor cell vaccine, Cancer Res., 65: 2449–2456, 2005. [CSA], [CROSSREF]
  • K. Tani, M. Azuma, Y. Nakazaki, ., et al. Phase I study of autologous tumor vaccines transduced with the GM-CSF gene in four patients with stage IV renal cell cancer in Japan: Clinical and immunological findings, Mol. Ther., 10: 799–816, 2004. [CSA], [CROSSREF]
  • J. Simons, E. Jaffee, C. Weber, ., et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer, Cancer Res., 57: 1537–1546, 1997. [CSA]
  • R.M. Luiten, E.W. Kueter, W. Mooi, ., et al. Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients, J. Clin. Oncol., 23: 8978–8991, 2005. [CSA], [CROSSREF]
  • M. Kusumoto, S. Umeda, A. Ikubo, ., et al. Phase 1 clinical trial of irradiated autologous melanoma cells adenovirally transduced with human GM-CSF gene, Cancer Immunol. Immunother., 50: 373–381, 2001. [CSA]
  • J.W. Simons, B. Mikhak, J.F. Chang, ., et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer, Cancer Res., 59: 5160–5168, 1999. [CSA]
  • R. Soiffer, F.S. Hodi, F. Haluska, ., et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma, J. Clin. Oncol., 21: 3343–3350, 2003. [CSA], [CROSSREF]
  • D. DeAngelo, G. Dranoff, I. Galinsky, ., et al. A phase I study of vaccination with lethally irradiated, autologous myeloblasts engineered by adenoviral mediated gene transfer to secrete human granulocyte-macrophage colony stimulating factor, Blood, 98: 463a, 2001. [CSA]
  • R. Salgia, T. Lynch, A. Skarin, ., et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma, J. Clin. Oncol., 21: 624–630, 2003. [CSA], [CROSSREF]
  • D. Laheru, J. Nemunaitis, B. Biedrzycki, ., et al. A feasibility study of a GM-CSF secreting irradiated whole cell allogeneic vaccine (GVAX) alone or in sequence with cyclophosphamide for patients with locally advanced or metastatic pancreatic cancer. 6th Annual Scientific Conference of the Lustgarten Foundation, San Francisco, CA, June 25-26, 2004.
  • M. Butler, M. Seiden, M. Mihm, ., et al. A phase I study of vaccination with lethally irradiated, autologous ovarian cancer cells engineered by adenoviral mediated gene transfer to secrete human granulocyte-macrophage colony stimulating factor (GVAX), Proc. Am. Soc. Clin. Oncol., 21: 8b, 2002. [CSA]
  • F.S. Hodi, M.C. Mihm, R. Soiffer, ., et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients, Proc. Natl. Acad. Sci. U. S. A., 100: 4712–4717, 2003. [CSA], [CROSSREF]
  • J. Schiller, J. Nemunaitis, H. Ross, ., et al. A Phase 2 randomized study of GM-CSF gene-modified autologous tumor vaccine (CG8123) with and without low-dose cyclophosphamide in advanced stage non-small cell lung cancer (NSCLC). Presented at the 11th World Conference on Lung Cancer, Barcelona, Spain, July 3-6, 2005.
