992
Views
57
CrossRef citations to date
0
Altmetric
Special Topic: NF-κB, Immunity and Cancer

G Protein–Coupled Receptor Connectivity to NF-κB in Inflammation and Cancer

Pages 320-350 | Published online: 03 Aug 2009

REFERENCES

  • Hoffmann A., Baltimore D. Circuitry of nuclear factor kappaB signaling. Immunol Rev 2006; 210: 171–186
  • Bonizzi G., Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25: 280–288
  • Hayden M. S., Ghosh S. Shared principles in NF-kappaB signaling. Cell 2008; 132: 344–362
  • Perkins N. D. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007; 8: 49–62
  • Hoffmann A., Natoli G., Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene 2006; 25: 6706–6716
  • Ferrell J. E., Jr. Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 1996; 21: 460–466
  • Barnes P. J., Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066–1071
  • Yamamoto Y., Gaynor R. B. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 2001; 107: 135–142
  • Nakanishi C., Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 2005; 5: 297–309
  • Aggarwal B. B. Nuclear factor-kappaB: the enemy within. Cancer Cell 2004; 6: 203–208
  • Li Q., Withoff S., Verma I. M. Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends Immunol 2005; 26: 318–325
  • Karin M., Greten F. R. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5: 749–759
  • Luo J. L., Kamata H., Karin M. IKK/NF-kappaB signaling: balancing life and death—a new approach to cancer therapy. J Clin Invest 2005; 115: 2625–2632
  • Gilmore T. D., Herscovitch M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene 2006; 25: 6887–6899
  • Karin M., Yamamoto Y., Wang Q. M. The I KK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 2004; 3: 17–26
  • Hayden M. S., Ghosh S. Signaling to NF-kappaB. Genes Dev 2004; 18: 2195–2224
  • Gloriam D. E., Fredriksson R., Schioth H. B. The G protein-coupled receptor subset of the rat genome. BMC Genomics 2007; 8: 338
  • Fredriksson R., Lagerstrom M. C., Lundin L. G., Schioth H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 2003; 63: 1256–1272
  • Lagerstrom M. C., Schioth H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 2008; 7: 339–357
  • Lattin J., Zidar D. A., Schroder K., Kellie S., Hume D. A., Sweet M. J. G-protein-coupled receptor expression, function, and signaling in macrophages. J Leukoc Biol 2007; 82: 16–32
  • Szekanecz Z., Szucs G., Szanto S., Koch A. E. Chemokines in rheumatic diseases. Curr Drug Targets 2006; 7: 91–102
  • Dorsam R. T., Gutkind J. S. G-protein-coupled receptors and cancer. Nat Rev Cancer 2007; 7: 79–94
  • Spiegelberg B. D., Hamm H. E. Roles of G-protein-coupled receptor signaling in cancer biology and gene transcription. Curr Opin Genet Dev 2007; 17: 40–44
  • Raman D., Baugher P. J., Thu Y. M., Richmond A. Role of chemokines in tumor growth. Cancer Lett 2007; 256: 137–165
  • Karin M., Lawrence T., Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 2006; 124: 823–835
  • Minami M., Shimizu K., Okamoto Y., Folco E., Ilasaca M. L., Feinberg M. W., Aikawa M., Libby P. Prostaglandin E receptor type 4-associated protein interacts directly with NF-kappaB1 and attenuates macrophage activation. J Biol Chem 2008; 283: 9692–9703
  • Wegener E., Krappmann D. CARD-Bcl10-Malt1 signalosomes: missing link to NF-kappaB. Sci STKE 2007; 2007: pe21
  • Catania A. The melanocortin system in leukocyte biology. J Leukoc Biol 2007; 81: 383–392
  • Klemm S., Zimmermann S., Peschel C., Mak T. W., Ruland J. Bcl10 and Malt1 control lysophosphatidic acid-induced NF-kappaB activation and cytokine production. Proc Natl Acad Sci USA 2007; 104: 134–138
  • Han S. H., Kim J. H., Seo H. S., Martin M. H., Chung G. H., Michalek S. M., Nahm M. H. Lipoteichoic acid-induced nitric oxide production depends on the activation of platelet-activating factor receptor and Jak2. J Immunol 2006; 176: 573–579
  • Loza M. J., Foster S., Peters S. P., Penn R. B. Beta-agonists modulate T-cell functions via direct actions on type 1 and type 2 cells. Blood 2006; 107: 2052–2060
  • Kumar A., Humphreys T. D., Kremer K. N., Bramati P. S., Bradfield L., Edgar C. E., Hedin K. E. CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity 2006; 25: 213–224
  • Rozengurt E. Mitogenic signaling pathways induced by G protein-coupled receptors. J Cell Physiol 2007; 213: 589–602
  • Luttrell L. M. Transmembrane signaling by G protein-coupled receptors. Methods Mol Biol 2006; 332: 3–49
  • Mackay H. J., Twelves C. J. Targeting the protein kinase C family: are we there yet?. Nat Rev Cancer 2007; 7: 554–562
  • Griner E. M., Kazanietz M. G. Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 2007; 7: 281–294
