319
Views
3
CrossRef citations to date
0
Altmetric
Review

Natural and genetically-modified animal models to investigate pulmonary and extrapulmonary manifestations of COVID-19

, & ORCID Icon
Pages 13-32 | Received 07 Apr 2022, Accepted 09 Jun 2022, Published online: 25 Jun 2022

References

  • Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA. 2020;324(8):782–793. doi:10.1001/jama.2020.12839.
  • Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–943.
  • Huo J, Le Bas A, Ruza RR, et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol. 2020;27(9):846–854. doi:10.1038/s41594-020-0469-6.
  • Bost P, Giladi A, Liu Y, et al. Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell. 2020;181(7):1475–1488.e12. doi:10.1016/j.cell.2020.05.006.
  • Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020;46(6):1099–1102. doi:10.1007/s00134-020-06033-2.
  • Polak SB, Van Gool IC, Cohen D, von der Thüsen JH, van Paassen J. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol. 2020;33(11):2128–2138. doi:10.1038/s41379-020-0603-3.
  • Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62. doi:10.1016/j.thromres.2020.04.014.
  • Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20(6):669–677. doi:10.1016/S1473-3099(20)30243-7.
  • Cleary SJ, Pitchford SC, Amison RT, et al. Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology. Br J Pharmacol. 2020;177(21):4851–4865. doi:10.1111/bph.15143.
  • Lu S, et al. Comparison of SARS-CoV-2 infections among 3 species of non-human primates. 2020; bioRxiv. 2020.04.08.031807 doi:10.1101/2020.04.08.031807.
  • Chandrashekar A, Liu J, Martinot AJ, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;369(6505):812–817. doi:10.1126/science.abc4776.
  • Johnston SC, Ricks KM, Jay A, et al. Development of a coronavirus disease 2019 nonhuman primate model using airborne exposure. Plos One. 2021;16(2):e0246366. doi:10.1371/journal.pone.0246366.
  • Munster VJ, Feldmann F, Williamson BN, et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature. 2020;585(7824):268–272. doi:10.1038/s41586-020-2324-7.
  • Singh DK, Singh B, Ganatra SR, et al. Responses to acute infection with SARS-CoV-2 in the lungs of rhesus macaques, baboons and marmosets. Nat Microbiol. 2021;6(1):73–86. doi:10.1038/s41564-020-00841-4.
  • Blair RV, Vaccari M, Doyle-Meyers LA, et al. Acute respiratory distress in aged, SARS-CoV-2-infected African green monkeys but not rhesus macaques. Am J Pathol. 2021;191(2):274–282. doi:10.1016/j.ajpath.2020.10.016.
  • Sia SF, Yan L-M, Chin AWH, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020;583(7818):834–838. doi:10.1038/s41586-020-2342-5.
  • Imai M, et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci. 2020:202009799. doi:10.1073/pnas.2009799117.
  • Boudewijns R, Thibaut HJ, Kaptein SJF, et al. STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters. Nat Commun. 2020;11(1):5838.
  • Rizvi ZA, Dalal R, Sadhu S, et al. Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection. eLife. 2022;11:e73522. doi:10.7554/eLife.73522.
  • Kim Y-I, Kim S-G, Kim S-M, et al. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe. 2020;27(5):704–709.e2. doi:10.1016/j.chom.2020.03.023.
  • Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–1045.e9. doi:10.1016/j.cell.2020.04.026.
  • Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020;5(10):1185–1191. doi:10.1038/s41564-020-00789-5.
  • Winkler ES, Bailey AL, Kafai NM, et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol. 2020;21(11):1327–1335. doi:10.1038/s41590-020-0778-2.
  • Yinda CK, Port JR, Bushmaker T, et al. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog. 2021;17(1):e1009195. doi:10.1371/journal.ppat.1009195.
  • Carossino M, et al. Fatal neuroinvasion and SARS-CoV-2 tropism in K18-hACE2 mice is partially independent on hACE2 expression. bioRxiv. 2021. doi:10.1101/2021.01.13.425144.
  • Qin Z, Liu F, Blair R, et al. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics. 2021;11(16):8076–8091. doi:10.7150/thno.61810.
