289
Views
1
CrossRef citations to date
0
Altmetric
Review

Exploring the role of neutrophils in infectious and noninfectious pulmonary disorders

& ORCID Icon
Pages 41-61 | Received 25 Mar 2022, Accepted 31 May 2023, Published online: 24 Jun 2023

References

  • Chronic obstructive pulmonary disease (COPD) [Internet]. https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd). Accessed July 31, 2021
  • Asthma [Internet]. https://www.who.int/news-room/fact-sheets/detail/asthma. Accessed July 31, 2021.
  • The top 10 causes of death [Internet]. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed July 31, 2021.
  • Estimating the burden of respiratory diseases. 2008. https://www.ncbi.nlm.nih.gov/books/NBK310631/. Accessed July 31, 2021.
  • Xu XF, Dai HP, Li YM, Xiao F, Wang C. Mass spectrometry-based proteomics in acute respiratory distress syndrome: A powerful modality for pulmonary precision medicine. Chin Med J (Engl) [Internet]. 2016;129(19):2357–2364. doi:10.4103/0366-6999.190669.
  • Masieri S, Cavaliere C, Begvarfaj E, Rosati D, Minni A. Effects of omalizumab therapy on allergic rhinitis: a pilot study Eur Rev Med Pharmacol Sci. 2016;20(24):5249–5255.
  • Mangi A, Mangi AM, Bansal V, Li G, Pieper MS, Gajic O. Pre-hospital use of inhaled corticosteroids and inhaled beta agonists and incidence of ARDS: a population-based study. Acta Med Acad. 2015;44(2):109–116. doi:10.5644/ama2006-124.138.
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Innate Immunity. 2002. https://www.ncbi.nlm.nih.gov/books/NBK26846/. Accessed August 1, 2021.
  • How does the immune system work? 2020. https://www.ncbi.nlm.nih.gov/books/NBK279364/. Apr 23, Accessed August 1, 2021.
  • Perri V, Gianchecchi E, Scarpa R, et al. Altered B cell homeostasis and Toll-like receptor 9-driven response in patients affected by autoimmune polyglandular syndrome Type 1: Altered B cell phenotype and dysregulation of the B cell function in APECED patients. Immunobiology. 2017;222(2):372–383. doi:10.1016/j.imbio.2016.09.001.
  • Cardamone C, Parente R, Feo G. d, Triggiani M. Mast cells as effector cells of innate immunity and regulators of adaptive immunity. Immunol Lett. 2016;178:10–14. doi:10.1016/j.imlet.2016.07.003.
  • The innate and adaptive immune systems. 2020. https://www.ncbi.nlm.nih.gov/books/NBK279396/. Jul 30. Accessed August 1, 2021.
  • Gasteiger G, D'Osualdo A, Schubert DA, Weber A, Bruscia EM, Hartl D. Cellular innate immunity: an old game with new players. J Innate Immun. 2017;9(2):111–125. doi:10.1159/000453397.
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. The adaptive immune system. 2002. https://www.ncbi.nlm.nih.gov/books/NBK21070/. Accessed August 1, 2021.
  • Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9(FEB):113. doi:10.3389/fphys.2018.00113.
  • Teng TS, Ji AL, Ji XY, Li YZ. Neutrophils and immunity: From bactericidal action to being conquered. J Immunol Res. 2017;2017:1–14. doi:10.1155/2017/9671604.
  • Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223.
  • Charles A Janeway J, Travers P, Walport M, Shlomchik MJ. Principles of innate and adaptive immunity. 2001. https://www.ncbi.nlm.nih.gov/books/NBK27090/. Accessed August 1, 2021.
  • Li Y, Wang W, Yang F, Xu Y, Feng C, Zhao Y. The regulatory roles of neutrophils in adaptive immunity. Cell Commun Signal. 2019;17(1):1–11.
  • Leliefeld PHC, Koenderman L, Pillay J. How neutrophils shape adaptive immune responses. Front Immunol. 2015;6(SEP):471. doi:10.3389/fimmu.2015.00471.
  • Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol. 2020;108(1):377–396.
  • Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev. 2010;62(4):726–759. doi:10.1124/pr.110.002733.
  • Brostjan C, Oehler R. The role of neutrophil death in chronic inflammation and cancer. Cell Death Discovery. 2020;6(1):1–8. https://www.nature.com/articles/s41420-020-0255-6
  • Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest. 2000;80(5):617–653. doi:10.1038/labinvest.3780067.
  • Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31(8):318–324. doi:10.1016/j.it.2010.05.006.
  • Jasper AE, McIver WJ, Sapey E, Walton GM. Understanding the role of neutrophils in chronic inflammatory airway disease. F1000Res. 2019;8:557. doi:10.12688/f1000research.18411.1.
  • Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C. Neutrophils: many ways to die. Front Immunol. 2021;12:509. doi:10.3389/fimmu.2021.631821.
  • Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8 (FEB):81. doi:10.3389/fimmu.2017.00081.
  • Kim TH, Lee HK. Innate immune recognition of respiratory syncytial virus infection. BMB Rep. 2014;47(4):184–191. doi:10.5483/bmbrep.2014.47.4.050.
  • Vareille M, Kieninger E, Edwards MR, Regamey N. The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev. 2011;24(1):210–229. doi:10.1128/CMR.00014-10.
  • Parker D, Prince A. Innate immunity in the respiratory epithelium. Am J Respir Cell Mol Biol. 2011;45(2):189–201. doi:10.1165/rcmb.2011-0011RT.
  • Tang BM, Shojaei M, Teoh S, et al. Neutrophils-related host factors associated with severe disease and fatality in patients with influenza infection. Nat Commun. 2019;10(1):1–13. doi:10.1038/s41467-019-11249-y.
  • Zhou Z, Ren L, Zhang L, et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe. 2020;27(6):883–890.e2. doi:10.1016/j.chom.2020.04.017.
  • Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect. 2020;9(1):761–770. doi:10.1080/22221751.2020.1747363.
  • Noah TL, Becker S. Chemokines in nasal secretions of normal adults experimentally infected with respiratory syncytial virus. Clin Immunol. 2000;97(1):43–49. doi:10.1006/clim.2000.4914.
  • Stoppelenburg AJ, Salimi V, Hennus M, et al. Local IL-17A potentiates early neutrophil recruitment to the respiratory tract during severe RSV infection. PLoS One. 2013;8(10):e78461. doi:10.1371/journal.pone.0078461.
  • Nuriev R, Johansson C. Chemokine regulation of inflammation during respiratory syncytial virus infection. F1000Res. 2019;8.
  • Bradley LM, Douglass MF, Chatterjee D, Akira S, Baaten BJG. Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling. PLoS Pathog. 2012;8(4):e1002641. doi:10.1371/journal.ppat.1002641.
  • Kirsebom FCM, Kausar F, Nuriev R, Makris S, Johansson C. Neutrophil recruitment and activation are differentially dependent on MyD88/TRIF and MAVS signaling during RSV infection. Mucosal Immunol. 2019;12(5):1244–1255. doi:10.1038/s41385-019-0190-0.
  • Kato T, Kitagawa S. Regulation of neutrophil functions by proinflammatory cytokines. Int J Hematol. 2006;84(3):205–209.
  • Graça-Souza AV, Arruda MAB, De Freitas MS, Barja-Fidalgo C, Oliveira PL. Neutrophil activation by heme: implications for inflammatory processes. Blood. 2002;99(11):4160–4165. doi:10.1182/blood.v99.11.4160.
  • Costantini C, Micheletti A, Calzetti F, Perbellini O, Pizzolo G, Cassatella MA. Neutrophil activation and survival are modulated by interaction with NK cells. Int Immunol. 2010;22(10):827–838.
  • Fortunati E, Kazemier KM, Grutters JC, Koenderman L, van den Bosch vJMM. Human neutrophils switch to an activated phenotype after homing to the lung irrespective of inflammatory disease. Clin Exp Immunol [Internet]. 2009;155(3):559–566.
  • Sorensen GL. Surfactant protein D in respiratory and non-respiratory diseases. Front Med (Lausanne)). 2018;5:18. doi:10.3389/fmed.2018.00018.