  • Skalhegg B. S., Funderud A., Henanger H. H., Hafte T. T., Larsen A. C., Kvissel A. K., Eikvar S., Orstavik S. Protein kinase A (PKA)-a potential target for therapeutic intervention of dysfunctional immune cells. Curr Drug Targets 2005; 6: 655–664
  • Tasken K., Aandahl E. M. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 2004; 84: 137–167
  • Holz G. G., Kang G., Harbeck M., Roe M. W., Chepurny O. G. Cell physiology of cAMP sensor Epac. J Physiol 2006; 577: 5–15
  • Martiny-Baron G., Fabbro D. Classical P KC isoforms in cancer. Pharmacol Res 2007; 55: 477–486
  • Hayashi K., Altman A. Protein kinase C theta (PKCtheta): a key player in T cell life and death. Pharmacol Res 2007; 55: 537–544
  • Chaudhary D., Kasaian M. PKCtheta: a potential therapeutic target for T-cell-mediated diseases. Curr Opin Investig Drugs 2006; 7: 432–437
  • El-Rayes B. F., Ali S., Philip P. A., Sarkar F. H. Protein kinase C: a target for therapy in pancreatic cancer. Pancreas 2008; 36: 346–352
  • Kang D. W., Park M. H., Lee Y. J., Kim H. S., Kwon T. K., Park W. S., Min S. do, Phorbol ester up-regulates phospholipase D1 but not phospholipase D2 expression through a PKC/Ras/ERK/NFkappaB-dependent pathway and enhances matrix metalloproteinase-9 secretion in colon cancer cells. J Biol Chem 2008; 283: 4094–4104
  • Park K. A., Byun H. S., Won M., Yang K. J., Shin S., Piao L., Kim J. M., Yoon W. H., Junn E., Park J., Seok J. H., Hur G. M. Sustained activation of protein kinase C downregulates nuclear factor-kappaB signaling by dissociation of IKK-gamma and Hsp90 complex in human colonic epithelial cells. Carcinogenesis 2007; 28: 71–80
  • Zhang P., Chan J., Dragoi A. M., Gong X., Ivanov S., Li Z. W., Chuang T. H., Tuthill C., Wan Y., Karin M., Chu W. M. Activation of IKK by thymosin alpha1 requires the TRAF6 signalling pathway. EMBO Rep 2005; 6: 531–537
  • Garcia-Cao I., Duran A., Collado M., Carrascosa M. J., Martin-Caballero J., Flores J. M., Diaz-Meco M. T., Moscat J., Serrano M. Tumour-suppression activity of the proapoptotic regulator Par4. EMBO Rep 2005; 6: 577–583
  • Cataisson C., Pearson A. J., Torgerson S., Nedospasov S. A., Yuspa S. H. Protein kinase C alpha-mediated chemotaxis of neutrophils requires NF-kappa B activity but is independent of TNF alpha signaling in mouse skin in vivo. J Immunol 2005; 174: 1686–1692
  • Cataisson C., Pearson A. J., Tsien M. Z., Mascia F., Gao J. L., Pastore S., Yuspa S. H. CXCR2 ligands and G-CSF mediate PKCalpha-induced intraepidermal inflammation. J Clin Invest 2006; 116: 2757–2766
  • Sun J., Ramnath R. D., Bhatia M. Neuropeptide substance P upregulates chemokine and chemokine receptor expression in primary mouse neutrophils. Am J Physiol Cell Physiol 2007; 293: C696–704
  • Karagiannides I., Kokkotou E., Tansky M., Tchkonia T., Giorgadze N., O'Brien M., Leeman S. E., Kirkland J. L., Pothoulakis C. Induction of colitis causes inflammatory responses in fat depots: evidence for substance P pathways in human mesenteric preadipocytes. Proc Natl Acad Sci USA 2006; 103: 5207–5212
  • Leitges M., Sanz L., Martin P., Duran A., Braun U., Garcia J. F., Camacho F., Diaz-Meco M. T., Rennert P. D., Moscat J. Targeted disruption of the zetaPKC gene results in the impairment of the NF-kappaB pathway. Mol Cell 2001; 8: 771–780
  • Duran A., Diaz-Meco M. T., Moscat J. Essential role of RelA Ser311 phosphorylation by zetaPKC in NF-kappaB transcriptional activation. EMBO J 2003; 22: 3910–3918
  • Rawlings D. J., Sommer K., Moreno-Garcia M. E. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat Rev Immunol 2006; 6: 799–812
  • McAllister-Lucas L. M., Ruland J., Siu K., Jin X., Gu S., Kim D. S., Kuffa P., Kohrt D., Mak T. W., Nunez G., Lucas P. C. CARMA3/Bcl10/MALT1-dependent NF-kappaB activation mediates angiotensin II-responsive inflammatory signaling in nonimmune cells. Proc Natl Acad Sci USA 2007; 104: 139–144
  • Grabiner B. C., Blonska M., Lin P. C., You Y., Wang D., Sun J., Darnay B. G., Dong C., Lin X. CARMA3 deficiency abrogates G protein-coupled receptor-induced NF-κ B activation. Genes Dev 2007; 21: 984–996
  • Wang D., You Y., Lin P. C., Xue L., Morris S. W., Zeng H., Wen R., Lin X. Bcl10 plays a critical role in NF-kappaB activation induced by G protein-coupled receptors. Proc Natl Acad Sci USA 2007; 104: 145–150
  • Mahanivong C., Chen H. M., Yee S. W., Pan Z. K., Dong Z., Huang S. Protein kinase C alpha-CARMA3 signaling axis links Ras to NF-kappa B for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. Oncogene 2008; 27: 1273–1280