  • Bao L, Deng W, Huang B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020;583(7818):830–833. doi:10.1038/s41586-020-2312-y.
  • Jiang R-D, Liu M-Q, Chen Y, et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell. 2020;182(1):50–58.e8. doi:10.1016/j.cell.2020.05.027.
  • Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5(1):33. doi:10.1038/s41392-020-0148-4.
  • Gu H, Chen Q, Yang G, et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science. 2020;369(6511):1603–1607. doi:10.1126/science.abc4730.
  • Sun S-H, Chen Q, Gu H-J, et al. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe. 2020;28(1):124–133.e4. doi:10.1016/j.chom.2020.05.020.
  • Hassan AO, Case JB, Winkler ES, et al. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell. 2020;182(3):744–753.e4. doi:10.1016/j.cell.2020.06.011.
  • Sun J, Zhuang Z, Zheng J, et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell. 2020;182(3):734–743.e5. doi:10.1016/j.cell.2020.06.010.
  • Gurumurthy CB, Quadros RM, Richardson GP, et al. Genetically modified mouse models to help fight COVID-19. Nat Protoc. 2020;15(12):3777–3787. doi:10.1038/s41596-020-00403-2.
  • Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K, Mak TW. An aberrant STAT pathway is central to COVID-19. Cell Death Differ. 2020;27(12):3209–3225. doi:10.1038/s41418-020-00633-7.
  • Gomes MC, Mostowy S. The case for modeling human infection in zebrafish. Trends Microbiol. 2020;28(1):10–18. doi:10.1016/j.tim.2019.08.005.
  • Kraus A, et al. A zebrafish model for COVID-19 recapitulates olfactory and cardiovascular pathophysiologies caused by SARS-CoV-2. bioRxiv. 2020; 2020.11.06.368191 doi:10.1101/2020.11.06.368191.
  • Laghi V, et al. Exploring zebrafish larvae as a COVID-19 model: probable SARS-COV-2 replication in the swim bladder. bioRxiv. 2021; 2021.04.08.439059 doi:10.1101/2021.04.08.439059.
  • Balkrishna A, Solleti SK, Verma S, Varshney A. Application of humanized zebrafish model in the suppression of SARS-CoV-2 spike protein induced pathology by tri-herbal medicine coronil via cytokine modulation. Molecules. 2020;25(21):5091. doi:10.3390/molecules25215091.
  • Oreshkova N, Molenaar RJ, Vreman S, et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance. 2020;25(23). doi:10.2807/1560-7917.ES.2020.25.23.2001005.
  • Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020;368(6494):1016–1020. doi:10.1126/science.abb7015.
  • Schlottau K, Rissmann M, Graaf A, et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe. 2020;1(5):e218–e225. doi:10.1016/S2666-5247(20)30089-6.
  • Mykytyn AZ, Lamers MM, Okba NMA, et al. Susceptibility of rabbits to SARS-CoV-2. Emerg Microbes Infect. 2021;10(1):1–7. doi:10.1080/22221751.2020.1868951.
  • Temmam S, Vongphayloth K, Baquero E, et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature. 2022;604(7905):330–336. doi:10.1038/s41586-022-04532-4.
  • Chang MC, Hild S, Grieder F. Nonhuman primate models for SARS-CoV-2 research: Consider alternatives to macaques. Lab Anim (NY). 2021;50(5):113–114. doi:10.1038/s41684-021-00755-6.
  • Shan C, Yao Y-F, Yang X-L, et al. Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in Rhesus macaques. Cell Res. 2020;30(8):670–677. doi:10.1038/s41422-020-0364-z.
  • Böszörményi KP, Stammes MA, Fagrouch ZC, et al. The post-acute phase of SARS-CoV-2 infection in two macaque species is associated with signs of ongoing virus replication and pathology in pulmonary and extrapulmonary tissues. Viruses. 2021;13(8):1673. doi:10.3390/v13081673.
  • Salguero FJ, White AD, Slack GS, et al. Comparison of rhesus and cynomolgus macaques as an infection model for COVID-19. Nat Commun. 2021;12(1):1260.