  • Bataki EL, Evans GS, Everard ML. Respiratory syncytial virus and neutrophil activation. Clin Exp Immunol. 2005;140(3):470–477.
  • Cortjens B, Lutter R, Boon L, Bem RA, van Woensel JBM. Pneumovirus-induced lung disease in mice is independent of neutrophil-driven inflammation. PLoS One. 2016;11(12):e0168779.
  • Branzk N, Lubojemska A, Hardison SE, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014;15(11):1017–1025.
  • Warnatsch A, Tsourouktsoglou TD, Branzk N, et al. Reactive oxygen species localization programs inflammation to clear microbes of different size. Immunity. 2017;46(3):421–432.
  • Pham CTN. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol. 2006;6(7):541–550.
  • Cowland JB, Borregaard N. Granulopoiesis and granules of human neutrophils. Immunol Rev. 2016;273(1):11–28.
  • Dabo AJ, Cummins N, Eden E, Geraghty P. Matrix metalloproteinase 9 exerts antiviral activity against respiratory syncytial virus. PLoS One.2015;10(8):e0135970.
  • Abu-Harb M, Bell F, Finn A, et al. IL-8 and neutrophil elastase levels in the respiratory tract of infants with RSV bronchiolitis. Eur Respir J. 1999;14(1):139–143.
  • Currie SM, Findlay EG, McHugh BJ, et al. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One. 2013;8(8):e73659.
  • Currie SM, Findlay EG, McFarlane AJ, et al. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J Immunol. 2016;196(6):2699–2710.
  • Tripathi S, Tecle T, Verma A, Crouch E, White M, Hartshorn KL. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J Gen Virol. 2013;94(Pt 1):40–49. https://pubmed.ncbi.nlm.nih.gov/23052388/
  • Anjani G, Vignesh P, Joshi V, et al. Recent advances in chronic granulomatous disease. Genes Dis. 2019;7(1):84–92.
  • Zhu L, Liu L, Zhang Y, et al. High level of neutrophil extracellular traps correlates with poor prognosis of severe influenza A infection. J Infect Dis. 2018;217(3):428–437. doi:10.1093/infdis/jix475.
  • Cortjens B, De Boer OJ, De Jong R, et al. Neutrophil extracellular traps cause airway obstruction during respiratory syncytial virus disease. J Pathol. 2016;238(3):401–411. doi:10.1002/path.4660.
  • Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol. 2020;92(4):441–447. doi:10.1002/jmv.25689.
  • He D, Gao D, Li Y, et al. An Updated Comparison of COVID-19 and Influenza. SSRN Electronic J. 2020; Apr 11. https://papers.ssrn.com/abstract=3573503. Accessed September 19, 2021.
  • Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA [Internet]. 2020;323(11):1061–1069. doi:10.1001/jama.2020.1585.
  • Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell [Internet]. 2020;181(5):1036–1045.e9. doi:10.1016/j.cell.2020.04.026.
  • Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–432. doi:10.1002/jmv.25685.
  • S P AAD. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol. 2005;5(12):917–927.
  • Q L, C H, Z Q. Clinical characteristics of COVID-19 patients with complication of cardiac arrhythmia. J Infect. 2020;81(3):e6–8.
  • Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci [Internet]. 202;57(6):389–399.
  • Varim C, Yaylaci S, Demirci T, et al. Neutrophil count to albumin ratio as a new predictor of mortality in patients with COVID-19 ınfection. Rev Assoc Med Bras. 1992;66Suppl 2(Suppl 2):77–81.
  • Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020;143:110102. doi:10.1016/j.mehy.2020.110102.
  • Laforge M, Elbim C, Frère C, et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020;20(9):515–516. doi:10.1038/s41577-020-0407-1.
  • Thierry AR. Anti-protease treatments targeting plasmin(ogen) and neutrophil elastase may be beneficial in fighting COVID-19. Physiol Rev. 2020;100(4):1597–1598. doi:10.1152/physrev.00019.2020.