  • Klysik J., Theroux S. J., Sedivy J. M., Moffit J. S., Boekelheide K. Signaling crossroads: the function of Raf kinase inhibitory protein in cancer, the central nervous system and reproduction. Cell Signal 2008; 20: 1–9
  • Kroslak T., Koch T., Kahl E., Hollt V. Human phosphatidylethanolamine-binding protein facilitates heterotrimeric G protein-dependent signaling. J Biol Chem 2001; 276: 39772–39778
  • Lorenz K., Lohse M. J., Quitterer U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature 2003; 426: 574–579
  • Yeung K. C., Rose D. W., Dhillon A. S., Yaros D., Gustafsson M., Chatterjee D., McFerran B., Wyche J., Kolch W., Sedivy J. M. Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol 2001; 21: 7207–7217
  • Bijli K. M., Fazal F., Minhajuddin M., Rahman A. Activation of Syk by PKC delta regulates thrombin-induced ICAM-1 expression in endothelial cells via tyrosine phosphorylation of RelA/p65. J Biol Chem 2008; 283: 14674–14684
  • Sun Z., Arendt C. W., Ellmeier W., Schaeffer E. M., Sunshine M. J., Gandhi L., Annes J., Petrzilka D., Kupfer A., Schwartzberg P. L., Littman D. R. PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 2000; 404: 402–407
  • Su T. T., Guo B., Kawakami Y., Sommer K., Chae K., Humphries L. A., Kato R. M., Kang S., Patrone L., Wall R., Teitell M., Leitges M., Kawakami T., Rawlings D. J. PKC-beta controls I kappa B kinase lipid raft recruitment and activation in response to BCR signaling. Nat Immunol 2002; 3: 780–786
  • Lee K. Y., D'Acquisto F., Hayden M. S., Shim J. H., Ghosh S. PDK1 nucleates T cell receptor-induced signaling complex for NF-kappaB activation. Science 2005; 308: 114–118
  • Sommer K., Guo B., Pomerantz J. L., Bandaranayake A. D., Moreno-Garcia M. E., Ovechkina Y. L., Rawlings D. J. Phosphorylation of the CARMA1 linker controls NF-kappaB activation. Immunity 2005; 23: 561–574
  • Matsumoto R., Wang D., Blonska M., Li H., Kobayashi M., Pappu B., Chen Y., Lin X. Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation. Immunity 2005; 23: 575–585
  • Shinohara H., Yasuda T., Aiba Y., Sanjo H., Hamadate M., Watarai H., Sakurai H., Kurosaki T. PKC beta regulates BCR-mediated I KK activation by facilitating the interaction between TAK1 and CARMA1. J Exp Med 2005; 202: 1423–1431
  • Shinohara H., Maeda S., Watarai H., Kurosaki T. IkappaB kinase beta-induced phosphorylation of CARMA1 contributes to CARMA1 Bcl10 MALT1 complex formation in B cells. J Exp Med 2007; 204: 3285–3293
  • Pfeifhofer C., Kofler K., Gruber T., Tabrizi N. G., Lutz C., Maly K., Leitges M., Baier G. Protein kinase C theta affects Ca2+ mobilization and NFAT cell activation in primary mouse T cells. J Exp Med 2003; 197: 1525–1535
  • Siebenlist U., Brown K., Claudio E. Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol 2005; 5: 435–445
  • Manicassamy S., Gupta S., Sun Z. Selective function of PKC-theta in T cells. Cell Mol Immunol 2006; 3: 263–270
  • Healy A. M., Izmailova E., Fitzgerald M., Walker R., Hattersley M., Silva M., Siebert E., Terkelsen J., Picarella D., Pickard M. D., LeClair B., Chandra S., Jaffee B. PKC-theta-deficient mice are protected from Th1-dependent antigen-induced arthritis. J Immunol 2006; 177: 1886–1893
  • Nagahama K., Ogawa A., Shirane K., Shimomura Y., Sugimoto K., Mizoguchi A. Protein kinase C theta plays a fundamental role in different types of chronic colitis. Gastroenterology 2008; 134: 459–469
  • Anderson K., Fitzgerald M., Dupont M., Wang T., Paz N., Dorsch M., Healy A., Xu Y., Ocain T., Schopf L., Jaffee B., Picarella D. Mice deficient in PKC theta demonstrate impaired in vivo T cell activation and protection from T cell-mediated inflammatory diseases. Autoimmunity 2006; 39: 469–478
  • Belguise K., Sonenshein G. E. PKCtheta promotes c-Rel-driven mammary tumorigenesis in mice and humans by repressing estrogen receptor alpha synthesis. J Clin Invest 2007; 117: 4009–4021
  • Romieu-Mourez R., Kim D. W., Shin S. M., Demicco E. G., Landesman-Bollag E., Seldin D. C., Cardiff R. D., Sonenshein G. E. Mouse mammary tumor virus c-rel transgenic mice develop mammary tumors. Mol Cell Biol 2003; 23: 5738–5754
  • Sovak M. A., Bellas R. E., Kim D. W., Zanieski G. J., Rogers A. E., Traish A. M., Sonenshein G. E. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest 1997; 100: 2952–2960
  • Rayet B., Gelinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999; 18: 6938–6947
  • Cogswell P. C., Guttridge D. C., Funkhouser W. K., Baldwin A. S., Jr. Selective activation of NF-kappa B subunits in human breast cancer: potential roles for NF-kappa B2/p52 and for Bcl-3. Oncogene 2000; 19: 1123–1131
