285
Views
1
CrossRef citations to date
0
Altmetric
Review

The role of TRIM59 in immunity and immune-related diseases

ORCID Icon, , , & ORCID Icon
Pages 33-40 | Received 24 Apr 2022, Accepted 09 Jul 2022, Published online: 17 Aug 2022

References

  • Sompayrac L. How the immune system works[M]. 2019.
  • Versteeg GA, Benke S, García-Sastre A, Rajsbaum R. InTRIMsic immunity: positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine Growth Factor Rev. 2014;25(5):563–576. doi:10.1016/j.cytogfr.2014.08.001.
  • Kentsis A, Borden KL. Construction of macromolecular assemblages in eukaryotic processes and their role in human disease: linking RINGs together. Curr Protein Pept Sci. 2000;1(1):49–73. doi:10.2174/1389203003381478.
  • Zhou Z, Ji Z, Wang Y, et al. TRIM59 is up-regulated in gastric tumors, promoting ubiquitination and degradation of p53. Gastroenterology. 2014;147(5):1043–1054. doi:10.1053/j.gastro.2014.07.021.
  • Kondo T, Watanabe M, Hatakeyama S. TRIM59 interacts with ECSIT and negatively regulates NF-kappaB and IRF-3/7-mediated signal pathways. Biochem Biophys Res Commun. 2012;422(3):501–507. doi:10.1016/j.bbrc.2012.05.028.
  • Jin Z, Zhu Z, Liu S, et al. TRIM59 protects mice from sepsis by regulating inflammation and phagocytosis in macrophages. Front Immunol. 2020;11:263. doi:10.3389/fimmu.2020.00263.
  • Teng Y, Ni G, Zhang W, et al. TRIM59 attenuates IL-1beta-driven cartilage matrix degradation in osteoarthritis via direct suppression of NF-kappaB and JAK2/STAT3 signaling pathway. Biochem Biophys Res Commun. 2020;529(1):28–34. doi:10.1016/j.bbrc.2020.05.130.
  • Ruying C, X X, Ming DL. Molecular cloning, mapping and characterization of a novel mouse RING finger gene, Mrf1. Gene. 2002;291(1-2):241–249. doi:10.1016/S0378-1119(02)00603-0.
  • Tan P, Ye Y, He L, et al. TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10. PLoS Biol. 2018;16(11):e3000051. doi:10.1371/journal.pbio.3000051.
  • Esposito D, Koliopoulos MG, Rittinger K. Structural determinants of TRIM protein function. Biochem Soc Trans. 2017;45(1):183–191. doi:10.1042/BST20160325.
  • Reymond A, Meroni G, Fantozzi A, et al. The tripartite motif family identifies cell compartments. Embo J. 2001;20(9):2140–2151. doi:10.1093/emboj/20.9.2140.
  • Zhao X, Liu Q, Du B, et al. A novel accessory molecule Trim59 involved in cytotoxicity of BCG-activated macrophages. Mol Cells. 2012;34(3):263–270. doi:10.1007/s10059-012-0089-z.
  • Khatamianfar V, Valiyeva F, Rennie PS, et al. TRIM59, a novel multiple cancer biomarker for immunohistochemical detection of tumorigenesis. BMJ Open. 2012;2(5):e001410. doi:10.1136/bmjopen-2012-001410.
  • Jin Z, Tian Y, Yan D, Li D, Zhu X. BCG Increased Membrane Expression of TRIM59 Through the TLR2/TLR4/IRF5 Pathway in RAW264.7 Macrophages. Protein Pept Lett. 2017;24(8):765–770. doi:10.2174/0929866524666170818155524.
  • Jiang MX, Hong X, Liao BB, et al. Expression profiling of TRIM protein family in THP1-derived macrophages following TLR stimulation. Sci Rep. 2017;7:42781. doi:10.1038/srep42781.
  • An Y, Ni Y, Xu Z, et al. TRIM59 expression is regulated by Sp1 and Nrf1 in LPS-activated macrophages through JNK signaling pathway. Cell Signal. 2020;67:109522. doi:10.1016/j.cellsig.2019.109522.
  • Sang Y, Li Y, Song L, et al. TRIM59 Promotes Gliomagenesis by Inhibiting TC45 Dephosphorylation of STAT3. Cancer Res. 2018;78(7):1792–1804. doi:10.1158/0008-5472.CAN-17-2774.
  • Su X, Zhang Q, Yue J, Wang Y, Zhang Y, Yang R. TRIM59 suppresses NO production by promoting the binding of PIAS1 and STAT1 in macrophages. Int Immunopharmacol. 2020;89(Pt A):107030. doi:10.1016/j.intimp.2020.107030.
  • Su X, Wu C, Ye X, et al. Embryonic lethality in mice lacking Trim59 due to impaired gastrulation development. Cell Death Dis. 2018;9(3):302. doi:10.1038/s41419-018-0370-y.
  • Velloso FJ, Trombetta-Lima M, Anschau V, Sogayar MC, Correa RG. NOD-like receptors: major players (and targets) in the interface between innate immunity and cancer. Biosci Rep. 2019;39(4):263.
  • Jing H, Ke W, Tao R, et al. TRIM59 inhibits porcine reproductive and respiratory syndrome virus (PRRSV)-2 replication in vitro. Res Vet Sci. 2019;127:105–112. doi:10.1016/j.rvsc.2019.10.004.
  • Gong LP, Chen JN, Dong M, et al. Epstein-Barr virus-derived circular RNA LMP2A induces stemness in EBV-associated gastric cancer. EMBO Rep. 2020;21(10):e49689. doi:10.15252/embr.201949689.