  • Mohamed MMA, El-Shimy IA, Hadi MA. Neutrophil elastase inhibitors: a potential prophylactic treatment option for SARS-CoV-2-induced respiratory complications? Crit Care. 2020;24(1):1–2. doi:10.1186/s13054-020-03023-0.
  • Zuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11).
  • Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19 pathology. J Experiment Med. 2020;217(12). doi:10.1084/jem.20201129.
  • Middleton EA, He XY, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood [Internet]. 2020;136(10):1169–1179. doi:10.1182/blood.2020007008.
  • Leppkes M, Knopf J, Naschberger E, et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine [Internet]. 2020;58:102925. doi:10.1016/j.ebiom.2020.102925.
  • Table: Systemic Corticosteroids Clinical Data | COVID-19 Treatment Guidelines [Internet]. https://www.covid19treatmentguidelines.nih.gov/tables/systemic-corticosteroids-data/. Accessed March 14, 2023.
  • Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med [Internet]. 2021;384(8):693–704.
  • Narasaraju T, Tang BM, Herrmann M, Muller S, Chow VTK, Radic M. Neutrophilia and NETopathy as key pathologic drivers of progressive lung impairment in patients with COVID-19. Front Pharmacol. 2020;11:870. doi:10.3389/fphar.2020.00870.
  • Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–273, Table of Contents. doi:10.1128/CMR.00046-08.
  • Standish AJ, Weiser JN. Human neutrophils kill Streptococcus pneumoniae via serine proteases. J Immunol. 2009;183(4):2602–2609.
  • Hahn I, Klaus A, Janze AK, et al. Cathepsin G and neutrophil elastase play critical and nonredundant roles in lung-protective immunity against Streptococcus pneumoniae in mice. Infect Immun. 2011;79(12):4893–4901. doi:10.1128/IAI.05593-11.
  • Mikacenic C, Moore R, Dmyterko V, et al. Neutrophil extracellular traps (NETs) are increased in the alveolar spaces of patients with ventilator-associated pneumonia. Crit Care. 2018;22(1):1–8. doi:10.1186/s13054-018-2290-8.
  • Lefrançais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight. 2018;3(3). doi:10.1172/jci.insight.98178.
  • Domon H, Terao Y. The role of neutrophils and neutrophil elastase in pneumococcal pneumonia. Front Cell Infect Microbiol. 2021;11:615959. doi:10.3389/fcimb.2021.615959.
  • Scapini P, Cassatella MA. Social networking of human neutrophils within the immune system. Blood. 2014;124(5):710–719.
  • Kalyan S, Kabelitz D. When neutrophils meet T cells: Beginnings of a tumultuous relationship with underappreciated potential. Eur J Immunol. 2014;44(3):627–633. doi:10.1002/eji.201344195.
  • Global Tuberculosis Report 2020. 2020. http://apps.who.int/bookorders. Accessed August 14, 2021.
  • van Crevel R, Ottenhoff THM, van der Meer JWM. Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev. 2002;15(2):294–309. doi:10.1128/CMR.15.2.294-309.2002.
  • Ravimohan S, Kornfeld H, Weissman D, Bisson GP. Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev. 2018;27(147).
  • Eum SY, Kong JH, Hong MS, et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest. 2010;137(1):122–128. doi:10.1378/chest.09-0903.
  • Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. 2013;17(3):638–650. doi:10.1016/j.intimp.2013.06.034.
  • Panteleev A v, Nikitina IY, Burmistrova IA, et al. Severe tuberculosis in humans correlates best with neutrophil abundance and lymphocyte deficiency and does not correlate with antigen-specific CD4 T-cell response. Front Immunol. 2017;8 (AUG):963. doi:10.3389/fimmu.2017.00963.
  • Martineau AR, Newton SM, Wilkinson KA, et al. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest. 2007;117(7):1988–1994. doi:10.1172/JCI31097.
  • Kaplan MJ, Radic M. Neutrophil extracellular traps (NETs): double-edged swords of innate immunity. J Immunol. 2012;189(6):2689–2695. doi:10.4049/jimmunol.1201719.