  • Catley M. C., Cambridge L. M., Nasuhara Y., Ito K., Chivers J. E., Beaton A., Holden N. S., Bergmann M. W., Barnes P. J., Newton R. Inhibitors of protein kinase C (PKC) prevent activated transcription: role of events downstream of NF-kappaB DNA binding. J Biol Chem 2004; 279: 18457–18466
  • Garg R., Ramchandani A., Maru G. Curcumin decreases 12-0-tetradecanoylphorbol-13-acetate-induced protein kinase C translocation to modulate downstream targets in mouse skin. Carcinogenesis 2008; 29: 1249–1257
  • Zhou X., Yang W., Li J. Ca2+- and protein kinase C-dependent signaling pathway for nuclear factor-kappaB activation, inducible nitric-oxide synthase expression, and tumor necrosis factor-alpha production in lipopolysaccharide-stimulated rat peritoneal macrophages. J Biol Chem 2006; 281: 31337–31347
  • Wang Q., Wang X., Zhou Y., Evers B. M. PKCdelta-mediated regulation of FLIP expression in human colon cancer cells. Int J Cancer 2006; 118: 326–334
  • Min J. K., Kim Y. M., Kim S. W., Kwon M. C., Kong Y. Y., Hwang I. K., Won M. H., Rho J., Kwon Y. G. TNF-related activation-induced cytokine enhances leukocyte adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and protein kinase C-dependent NF-kappaB activation in endothelial cells. J Immunol 2005; 175: 531–540
  • Fahy B. N., Schlieman M. G., Virudachalam S., Bold R. J. Schedule-dependent molecular effects of the proteasome inhibitor bortezomib and gemcitabine in pancreatic cancer. J Surg Res 2003; 113: 88–95
  • Sharkey J., Khong T., Spencer A. PKC412 demonstrates JNK-dependent activity against human multiple myeloma cells. Blood 2007; 109: 1712–1719
  • Sunahara R. K., Taussig R. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2002; 2: 168–184
  • Bender A. T., Beavo J. A. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 2006; 58: 488–520
  • Boswell-Smith V., Spina D., Page C. P. Phosphodiesterase inhibitors. Br J Pharmacol 2006; 147(Suppl 1)S252–257
  • Giembycz M. A. Phosphodiesterase-4: selective and dual-specificity inhibitors for the therapy of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005; 2: 326–333, discussion 340–321
  • Giembycz M. A. Life after PDE4: overcoming adverse events with dual-specificity phosphodiesterase inhibitors. Curr Opin Pharmacol 2005; 5: 238–244
  • Conti M., Richter W., Mehats C., Livera G., Park J. Y., Jin C. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem 2003; 278: 5493–5496
  • Lagente V., Martin-Chouly C., Boichot E., Martins M. A., Silva P. M. Selective PDE4 inhibitors as potent anti-inflammatory drugs for the treatment of airway diseases. Mem Inst Oswaldo Cruz 2005; 100(Suppl 1)131–136
  • Ghofrani H. A., Osterloh I. H., Grimminger F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 2006; 5: 689–702
  • Schmidt M., Evellin S., Weernink P. A., Dorp von F., Rehmann H., Lomasney J. W., Jakobs K. H. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol 2001; 3: 1020–1024
  • Neumann M., Grieshammer T., Chuvpilo S., Kneitz B., Lohoff M., Schimpl A., Franza B. R., Jr., Serfling E. RelA/p65 is a molecular target for the immunosuppressive action of protein kinase A. EMBO J 1995; 14: 1991–2004
  • Parry G. C., Mackman N. Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription. J Immunol 1997; 159: 5450–5456
  • Zhong H., SuYang H., Erdjument-Bromage H., Tempst P., Ghosh S. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 1997; 89: 413–424
  • Park J. M., Greten F. R., Wong A., Westrick R. J., Arthur J. S., Otsu K., Hoffmann A., Montminy M., Karin M. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis—CREB and NF-kappaB as key regulators. Immunity 2005; 23: 319–329
  • Schillace R. V., Carr D. W. The role of protein kinase A and A-kinase anchoring proteins in modulating T-cell activation: progress and future directions. Crit Rev Immunol 2006; 26: 113–131
  • Tasken K., Ruppelt A. Negative regulation of T-cell receptor activation by the cAMP-PKA-Csk signalling pathway in T-cell lipid rafts. Front Biosci 2006; 11: 2929–2939
  • Bjorgo E., Tasken K. Role of cAMP phosphodiesterase 4 in regulation of T-cell function. Crit Rev Immunol 2006; 26: 443–451
  • Ruppelt A., Mosenden R., Gronholm M., Aandahl E. M., Tobin D., Carlson C. R., Abrahamsen H., Herberg F. W., Carpen O., Tasken K. Inhibition of T cell activation by cyclic adenosine 5′-monophosphate requires lipid raft targeting of protein kinase A type I by the A-kinase anchoring protein ezrin. J Immunol 2007; 179: 5159–5168
  • Kammer G. M., Laxminarayana D., Khan I. U. Mechanisms of deficient type I protein kinase A activity in lupus T lymphocytes. Int Rev Immunol 2004; 23: 225–244
  • Tortora G., Ciardiello F. Protein kinase A as target for novel integrated strategies of cancer therapy. Ann N Y Acad Sci 2002; 968: 139–147