  • I. Borrello, E. Sotomayor, S. Cooke, ., et al. A universal granulocyte-macrophage colony-stimulating factor-producing bystander cell line for use in the formulation of autologous tumor cell-based vaccines, Hum. Gene Ther., 10: 1983–1991, 1999. [CSA], [CROSSREF]
  • J. Nemunaitis, T. Jahan, H. Ross, ., et al. Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX((R)) vaccine in advanced-stage non-small-cell lung cancer, Cancer Gene Ther., 2006. [CSA]
  • I. Borrello, B. Biedrzyki, N. Sheets, ., et al. Autologous tumor combined with a GM-CSF-secreting cell line vaccine (GVAX) following autologous stem cell transplant (ASCT) in multiple myeloma, Blood, 104: 129a, 2004. [CSA]
  • I. Borrello, H. Levitsky, L. Damon, ., et al. Vaccine-associated immune and WT-1 responses are associated with better relapse-free survival in patients with AML in remission treated with a GM-CSF secreting leukemia vaccine and autologous stem cell transplant (ASCT), Proc. Am. Soc. Clin. Oncol., 21: 569s, 2005. [CSA]
  • J. Wang, A. Zganiacz, and Z. Xing, Enhanced immunogenicity of BCG vaccine by using a viral-based GM-CSF transgene adjuvant formulation, Vaccine, 20: 2887–2898, 2002. [CSA], [CROSSREF]
  • E. Nagai, T. Ogawa, T. Kielian, ., et al. Irradiated tumor cells adenovirally engineered to secrete granulocyte/macrophage-colony-stimulating factor establish antitumor immunity and eliminate pre-existing tumors in syngeneic mice, Cancer Immunol. Immunother., 47: 72–80, 1998. [CSA], [CROSSREF]
  • P. Serafini, R. Carbley, K. Noonan, ., et al. High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells, Cancer Res., 64: 6337–6343, 2004. [CSA], [CROSSREF]
  • J. Horoszewicz, E. Kawinski, and G. Murphy, Monoclonal antibodies to a new antigenic marker in epithelial prostate cells and serum of prostatic cancer patients, Anticancer Res., 7: 927–936, 1987. [CSA]
  • M. Husmann, T. Pietsch, B. Fleischer, ., et al. Embryonic neural cell adhesion molecules on human natural killer cells, Eur. J. Immunol., 19: 1761–1763, 1989. [CSA]
  • G.J. Bubley, M. Carducci, W. Dahut, ., et al. Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer: Recommendations from the prostate-specific antigen working group, J. Clin. Oncol., 17: 3461–3467, 1999. [CSA]
  • M. Noguchi and S. Noda, Pyridinoline cross-linked carboxyterminal telopeptide of type I collagen as a useful marker for monitoring metastatic bone activity in men with prostate cancer, J. Urol., 166: 1106–1110, 2001. [CSA], [CROSSREF]
  • S. Halabi, E.J. Small, P.W. Kantoff, ., et al. Prognostic model for predicting survival in men with hormone-refractory metastatic prostate cancer, J. Clin. Oncol., 21: 1232–1237, 2003. [CSA], [CROSSREF]
  • E. Small, C. Higano, D. Smith, ., et al. Analysis of prognostic variables in phase 2 trials of GVAX Immunotherapy for Prostate Cancer in metastatic hormone refractory prostate cancer (mHRPC). Presented at the American Society of Clinical Oncology Prostate Cancer Symposium, San Francisco, CA, February 24-26, 2006.
  • E. Jaffee, R. Hruban, D. Laheru, ., et al. Novel allogeneic GM-CSF-secreting tumor vaccine for pancreatic cancer: A phase I trial of safety and immune activation, J. Clin. Oncol., 19: 145–156, 2001. [CSA]
  • B. Smith, Y. Kasamon, C. Miller, et al. K562/GM-CSF vaccination reduces tumor burden, including achieving molecular remissions, in CML patients with residual disease on imatinib (IM), Proc. Am. Soc. Clin. Oncol., 24: 339s, 2006. [CSA]
  • D. Laheru, C. Yeo, B. Biedrzycki, ., et al. A safety and efficacy trial of lethally irradiated allogeneic pancreatic tumor cells transfected with the GM-CSF gene in combination with adjuvant chemoradiotherapy for the treatment of adenocarcinoma of the pancreas. Presented at the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics Annual Meeting Philadelphia, PA, November 14-18, 2005.