  • Jarnagin K, Alvarez O, Shresta S, Webb DR. Animal models for SARS-Cov2/Covid19 research-A commentary. Biochem Pharmacol. 2021;188:114543. doi:10.1016/j.bcp.2021.114543.
  • Attanasio R, Jayashankar L, Engleman CN, Scinicariello F. Baboon immunoglobulin constant region heavy chains: identification of four IGHG genes. Immunogenetics. 2002;54(8):556–561. doi:10.1007/s00251-002-0505-1.
  • Woolsey C, Borisevich V, Prasad AN, et al. Establishment of an African green monkey model for COVID-19 and protection against re-infection. Nat Immunol. 2021;22(1):86–98. doi:10.1038/s41590-020-00835-8.
  • Hartman AL, Nambulli S, McMillen CM, et al. SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathog. 2020;16(9):e1008903. doi:10.1371/journal.ppat.1008903.
  • Roberts A, Vogel L, Guarner J, et al. Severe acute respiratory syndrome coronavirus Infection of golden Syrian hamsters. J Virol. 2005;79(1):503–511. doi:10.1128/JVI.79.1.503-511.2005.
  • Chan JF-W, Yuan S, Zhang AJ, et al. Surgical mask partition reduces the risk of noncontact transmission in a golden Syrian hamster model for coronavirus disease 2019 (COVID-19. Clin Infect Dis. 2020;71(16):2139–2149. doi:10.1093/cid/ciaa644.
  • Chan JF-W, et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: Implications for disease pathogenesis and transmissibility. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa325.
  • Bertzbach LD, Vladimirova D, Dietert K, et al. SARS-CoV-2 infection of Chinese hamsters (Cricetulus griseus) reproduces COVID-19 pneumonia in a well-established small animal model. Transbound Emerg Dis. 2021;68(3):1075–1079. doi:10.1111/tbed.13837.
  • Trimpert J, Vladimirova D, Dietert K, et al. The Roborovski Dwarf hamster is a highly susceptible model for a rapid and fatal course of SARS-CoV-2 infection. Cell Rep. 2020;33(10):108488. doi:10.1016/j.celrep.2020.108488.
  • Braxton AM, Creisher PS, Ruiz-Bedoya CA, et al. Hamsters as a model of severe acute respiratory syndrome coronavirus-2. Comp Med. 2021;71(5):398–410. doi:10.30802/AALAS-CM-21-000036.
  • Richard M, Kok A, de Meulder D, et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun. 2020;11(1):3496.
  • Kreft IC, Winiarczyk RRA, Tanis FJ, Dutch Covid-19 and Thrombosis Coalition (DCTC), et al. Absence of COVID-19-associated changes in plasma coagulation proteins and pulmonary thrombosis in the ferret model. Thromb Res. 2022;210:6–11. doi:10.1016/j.thromres.2021.12.015.
  • Li L, Honda-Okubo Y, Huang Y, et al. Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine. 2021;39(40):5940–5953. doi:10.1016/j.vaccine.2021.07.087.
  • Subbarao K, Roberts A. Is there an ideal animal model for SARS? Trends Microbiol. 2006;14(7):299–303. doi:10.1016/j.tim.2006.05.007.
  • Callaway E. The race for coronavirus vaccines: a graphical guide. Nature. 2020;580(7805):576–577. doi:10.1038/d41586-020-01221-y.
  • McCray PB, Pewe L, Wohlford-Lenane C, et al. Lethal Infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007;81(2):813–821. doi:10.1128/JVI.02012-06.
  • Fumagalli V, Ravà M, Marotta D, et al. Administration of aerosolized SARS-CoV-2 to K18-hACE2 mice uncouples respiratory infection from fatal neuroinvasion. Sci Immunol. 2022;7(67). doi:10.1126/sciimmunol.abl9929.
  • Dong W, et al. The K18-Human ACE2 transgenic mouse model recapitulates non-severe and severe COVID-19 in response to an infectious dose of the SARS-CoV-2 Virus. J Virol. 2022;96.
  • di Filippo L, Doga M, Frara S, Giustina A. Hypocalcemia in COVID-19: Prevalence, clinical significance and therapeutic implications. Rev Endocr Metab Disord. 2021. doi:10.1007/s11154-021-09655-z.