  • Cho-Chung Y. S., Nesterova M. V. Tumor reversion: protein kinase A isozyme switching. Ann N Y Acad Sci 2005; 1058: 76–86
  • Sanda T. Transcription factors as therapeutic targets in lymphoid malignancies. Int Rev Immunol 2007; 26: 305–332
  • Horie R. NF-kappaB in pathogenesis and treatment of adult T-cell leukemia/lymphoma. Int Rev Immunol 2007; 26: 269–281
  • Cilloni D., Martinelli G., Messa F., Baccarani M., Saglio G. Nuclear factor kB as a target for new drug development in myeloid malignancies. Haematologica 2007; 92: 1224–1229
  • Lerner A., Kim D. H., Lee R. The cAMP signaling pathway as a therapeutic target in lymphoid malignancies. Leuk Lymphoma 2000; 37: 39–51
  • Hirsh L., Dantes A., Suh B. S., Yoshida Y., Hosokawa K., Tajima K., Kotsuji F., Merimsky O., Amsterdam A. Phosphodiesterase inhibitors as anti-cancer drugs. Biochem Pharmacol 2004; 68: 981–988
  • Lerner A., Epstein P. M. Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies. Biochem J 2006; 393: 21–41
  • Chen L., Fredholm B. B., Jondal M. Adenosine, through the A1 receptor, inhibits vesicular MHC class I cross-presentation by resting DC. Mol Immunol 2008; 45: 2247–2254
  • Sitkovsky M., Lukashev D., Deaglio S., Dwyer K., Robson S. C., Ohta A. Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol 2008; 153(Suppl 1)S457–464
  • Gessi S., Varani K., Merighi S., Fogli E., Sacchetto V., Benini A., Leung E., Mac-Lennan S., Borea P. A. Adenosine and lymphocyte regulation. Purinergic Signal 2007; 3: 109–116
  • Krump E., Picard S., Mancini J., Borgeat P. Suppression of leukotriene B4 biosynthesis by endogenous adenosine in ligand-activated human neutrophils. J Exp Med 1997; 186: 1401–1406
  • Surette M. E., Krump E., Picard S., Borgeat P. Activation of leukotriene synthesis in human neutrophils by exogenous arachidonic acid: inhibition by adenosine A(2a) receptor agonists and crucial role of autocrine activation by leukotriene B(4). Mol Pharmacol 1999; 56: 1055–1062
  • Jijon H. B., Walker J., Hoentjen F., Diaz H., Ewaschuk J., Jobin C., Madsen K. L. Adenosine is a negative regulator of NF-kappaB and MAPK signaling in human intestinal epithelial cells. Cell Immunol 2005; 237: 86–95
  • Fishman P., Bar-Yehuda S., Madi L., Rath-Wolfson L., Ochaion A., Cohen S., Baharav E. The PI3K-NF-kappaB signal transduction pathway is involved in mediating the anti-inflammatory effect of IB-MECA in adjuvant-induced arthritis. Arthritis Res Ther 2006; 8: R33
  • Khoury J., Ibla J. C., Neish A. S., Colgan S. P. Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation. J Clin Invest 2007; 117: 703–711
  • Bar-Yehuda S., Silverman M. H., Kerns W. D., Ochaion A., Cohen S., Fishman P. The anti-inflammatory effect of A3 adenosine receptor agonists: a novel targeted therapy for rheumatoid arthritis. Expert Opin Investig Drugs 2007; 16: 1601–1613
  • Brown R. A., Spina D., Page C. P. Adenosine receptors and asthma. Br J Pharmacol 2008; 153(Suppl 1)S446–456
  • Erdmann A. A., Gao Z. G., Jung U., Foley J., Borenstein T., Jacobson K. A., Fowler D. H. Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo. Blood 2005; 105: 4707–4714
  • Lappas C. M., Rieger J. M., Linden J. A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol 2005; 174: 1073–1080
  • Lappas C. M., Sullivan G. W., Linden J. Adenosine A2A agonists in development for the treatment of inflammation. Expert Opin Investig Drugs 2005; 14: 797–806
  • Lukashev D., Ohta A., Apasov S., Chen J. F., Sitkovsky M. Cutting edge: Physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. J Immunol 2004; 173: 21–24
  • Minguet S., Huber M., Rosenkranz L., Schamel W. W., Reth M., Brummer T. Adenosine and cAMP are potent inhibitors of the NF-kappa B pathway downstream of immunoreceptors. Eur J Immunol 2005; 35: 31–41
  • Link A. A., Kino T., Worth J. A., McGuire J. L., Crane M. L., Chrousos G. P., Wilder R. L., Elenkov I. J. Ligand-activation of the adenosine A2a receptors inhibits IL-12 production by human monocytes. J Immunol 2000; 164: 436–442
  • Harada N., Okajima K., Murakami K., Usune S., Sato C., Ohshima K., Katsuragi T. Adenosine and selective A(2A) receptor agonists reduce ischemia/reperfusion injury of rat liver mainly by inhibiting leukocyte activation. J Pharmacol Exp Ther 2000; 294: 1034–1042
  • Day Y. J., Li Y., Rieger J. M., Ramos S. I., Okusa M. D., Linden J. A2A adenosine receptors on bone marrow-derived cells protect liver from ischemia-reperfusion injury. J Immunol 2005; 174: 5040–5046
  • Ramanathan M., Pinhal-Enfield G., Hao I., Leibovich S. J. Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. Mol Biol Cell 2007; 18: 14–23