  • M. Glaser, Augmentation of specific immune response against a syngeneic SV40-induced sarcoma in mice by depletion of suppressor T cells with cyclophosphamide, Cell. Immunol., 48: 339–345, 1979. [CSA], [CROSSREF]
  • L. Polak, H. Geleick, and J.L. Turk, Reversal by cyclophosphamide of tolerance in contact sensitization. Tolerance induced by prior feeding with DNCB, Immunology, 28: 939–942, 1975. [CSA]
  • M. Rollinghoff, A. Starzinski-Powitz, K. Pfizenmaier, ., et al. Cyclophosphamide-sensitive T lymphocytes suppress the in vivo generation of antigen-specific cytotoxic T lymphocytes, J. Exp. Med., 145: 455–459, 1977. [CSA], [CROSSREF]
  • F. Ghiringhelli, N. Larmonier, E. Schmitt, ., et al. CD4 + CD25 + regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative, Eur. J. Immunol., 34: 336–344, 2004. [CSA], [CROSSREF]
  • M.E. Lutsiak, R.T. Semnani, R. De Pascalis, ., et al. Inhibition of CD4 + 25 + T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide, Blood, 105: 2862–2868, 2005. [CSA], [CROSSREF]
  • N.C. Di Paolo, S. Tuve, N. Shaoheng, ., et al. Effect of Adenovirus-mediated heat shock protein expression and oncolysis in combination with low-dose cyclophosphamide treatment on antitumor immune responses, Cancer Res., 66: 960–969, 2006. [CSA], [CROSSREF]
  • L. Holmberg and B. Sandmaier, Theratope(R) vaccine (STn-KLH) Expert Opin. Biol. Ther., 1: 881–891, 2001. [CSA], [CROSSREF]
  • Y. Chu, L.X. Wang, G. Yang, ., et al. Efficacy of GM-CSF-producing tumor vaccine after docetaxel chemotheraphy in mice bearing established lewis lung carcinoma, J. Immunother., 29: 367–380, 2006. [CSA], [CROSSREF]
  • D.R. Leach, M.F. Krummel, and J.P. Allison, Enhancement of antitumor immunity by CTLA-4 blockade, Science, 271: 1734–1736, 1996. [CSA], [CROSSREF]
  • K. McCoy, I. Hermans, H. Fraser, ., et al. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) can regulate dendritic cell-induced activation and cytotoxicity of CD8+ Tcells independently of CD4+ T cell help, J. Exp. Med., 189: 1157–1162, 1999. [CSA], [CROSSREF]
  • A.A. Hurwitz, T.F. Yu, D.R. Leach, ., et al. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma, Proc. Natl. Acad. Sci. U. S. A., 95: 10067–10071, 1998. [CSA], [CROSSREF]
  • A. Van Elsas, A.A. Hurwitz, J.P. Allison, Combination immunotherapy of B16 Melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation, J. Exp. Med., 190: 355–366, 1999. [CSA], [CROSSREF]
  • P. Attia, G.Q. Phan, A. Maker, ., et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4, J. Clin. Oncol., 23: 6043–6053, 2005. [CSA], [CROSSREF]
  • A. Ribas, L. Camacho, G. Lopez-Berestein, ., et al. J. Clin. Oncol., 23: 8968–8977, 2005. [CSA], [CROSSREF]
  • A. Maker, G. Phan, P. Attia, ., et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphoctye-associated antigen 4 blockade and interleukin 2: A phase I/II study, Ann. Surg. Oncol., 12: 1005–1016, 2005. [CSA], [CROSSREF]
  • G.Q. Phan, J.C. Yang, R.M. Sherry, ., et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma, Proc. Natl. Acad. Sci. U.S.A., 100: 8372–8377, 2003. [CSA], [CROSSREF]
  • K. Sanderson, R. Scotland, P. Lee, ., et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma, J. Clin. Oncol., 23: 741–750, 2005. [CSA], [CROSSREF]
  • K. Beck, J. Blansfield, K. Tran, ., et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxoic T-lymphocyte-associated antigen 4, J. Clin. Oncol., 24: 2230–2232, 2006. [CSA], [CROSSREF]
  • J. Blansfield, K. Beck, K. Tran, ., et al. Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer, J. Immunother., 28: 593–598, 2005. [CSA], [CROSSREF]
  • W.R. Gerritsen, Van Den Eertwegh A, T. De Gruijl, ., et al. A dose-escalation trial of GM-CSF gene transduced allogeneic prostate cancer cellular immunotherapy in combination with a fully human anti-CTLA4 antibody (MDX-010, ipilumumab) in patients with metastatic hormone-refractory prostate cancer, Proc. Am. Soc. Clin. Oncol., 24: 100s, 2006. [CSA]
  • M.E. Dudley, J.R. Wunderlich, P.F. Robbins, ., et al. Cancer regression and autommunity in patients after clonal repopulation with antitumor lumphocytes, Science, 298: 850–854, 2002. [CSA], [CROSSREF]
  • M.E. Dudley, J.R. Wunderlich, J.C. Yang, ., et al. Adoptive cell transfer therapy following non-myeloblative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma, J. Clin. Oncol., 23: 2346–2357, 2006. [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.