  • Rigby KM, DeLeo FR. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol. 2012;34(2):237–259.
  • Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol. 2017;14(12):963–975. doi:10.1038/cmi.2017.88.
  • Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med. 2013;210(7):1283–1299. doi:10.1084/jem.20122220.
  • Chandra P, Grigsby SJ, Philips JA. Immune evasion and provocation by Mycobacterium tuberculosis. Nat Rev Microbiol. 2022;20(12):750–766. doi:10.1038/s41579-022-00763-4.
  • Roos D, van Bruggen R, Meischl C. Oxidative killing of microbes by neutrophils. Microbes Infect. 2003;5(14):1307–1315. doi:10.1016/j.micinf.2003.09.009.
  • Deffert C, Cachat J, Krause KH. Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infections. Cell Microbiol. 2014;16(8):1168–1178.
  • Dupré-Crochet S, Erard M, Nüβe O. ROS production in phagocytes: why, when, and where? J Leukoc Biol. 2013;94(4):657–670.
  • Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013;13(5):349–361. doi:10.1038/nri3423.
  • Naik E, Dixit VM. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med. 2011;208(3):417–420. doi:10.1084/jem.20110367.
  • Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule protein processing and regulated secretion in neutrophils. Front Immunol. 2014;5 (SEP):448. doi:10.3389/fimmu.2014.00448.
  • Borelli V, Banfi E, Perrotta MG, Zabucchi G. Myeloperoxidase exerts microbicidal activity against Mycobacterium tuberculosis. Infect Immun. 1999;67(8):4149–4152. doi:10.1128/IAI.67.8.4149-4152.1999.
  • N’Diaye E-N, Darzacq X, Astarie-Dequeker C, Daffé M, Calafat J, Maridonneau-Parini I. Fusion of azurophil granules with phagosomes and activation of the tyrosine kinase hck are specifically inhibited during phagocytosis of mycobacteria by human neutrophils. J Immunol. 1998;161(9):4983–4991. doi:10.4049/jimmunol.161.9.4983.
  • Tan BH, Meinken C, Bastian M, et al. Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J Immunol. 2006;177(3):1864–1871. Aug 1 [cited 2021 Aug 14]Available from: https://www.jimmunol.org/content/177/3/1864 doi:10.4049/jimmunol.177.3.1864.
  • Jena P, Mohanty S, Mohanty T, et al. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages. PLoS One [One]. 2012;7(12):e50345. doi:10.1371/journal.pone.0050345.
  • Martin A, Godino IT, Aguilar-Ayala DA, Mathys V, Lounis N, Villalobos HR. In vitro activity of bedaquiline against slow-growing nontuberculous mycobacteria. J Med Microbiol. 2019;68(8):1137–1139. doi:10.1099/jmm.0.001025.
  • Sharma S, Verma I, Khuller GK. Biochemical interaction of human neutrophil peptide-1 with Mycobacterium tuberculosis H37Ra. Arch Microbiol. 1999;171(5):338–342. doi:10.1007/s002030050719.
  • Steinwede K, Maus R, Bohling J, et al. Cathepsin G and neutrophil elastase contribute to lung-protective immunity against mycobacterial infections in mice. J Immunol. 2012;188(9):4476–4487. doi:10.4049/jimmunol.1103346.
  • Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541. doi:10.1038/s41418-017-0012-4.
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science (1979). 2004;303(5663):1532–1535.
  • Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–241. doi:10.1083/jcb.200606027.
  • Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol. 2007;5(8):577–582. doi:10.1038/nrmicro1710.
  • Ramos-Kichik V, Mondragón-Flores R, Mondragón-Castelán M, et al. Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis (Edinb)). 2009;89(1):29–37. doi:10.1016/j.tube.2008.09.009.
  • Schechter MC, Buac K, Adekambi T, et al. Neutrophil extracellular trap (NET) levels in human plasma are associated with active TB. PLoS One [One]. 2017;12(8):e0182587. doi:10.1371/journal.pone.0182587.
  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–1167. doi:10.1089/ars.2012.5149.
  • Quint JK, Wedzicha JA. Current perspectives: the neutrophil in chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology. 2007;119(5):1065–71.