  • Linden J. New insights into the regulation of inflammation by adenosine. J Clin Invest 2006; 116: 1835–1837
  • Blackburn M. R., Volmer J. B., Thrasher J. L., Zhong H., Crosby J. R., Lee J. J., Kellems R. E. Metabolic consequences of adenosine deaminase deficiency in mice are associated with defects in alveogenesis, pulmonary inflammation, and airway obstruction. J Exp Med 2000; 192: 159–170
  • Chunn J. L., Molina J. G., Mi T., Xia Y., Kellems R. E., Blackburn M. R. Adenosine-dependent pulmonary fibrosis in adenosine deaminase-deficient mice. J Immunol 2005; 175: 1937–1946
  • Sun C. X., Zhong H., Mohsenin A., Morschl E., Chunn J. L., Molina J. G., Belardinelli L., Zeng D., Blackburn M. R. Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J Clin Invest 2006; 116: 2173–2182
  • Holgate S. T. The Quintiles Prize Lecture 2004. The identification of the adenosine A2B receptor as a novel therapeutic target in asthma. Br J Pharmacol 2005; 145: 1009–1015
  • Naderi S., Gutzkow K. B., Lahne H. U., Lefdal S., Ryves W. J., Harwood A. J., Blomhoff H. K. cAMP-induced degradation of cyclin D3 through association with GSK-3beta. J Cell Sci 2004; 117: 3769–3783
  • Hoang T., Fenne I. S., Cook C., Borud B., Bakke M., Lien E. A., Mellgren G. cAMP-dependent protein kinase regulates ubiquitin-proteasome-mediated degradation and subcellular localization of the nuclear receptor coactivator GRIP1. J Biol Chem 2004; 279: 49120–49130
  • Zhang F., Hu Y., Huang P., Toleman C. A., Paterson A. J., Kudlow J. E. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J Biol Chem 2007; 282: 22460–22471
  • Jalonen U., Paukkeri E. L., Moilanen E. Compounds that increase or mimic cAMP enhance tristetraprolin degradation in LPS-treated murine J774 macrophages. J Pharmacol Exp Ther 2008; 326: 514–522
  • Martin L., Pingle S. C., Hallam D. M., Rybak L. P., Ramkumar V. Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear factor-kappaB and extracellular signal-regulated kinase 1/2. J Pharmacol Exp Ther 2006; 316: 71–78
  • Lee J. Y., Jhun B. S., Oh Y. T., Lee J. H., Choe W., Baik H. H., Ha J., Yoon K. S., Kim S. S., Kang I. Activation of adenosine A3 receptor suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of PI 3-kinase/Akt and NF-kappaB activation in murine BV2 microglial cells. Neurosci Lett 2006; 396: 1–6
  • Rath-Wolfson L., Bar-Yehuda S., Madi L., Ochaion A., Cohen S., Zabutti A., Fishman P. IB-MECA, an A3 adenosine receptor agonist prevents bone resorption in rats with adjuvant induced arthritis. Clin Exp Rheumatol 2006; 24: 400–406
  • Hoskin D. W., Mader J. S., Furlong S. J., Conrad D. M., Blay J. Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review). Int J Oncol 2008; 32: 527–535
  • Gessi S., Merighi S., Varani K., Cattabriga E., Benini A., Mirandola P., Leung E., MacLennan S, Feo C., Baraldi S., Borea P. A. Adenosine receptors in colon carcinoma tissues and colon tumoral cell lines: focus on the A(3) adenosine subtype. J Cell Physiol 2007; 211: 826–836
  • Jacobson K. A., Gao Z. G. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 2006; 5: 247–264
  • Majumdar S., Aggarwal B. B. Adenosine suppresses activation of nuclear factor-kappaB selectively induced by tumor necrosis factor in different cell types. Oncogene 2003; 22: 1206–1218
  • Fishman P., Bar-Yehuda S., Madi L., Cohn I. A3 adenosine receptor as a target for cancer therapy. Anticancer Drugs 2002; 13: 437–443
  • Madi L., Ochaion A., Rath-Wolfson L., Bar-Yehuda S., Erlanger A., Ohana G., Harish A., Merimski O., Barer F., Fishman P. The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 2004; 10: 4472–4479
  • Fishman P., Bar-Yehuda S., Ardon E., Rath-Wolfson L., Barrer F., Ochaion A., Madi L. Targeting the A3 adenosine receptor for cancer therapy: inhibition of prostate carcinoma cell growth by A3AR agonist. Anticancer Res 2003; 23: 2077–2083
  • Ohana G., Bar-Yehuda S., Arich A., Madi L., Dreznick Z., Rath-Wolfson L., Silberman D., Slosman G., Fishman P. Inhibition of primary colon carcinoma growth and liver metastasis by the A3 adenosine receptor agonist CF101. Br J Cancer 2003; 89: 1552–1558
  • Fishman P., Bar-Yehuda S., Ohana G., Barer F., Ochaion A., Erlanger A., Madi L. An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 beta and NF-kappa B. Oncogene 2004; 23: 2465–2471
  • Bar-Yehuda S., Madi L., Silberman D., Gery S., Shkapenuk M., Fishman P. CF101, an agonist to the A3 adenosine receptor, enhances the chemotherapeutic effect of 5-fluorouracil in a colon carcinoma murine model. Neoplasia 2005; 7: 85–90
  • Chun K. S., Surh Y. J. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 2004; 68: 1089–1100