  • Yuan Tian YG, Zhu P, Zhang D, et al. TRIM59 loss in M2 macrophages promotes melanoma migration and invasion by upregulating MMP 9 and Madcam1. Aging (Albany NY). 2019;11(19):8614–8623. doi:10.18632/aging.102351.
  • Tian Y, Jin Z, Zhu P, et al. TRIM59: a membrane protein expressed on Bacillus Calmette-Guerin-activated macrophages that induces apoptosis of fibrosarcoma cells by direct contact. Exp Cell Res. 2019;384(1):111590. doi:10.1016/j.yexcr.2019.111590.
  • Liang M, Chen X, Wang L, et al. Cancer-derived exosomal TRIM59 regulates macrophage NLRP3 inflammasome activation to promote lung cancer progression. J Exp Clin Cancer Res. 2020;39(1):176. doi:10.1186/s13046-020-01688-7.
  • Jones J, Allen S, Davies J, et al. Randomised feasibility study of prehospital recognition and antibiotics for emergency patients with sepsis (PhRASe). Sci Rep. 2021;11(1):18586. doi:10.1038/s41598-021-97979-w.
  • Woźniak A, Cybulski P, Denes L, Balka G, Stadejek T. Detection of porcine respirovirus 1 (PRV1) in Poland: incidence of co-infections with influenza a virus (IAV) and porcine reproductive and respiratory syndrome virus (PRRSV) in herds with a respiratory disease. Viruses. 2022;14(1):148. doi:10.3390/v14010148.
  • Wang D, Chen J, Yu C, et al. Porcine reproductive and respiratory syndrome virus nsp11 antagonizes Type I interferon signaling by targeting IRF9. J Virol. 2019;93(15):e00623-19. doi:10.1128/JVI.00623-19.
  • Sun Y, Li D, Giri S, Prasanth SG, Yoo D. Differential host cell gene expression and regulation of cell cycle progression by nonstructural protein 11 of porcine reproductive and respiratory syndrome virus. Biomed Res Int. 2014;2014:430508. doi:10.1155/2014/430508.
  • Beura LK, Sarkar SN, Kwon B, et al. Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation. J Virol. 2010;84(3):1574–1584. doi:10.1128/JVI.01326-09.
  • Zheng A, Shi Y, Shen Z, et al. Insight into the evolution of nidovirus endoribonuclease based on the finding that nsp15 from porcine Deltacoronavirus functions as a dimer. J Biol Chem. 2018;293(31):12054–12067. doi:10.1074/jbc.RA118.003756.
  • Shi X, Wang L, Li X, et al. Endoribonuclease activities of porcine reproductive and respiratory syndrome virus nsp11 was essential for nsp11 to inhibit IFN-β induction. Mol Immunol. 2011;48(12-13):1568–1572. doi:10.1016/j.molimm.2011.03.004.
  • Hu J, Li H, Luo X, Li Y, Bode A, Cao Y. The role of oxidative stress in EBV lytic reactivation, radioresistance and the potential preventive and therapeutic implications. Int J Cancer. 2017;141(9):1722–1729. doi:10.1002/ijc.30816.
  • Farrell PJ. Epstein-Barr virus and cancer. Annu Rev Pathol. 2019;14:29–53. doi:10.1146/annurev-pathmechdis-012418-013023.
  • Hao L, Du B, Xi X. TRIM59 is a novel potential prognostic biomarker in patients with non-small cell lung cancer: a research based on bioinformatics analysis. Oncol Lett. 2017;14(2):2153–2164. doi:10.3892/ol.2017.6467.
  • Jin Z, Liu L, Yu Y, et al. TRIM59: a potential diagnostic and prognostic biomarker in human tumors. PLoS One. 2021;16(9):e0257445. doi:10.1371/journal.pone.0257445.
  • Ying H, Ji L, Xu Z, et al. TRIM59 promotes tumor growth in hepatocellular carcinoma and regulates the cell cycle by degradation of protein phosphatase 1B. Cancer Lett. 2020;473:13–24. doi:10.1016/j.canlet.2019.12.030.
  • Li R, Weng L, Liu B, et al. TRIM59 predicts poor prognosis and promotes pancreatic cancer progression via the PI3K/AKT/mTOR-glycolysis signaling axis. J Cell Biochem. 2020;121(2):1986–1997. doi:10.1002/jcb.29433.
  • Wang S, Yang S, Chen Y, et al. Ginsenoside Rb2 alleviated atherosclerosis by inhibiting M1 macrophages polarization induced by MicroRNA-216a. Front Pharmacol. 2021;12:764130. doi:10.3389/fphar.2021.764130.
  • Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl). 2017;95(11):1153–1165. doi:10.1007/s00109-017-1575-8.
  • Li W, Sultana N, Yuan L, Forssell C, Yuan X-M. CD74 in apoptotic macrophages is associated with inflammation, plaque progression and clinical manifestations in human atherosclerotic lesions. Metabolites. 2022;12(1):54. doi:10.3390/metabo12010054.
  • Farahi L, Sinha SK, Lusis AJ. Roles of macrophages in atherogenesis. Front Pharmacol. 2021;12:785220. doi:10.3389/fphar.2021.785220.
  • Amano K, Hata K, Muramatsu S, et al. Arid5a cooperates with Sox9 to stimulate chondrocyte-specific transcription. Mol Biol Cell. 2011;22(8):1300–1311. doi:10.1091/mbc.E10-07-0566.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.