  • Sin DD, Anthonisen NR, Soriano JB, Agusti AG. Mortality in COPD: role of comorbidities. Eur Respir J. 2006;28(6):1245–1257.
  • Johns DP, Walters JAE, Walters EH. Diagnosis and early detection of COPD using spirometry. J Thorac Dis. 2014;6(11):1557–1569. doi:10.3978/j.issn.2072-1439.2014.08.18.
  • Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med. 1996;153(2):530–534. doi:10.1164/ajrccm.153.2.8564092.
  • Meijer M, Rijkers GT, Overveld F v. Neutrophils and emerging targets for treatment in chronic obstructive pulmonary disease. Expert Rev Clin Immunol. 2013;9(11):1055–1068. doi:10.1586/1744666X2013851347.
  • Farah R, Ibrahim R, Nassar M, Najib D, Zivony Y, Eshel E. The neutrophil/lymphocyte ratio is a better addition to C-reactive protein than CD64 index as a marker for infection in COPD. Panminerva Med. 2017;59(3):203–209. doi:10.23736/S0031-0808.17.03296-7.
  • Singh D. Chronic obstructive pulmonary disease, neutrophils and bacterial infection: a complex web involving IL-17 and IL-22 unravels. EBioMedicine [Internet]. 2015;2(11):1580–1581. doi:10.1016/j.ebiom.2015.10.021.
  • Qiu Y, Zhu J, Bandi V, et al. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168(8):968–975. doi:10.1164/rccm200208-794OC.www.atsjournals.org
  • Gernez Y, Tirouvanziam R, Chanez P. Neutrophils in chronic inflammatory airway diseases: can we target them and how? Eur Respir J. 2010;35(3):467–469. doi:10.1183/09031936.00186109.
  • Eidenschenk C, Rutz S, Liesenfeld O, Ouyang W. Role of IL-22 in microbial host defense. Curr Top Microbiol Immunol. 2014;380:213–236. doi:10.1007/978-3-662-43492-5_10.
  • Guillon A, Jouan Y, Brea D, et al. Neutrophil proteases alter the interleukin-22-receptor-dependent lung antimicrobial defence. Eur Respir J. 2015;46(3):771–782. doi:10.1183/09031936.00215114.
  • GOLD Reports - Global Initiative for Chronic Obstructive Lung Disease – GOLD. 2021. [Internet]. https://goldcopd.org/2021-gold-reports/. Accessed August 21, 2021.
  • Pouwels SD, Geffen WH, van Jonker MR, et al. Increased neutrophil expression of pattern recognition receptors during COPD exacerbations. Respirology. 2017;22(2):401–404. doi:10.1111/resp.12912.
  • Sabroe I, Dower SK, Whyte MKB. The role of toll-like receptors in the regulation of neutrophil migration, activation, and apoptosis. Clinical Infectious Diseases [Internet]. 2005;41(Supplement_7):S421–S426. doi:10.1086/431992.
  • Guzik K, Skret J, Smagur J, et al. Cigarette smoke-exposed neutrophils die unconventionally but are rapidly phagocytosed by macrophages. Cell Death Dis. 2011;2(3):e131 doi:10.1038/cddis.2011.13.
  • Noda N, Matsumoto K, Fukuyama S, et al. Cigarette smoke impairs phagocytosis of apoptotic neutrophils by alveolar macrophages via inhibition of the histone deacetylase/Rac/CD9 pathways. Int Immunol. 2013;25(11):643–650. doi:10.1093/intimm/dxt033.
  • Monsó E, Ruiz J, Rosell A, et al. Bacterial infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1995;152(4 Pt 1):1316–1320. doi:10.1164/ajrccm15247551388.
  • White AJ, Gompertz S, Stockley RA. Chronic obstructive pulmonary disease • 6: The aetiology of exacerbations of chronic obstructive pulmonary disease. Thorax [Internet]. 2003;58(1):73–80. doi:10.1136/thorax.58.1.73.