  • Telliez A., Furman C., Pommery N., Henichart J. P. Mechanisms leading to COX-2 expression and COX-2 induced tumorigenesis: topical therapeutic strategies targeting COX-2 expression and activity. Anticancer Agents Med Chem 2006; 6: 187–208
  • Suleyman H., Demircan B., Karagoz Y. Anti-inflammatory and side effects of cyclooxygenase inhibitors. Pharmacol Rep 2007; 59: 247–258
  • Baraf H. S. Efficacy of the newest COX-2 selective inhibitors in rheumatic disease. Curr Pharm Des 2007; 13: 2228–2236
  • Frampton J. E., Keating G. M. Celecoxib: a review of its use in the management of arthritis and acute pain. Drugs 2007; 67: 2433–2472
  • Howe L. R. Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res 2007; 9: 210
  • Aparicio G. Gallego, Diaz S. Prado, Jimenez P. Fonseca, Garcia R. Campelo, Cassinello J. Espinosa, Anton L. M. Aparicio. Cyclooxygenase-2 (COX-2): a molecular target in prostate cancer. Clin Transl Oncol 2007; 9: 694–702
  • Young J. L., Jazaeri A. A., Darus C. J., Modesitt S. C. Cyclooxygenase-2 in cervical neoplasia: a review. Gynecol Oncol 2008; 109: 140–145
  • Sugimoto Y., Narumiya S. Prostaglandin E receptors. J Biol Chem 2007; 282: 11613–11617
  • Haynes D. R., Whitehouse M. W., Vernon-Roberts B. The prostaglandin E1 analogue, misoprostol, regulates inflammatory cytokines and immune functions in vitro like the natural prostaglandins E1, E2 and E3. Immunology 1992; 76: 251–257
  • Paliogianni F., Kincaid R. L., Boumpas D. T. Prostaglandin E2 and other cyclic AMP elevating agents inhibit interleukin 2 gene transcription by counteracting calcineurin-dependent pathways. J Exp Med 1993; 178: 1813–1817
  • Kraan van der Pouw T. C., Boeije L. C., Smeenk R. J., Wijdenes J., Aarden L. A. Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J Exp Med 1995; 181: 775–779
  • Takahashi H. K., Iwagaki H., Yoshino T., Mori S., Morichika T., Itoh H., Yokoyama M., Kubo S., Kondo E., Akagi T., Tanaka N., Nishibori M. Prostaglandin E(2) inhibits IL-18-induced ICAM-1 and B7.2 expression through EP2/EP4 receptors in human peripheral blood mononuclear cells. J Immunol 2002; 168: 4446–4454
  • Walker W., Rotondo D. Prostaglandin E2 is a potent regulator of interleukin-12- and interleukin-18-induced natural killer cell interferon-gamma synthesis. Immunology 2004; 111: 298–305
  • Jing H., Vassiliou E., Ganea D. Prostaglandin E2 inhibits production of the inflammatory chemokines CCL3 and CCL4 in dendritic cells. J Leukoc Biol 2003; 74: 868–879
  • Gray T., Nettesheim P., Loftin C., Koo J. S., Bonner J., Peddada S., Langenbach R. Interleukin-1beta-induced mucin production in human airway epithelium is mediated by cyclooxygenase-2, prostaglandin E2 receptors, and cyclic AMP-protein kinase A signaling. Mol Pharmacol 2004; 66: 337–346
  • Gomez P. F., Pillinger M. H., Attur M., Marjanovic N., Dave M., Park J., Bingham C. O., Al-Mussawir H., 3rd, Abramson S. B. Resolution of inflammation: prostaglandin E2 dissociates nuclear trafficking of individual NF-kappaB subunits (p65, p50) in stimulated rheumatoid synovial fibroblasts. J Immunol 2005; 175: 6924–6930
  • Sheibanie A. F., Tadmori I., Jing H., Vassiliou E., Ganea D. Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J 2004; 18: 1318–1320
  • Wang D., Wang H., Brown J., Daikoku T., Ning W., Shi Q., Richmond A., Strieter R., Dey S. K., DuBois R. N. CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med 2006; 203: 941–951
  • Dendorfer U., Oettgen P., Libermann T. A. Multiple regulatory elements in the interleukin-6 gene mediate induction by prostaglandins, cyclic AMP, and lipopolysaccharide. Mol Cell Biol 1994; 14: 4443–4454
  • Doyle S. L., O'Neill L. A. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol 2006; 72: 1102–1113
  • Hull M. A., Ko S. C., Hawcroft G. Prostaglandin E P receptors: targets for treatment and prevention of colorectal cancer?. Mol Cancer Ther 2004; 3: 1031–1039
  • Mutoh M., Takahashi M., Wakabayashi K. Roles of prostanoids in colon carcinogenesis and their potential targeting for cancer chemoprevention. Curr Pharm Des 2006; 12: 2375–2382
  • Rostom A., Dube C., Lewin G., Tsertsvadze A., Barrowman N., Code C., Sampson M., Moher D. Nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors for primary prevention of colorectal cancer: a systematic review prepared for the U. S. Preventive Services Task Force. Ann Intern Med 2007; 146: 376–389
  • Fraser C. C. Exploring the positive and negative consequences of NF-kappaB inhibition for the treatment of human disease. Cell Cycle 2006; 5: 1160–1163
  • Nagasaka T., Boulday G., Fraser C. C., Coupel S., Coulon F., Tesson L., Heslan J. M., Soulillou J. P., Charreau B. Rapid selection of differentially expressed genes in TNF[alpha]-activated endothelial cells. Mol Med 2002; 8: 559–567