  • Yang X-H, et al. Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med. 2007;57:450–459.
  • Yoshikawa N, Yoshikawa T, Hill T, et al. Differential virological and immunological outcome of severe acute respiratory syndrome coronavirus infection in susceptible and resistant transgenic mice expressing human angiotensin-converting enzyme 2. J Virol. 2009;83(11):5451–5465. doi:10.1128/JVI.02272-08.
  • Menachery VD, Yount BL, Sims AC, et al. SARS-like WIV1-CoV poised for human emergence. Proc Natl Acad Sci U S A. 2016;113(11):3048–3053. doi:10.1073/pnas.1517719113.
  • Tseng C-TK, Huang C, Newman P, et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-converting enzyme 2 virus receptor. J Virol. 2007;81(3):1162–1173. doi:10.1128/JVI.01702-06.
  • Casel MAB, Rollon RG, Choi YK. Experimental animal models of coronavirus infections: Strengths and limitations. Immune Netw. 2021;21(2):e12. doi:10.4110/in.2021.21.e12.
  • Sepahi A, Kraus A, Casadei E, et al. Olfactory sensory neurons mediate ultrarapid antiviral immune responses in a TrkA-dependent manner. Proc Natl Acad Sci U S A. 2019;116(25):12428–12436. doi:10.1073/pnas.1900083116.
  • Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503. doi:10.1038/nature12111.
  • Balkrishna A, Verma S, Solleti SK, Khandrika L, Varshney A. Calcio-herbal medicine Divya-Swasari-Vati ameliorates SARS-CoV-2 spike protein-induced pathological features and inflammation in humanized zebrafish model by moderating IL-6 and TNF-α cytokines. J Inflamm Res. 2020;13:1219–1243. doi:10.2147/JIR.S286199.
  • Saravanan UB, Namachivayam M, Jeewon R, Huang J-D, Durairajan SSK. Animal models for SARS-CoV-2 and SARS-CoV-1 pathogenesis, transmission and therapeutic evaluation. World J Virol. 2022;11(1):40–56. doi:10.5501/wjv.v11.i1.40.
  • Pillet S, Arunachalam PS, Andreani G, et al. Safety, immunogenicity, and protection provided by unadjuvanted and adjuvanted formulations of a recombinant plant-derived virus-like particle vaccine candidate for COVID-19 in nonhuman primates. Cell Mol Immunol. 2022;19(2):222–233. doi:10.1038/s41423-021-00809-2.
  • Tamir H, Melamed S, Erez N, et al. Induction of innate immune response by TLR3 agonist protects mice against SARS-CoV-2 infection. Viruses. 2022;14(2):189. doi:10.3390/v14020189.
  • Esparza TJ, Chen Y, Martin NP, et al. Nebulized delivery of a broadly neutralizing SARS-CoV-2 RBD-specific nanobody prevents clinical, virological, and pathological disease in a Syrian hamster model of COVID-19. mAbs. 2022;14(1):2047144. doi:10.1080/19420862.2022.2047144.
  • Deng Y-Q, Zhang N-N, Zhang Y-F, et al. Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters. Cell Res. 2022;32(4):375–382. doi:10.1038/s41422-022-00630-0.
  • Horiuchi S, Oishi K, Carrau L, et al. Immune memory from SARS-CoV-2 infection in hamsters provides variant-independent protection but still allows virus transmission. Sci Immunol. 2021;6(66):eabm3131. doi:10.1126/sciimmunol.abm3131.
  • Li Y-R, Dunn ZS, Garcia G, et al. Development of off-the-shelf hematopoietic stem cell-engineered invariant natural killer T cells for COVID-19 therapeutic intervention. Stem Cell Res Ther. 2022;13(1):112.
  • Muñoz-Fontela C, Dowling WE, Funnell SGP, et al. Animal models for COVID-19. Nature. 2020;586(7830):509–515. doi:10.1038/s41586-020-2787-6.
  • Gawish R, Starkl P, Pimenov L, et al. ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFNγ-driven immunopathology. eLife. 2022;11. doi:10.7554/eLife.74623.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.