  • Obermayer A, Stoiber W, Krautgartner WD, et al. New aspects on the structure of neutrophil extracellular traps from chronic obstructive pulmonary disease and in vitro generation. PLoS One. 2014;9(5):e97784. doi:10.1371/journal.pone.0097784.
  • Grabcanovic-Musija F, Obermayer A, Stoiber W, et al. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation. Respir Res. 2015;16(1):1–12. doi:10.1186/s12931-015-0221-7.
  • Pedersen F, Marwitz S, Holz O, et al. Neutrophil extracellular trap formation and extracellular DNA in sputum of stable COPD patients. Respir Med. 2015;109(10):1360–1362. doi:10.1016/j.rmed.2015.08.008.
  • Asthma [Internet]. https://www.who.int/news-room/fact-sheets/detail/asthma. Accessed August 27, 2021
  • Agarwal R, Dhooria S, Aggarwal AN, et al. Guidelines for diagnosis and management of bronchial asthma: joint ICS/NCCP (I) recommendations. Lung India. 2015;32(Suppl 1):S3–S42. doi:10.4103/0970-2113.154517.
  • Subbarao P, Mandhane PJ, Sears MR. Asthma: epidemiology, etiology and risk factors. CMAJ. 2009;181(9):E181–E190. doi:10.1503/cmaj.080612.
  • Gao H, Ying S, Dai Y. Pathological roles of neutrophil-mediated inflammation in asthma and its potential for therapy as a target. J Immunol Res. 2017;2017:1–12. doi:10.1155/2017/3743048.
  • Moore WC, Hastie AT, Li X, et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol. 2014;133(6):1557–1563.e5. doi:10.1016/j.jaci.2013.10.011.
  • Baines KJ, Simpson JL, Scott RJ, Gibson PG. Immune responses of airway neutrophils are impaired in asthma. Exp Lung Res. 2009;35(7):554–569. doi:10.1080/01902140902777490.
  • Baines KJ, Simpson JL, Bowden NA, Scott RJ, Gibson PG. Differential gene expression and cytokine production from neutrophils in asthma phenotypes. Eur Respir J. 2010;35(3):522–531. doi:10.1183/09031936.00027409.
  • Lavoie-Lamoureux A, Moran K, Beauchamp G, et al. IL-4 activates equine neutrophils and induces a mixed inflammatory cytokine expression profile with enhanced neutrophil chemotactic mediator release ex vivo. Am J Physiol Lung Cell Mol Physiol. 2010;299(4):L472–L482. doi:10.1152/ajplung001352009.
  • Wang YH, Voo KS, Liu B, et al. A novel subset of CD4+ TH2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J Exp Med. 2010;207(11):2479–2491. doi:10.1084/jem.20101376.
  • Agache I, Ciobanu C, Agache C, Anghel M. Increased serum IL-17 is an independent risk factor for severe asthma. Respir Med. 2010;104(8):1131–1137. doi:10.1016/j.rmed.2010.02.018.
  • Bullens DM, Truyen E, Coteur L, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res. 2006;7(1):135. doi:10.1186/1465-9921-7-135.
  • Doe C, Bafadhel M, Siddiqui S, et al. Expression of the T helper 17-associated cytokines IL-17A and IL-17F in asthma and COPD. Chest [Internet]. 2010;138(5):1140–1147. doi:10.1378/chest.09-3058.
  • Roussel L, Houle F, Chan C, et al. IL-17 Promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation. J Immunol. 2010;184(8):4531–4537. doi:10.4049/jimmunol.0903162.
  • Busse WW, Lemanske RF, Gern JE. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet. 2010;376(9743):826–834.
  • Feldman AS, He Y, Moore ML, Hershenson MB, Hartert TV. Toward primary prevention of asthma. Reviewing the evidence for early-life respiratory viral infections as modifiable risk factors to prevent childhood asthma. Am J Respir Crit Care Med. 2015;191(1):34–44. doi:10.1164/rccm.201405-0901PP.
  • Zhang Q, Illing R, Hui CK, et al. Bacteria in sputum of stable severe asthma and increased airway wall thickness. Respir Res. 2012;13(1):1–8.