  • Clevers H. At the crossroads of inflammation and cancer. Cell 2004; 118: 671–674
  • Nance D. M., Sanders V. M. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 2007; 21: 736–745
  • Selmeczy Z., Vizi E. S., Csoka B., Pacher P., Hasko G. Role of nonsynaptic communication in regulating the immune response. Neurochem Int 2008; 52: 52–59
  • Kohm A. P., Sanders V. M. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev 2001; 53: 487–525
  • Kin N. W., Sanders V. M. It takes nerve to tell T and B cells what to do. J Leukoc Biol 2006; 79: 1093–1104
  • Ye R. D. beta-Adrenergic agonists regulate NF-kappaB activation through multiple mechanisms. Am J Physiol Lung Cell Mol Physiol 2000; 279: L615–617
  • Farmer P., Pugin J. beta-adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 2000; 279: L675–682
  • Kizaki T., Izawa T., Sakurai T., Haga S., Taniguchi N., Tajiri H., Watanabe K., Day N. K., Toba K., Ohno H. beta(2)-Adrenergic receptor regulates Toll-like receptor-4-induced nuclear factor-kappaB activation through beta-arrestin 2. Immunology 2008; 124: 348–356
  • Nie M., Knox A. J., Pang L. beta2-Adrenoceptor agonists, like glucocorticoids, repress eotaxin gene transcription by selective inhibition of histone H4 acetylation. J Immunol 2005; 175: 478–486
  • Pauwels R. A., Lofdahl C. G., Postma D. S., Tattersfield A. E., O'Byrne P., Barnes P. J., Ullman A. Effect of inhaled formoterol and budesonide on exacerbations of asthma. Formoterol and Corticosteroids Establishing Therapy (FACET) International Study Group. N Engl J Med 1997; 337: 1405–1411
  • Shrewsbury S., Pyke S., Britton M. Meta-analysis of increased dose of inhaled steroid or addition of salmeterol in symptomatic asthma (MIASMA). BMJ 2000; 320: 1368–1373
  • Pongratz G., McAlees J. W., Conrad D. H., Erbe R. S., Haas K. M., Sanders V. M. The level of IgE produced by a B cell is regulated by norepinephrine in a p38 MAPK- and CD23-dependent manner. J Immunol 2006; 177: 2926–2938
  • Cosentino M., Fietta A. M., Ferrari M., Rasini E., Bombelli R., Carcano E., Saporiti F., Meloni F., Marino F., Lecchini S. Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 2007; 109: 632–642
  • Loop T., Bross T., Humar M., Hoetzel A., Schmidt R., Pahl H. L., Geiger K. K., Pannen B. H. Dobutamine inhibits phorbol-myristate-acetate-induced activation of nuclear factor-kappaB in human T lymphocytes in vitro. Anesth Analg 2004; 99: 1508–1515
  • Entschladen F., Drell T. L. T., Lang K., Joseph J., Zaenker K. S. Neurotransmitters and chemokines regulate tumor cell migration: potential for a new pharmacological approach to inhibit invasion and metastasis development. Curr Pharm Des 2005; 11: 403–411
  • Schuller H. M. Neurotransmitter receptor-mediated signaling pathways as modulators of carcinogenesis. Prog Exp Tumor Res 2007; 39: 45–63
  • Sastry K. S., Karpova Y., Prokopovich S., Smith A. J., Essau B., Gersappe A., Carson J. P., Weber M. J., Register T. C., Chen Y. Q., Penn R. B., Kulik G. Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J Biol Chem 2007; 282: 14094–14100
  • Yang E. V., Sood A. K., Chen M., Li Y., Eubank T. D., Marsh C. B., Jewell S., Flavahan N. A., Morrison C., Yeh P. E., Lemeshow S., Glaser R. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 2006; 66: 10357–10364
  • Liu X., Wu W. K., Yu L., Sung J. J., Srivastava G., Zhang S. T., Cho C. H. Epinephrine stimulates esophageal squamous-cell carcinoma cell proliferation via beta-adrenoceptor-dependent transactivation of extracellular signal-regulated kinase/cyclooxygenase-2 pathway. J Cell Biochem 2008
  • Landen C. N., Lin Y. G., Jr., Armaiz G., Pena N., Das P. D., Arevalo J. M., Kamat A. A., Han L. Y., Jennings N. B., Spannuth W. A., Thaker P. H., Lutgendorf S. K., Savary C. A., Sanguino A. M., Lopez-Berestein G., Cole S. W., Sood A. K. Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Res 2007; 67: 10389–10396
  • Tahmatzopoulos A., Rowland R. G., Kyprianou N. The role of alpha-blockers in the management of prostate cancer. Expert Opin Pharmacother 2004; 5: 1279–1285
  • Hui H., Fernando M. A., Heaney A. P. The alpha1-adrenergic receptor antagonist doxazosin inhibits EGFR and NF-kappaB signalling to induce breast cancer cell apoptosis. Eur J Cancer 2008; 44: 160–166
  • Liu X., Wu W. K., Yu L., Li Z. J., Sung J. J., Zhang S. T., Cho C. H. Epidermal growth factor-induced oesophageal cancer cell proliferation requires transactivation of beta-adrenoceptors. J Pharmacol Exp Ther 2008; 326: 69–75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.