  • Green BJ, Wiriyachaiporn S, Grainge C, et al. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PLoS One [Internet]. 2014;9(6):e100645. doi:10.1371/journal.pone.0100645.
  • Bergeron C, Al-Ramli W, Hamid Q. Remodeling in asthma. Proc Am Thorac Soc [Internet]. 2009;6(3):301–305. doi:10.1513/pats.200808-089RM.
  • Halwani R, Al-Muhsen S, Al-Jahdali H, Hamid Q. Role of transforming growth factor–β in airway remodeling in asthma. Am J Respir Cell Mol Biol. 2011;44(2):127–133. doi:10.1165/rcmb2010-0027TR.
  • Chu HW, Trudeau JB, Balzar S, Wenzel SE. Peripheral blood and airway tissue expression of transforming growth factor beta by neutrophils in asthmatic subjects and normal control subjects. J Allergy Clin Immunol. 2000;106(6):1115–1123. doi:10.1067/mai.2000.110556.
  • Nadel JA. Role of enzymes from inflammatory cells on airway submucosal gland secretion. Respiration [Internet]. 1991;58(SUPPL. 1):3–5.
  • Cundall M, Sun Y, Miranda C, Trudeau JB, Barnes S, Wenzel SE. Neutrophil-derived matrix metalloproteinase-9 is increased in severe asthma and poorly inhibited by glucocorticoids. J Allergy Clin Immunol. 2003;112(6):1064–1071. https://pubmed.ncbi.nlm.nih.gov/14657859/
  • Simpson JL, Scott RJ, Boyle MJ, Gibson PG. Differential proteolytic enzyme activity in eosinophilic and neutrophilic asthma. Am J Respir Crit Care Med. 2005;172(5):559–565.
  • GINA Main Report - Global Initiative for Asthma – GINA. 2022. [Internet]. https://ginasthma.org/gina-reports/. Accessed March 14, 2023.
  • Fu JJ, McDonald VM, Gibson PG, Simpson JL. Systemic inflammation in older adults with asthma-COPD overlap syndrome. Allergy Asthma Immunol Res. 2014;6(4):316–324. doi:10.4168/aair.2014.6.4.316.
  • Iwamoto H, Gao J, Koskela J, et al. Differences in plasma and sputum biomarkers between COPD and COPD–asthma overlap. Eur Respir J. 2014;43(2):421–429. doi:10.1183/09031936.00024313.
  • D'silva L, Hassan N, Wang H-Y, et al. Heterogeneity of bronchitis in airway diseases in tertiary care clinical practice. Can Respir J. 2011;18(3):144–148. doi:10.1155/2011/430317.
  • Wu W, Bleecker E, Moore W, et al. Unsupervised phenotyping of Severe Asthma Research Program participants using expanded lung data. J Allergy Clin Immunol. 2014;133(5):1280–1288. doi:10.1016/j.jaci.2013.11.042.
  • Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136–144. doi:10.1111/j.1538-7836.2011.04544.x.
  • Fuchs TA, Brill A, Duerschmied D, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880–15885. doi:10.1073/pnas.1005743107.
  • von Brühl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–835. doi:10.1084/jem.20112322.
  • Cho JH, Sung BH, Kim SC. Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim Biophys Acta. 2009;1788(8):1564–1569. doi:10.1016/j.bbamem.2008.10.025.
  • Menegazzi R, Decleva E, Dri P. Killing by neutrophil extracellular traps: fact or folklore? Blood [Internet]. 2012;119(5):1214–1216. doi:10.1182/blood-2011-07-364604.
  • Cole JN, Pence MA, von Köckritz-Blickwede M, et al. M protein and hyaluronic acid capsule are essential for in vivo selection of covRS mutations characteristic of invasive serotype M1T1 group A Streptococcus. mBio [Internet]. 2010;1(4):e00191–10. doi:10.1128/mBio.00191-10.
  • Juneau RA, Pang B, Weimer KWD, Armbruster CE, Swords WE. Nontypeable haemophilus influenzae initiates formation of neutrophil extracellular traps. Infect Immun. 2011;79(1):431–438. doi:10.1128/IAI.00660-10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.