176
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Platelet extracellular vesicles: Darkness and light of autoimmune diseasesOpen MaterialsOpen Data

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 63-73 | Received 11 Jan 2023, Accepted 05 Jun 2023, Published online: 23 Jun 2023

References

  • Fugger L, Jensen LT, Rossjohn J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell. 2020;181(1):63–80. doi:10.1016/j.cell.2020.03.007.
  • Sedgwick AE, D'Souza-Schorey C. The biology of extracellular microvesicles. Traffic. 2018;19(5):319–327. doi:10.1111/tra.12558.
  • Lötvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International society for extracellular vesicles. J Extracell Vesicles. 2014;3:26913. doi:10.3402/jev.v3.26913.
  • Karnas E, Dudek P, Zuba-Surma EK. Stem cell-derived extracellular vesicles as new tools in regenerative medicine - immunomodulatory role and future perspectives. Front Immunol. 2023;14:1120175. doi:10.3389/fimmu.2023.1120175.
  • Qu M, Zhu H, Zhang X. Extracellular vesicle-mediated regulation of macrophage polarization in bacterial infections. Front Microbiol. 2022;13:1039040. doi:10.3389/fmicb.2022.1039040.
  • Arraud N, Gounou C, Linares R, Brisson AR. A simple flow cytometry method improves the detection of phosphatidylserine-exposing extracellular vesicles. J Thromb Haemost. 2015;13(2):237–247. doi:10.1111/jth.12767.
  • Aatonen M, Grönholm M, Siljander PR. Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin Thromb Hemost. 2012;38(1):102–113. doi:10.1055/s-0031-1300956.
  • Boilard E, Nigrovic PA, Larabee K, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010;327(5965):580–583. doi:10.1126/science.1181928.
  • Bernard NJ. HMGB1(+) platelet microparticles damage the endothelium. Nat Rev Rheumatol. 2018;14(9):499. doi:10.1038/s41584-018-0072-y.
  • Leleu D, Levionnois E, Laurent P, et al. Elevated circulatory levels of microparticles are associated to lung fibrosis and vasculopathy during systemic sclerosis. Front Immunol. 2020;11:532177. doi:10.3389/fimmu.2020.532177.
  • Oyabu C, Morinobu A, Sugiyama D, et al. Plasma platelet-derived microparticles in patients with connective tissue diseases. J Rheumatol. 2011;38(4):680–684. doi:10.3899/jrheum.100780.
  • Pereira J, Alfaro G, Goycoolea M, et al. Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb Haemost. 2006;95(01):94–99. doi:10.1160/TH05-05-0310.
  • Macey M, Hagi-Pavli E, Stewart J, et al. Age, gender and disease-related platelet and neutrophil activation ex vivo in whole blood samples from patients with Behçet’s disease. Rheumatology (Oxford). 2011;50(10):1849–1859. doi:10.1093/rheumatology/ker177.
  • Shirafuji T, Hamaguchi H, Higuchi M, Kanda F. Measurement of platelet-derived microparticle levels using an enzyme-linked immunosorbent assay in polymyositis and dermatomyositis patients. Muscle Nerve. 2009;39(5):586–590. doi:10.1002/mus.21311.
  • Zeng Y, Qiu Y, Jiang W, et al. Biological features of extracellular vesicles and challenges. Front Cell Dev Biol. 2022;10:816698. doi:10.3389/fcell.2022.816698.
  • Jy W, Mao WW, Horstman L, et al. Platelet microparticles bind, activate and aggregate neutrophils in vitro. Blood Cells Mol Dis. 1995;21(3):217–231; discussion 231a. doi:10.1006/bcmd.1995.0025.
  • Qi Q, Yang B, Li H, et al. Platelet microparticles regulate neutrophil extracellular traps in acute pancreatitis. Pancreas. 2020;49(8):1099–1103. doi:10.1097/MPA.0000000000001631.
  • Mause SF, von Hundelshausen P, Zernecke A, et al. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol. 2005;25(7):1512–1518. doi:10.1161/01.ATV.0000170133.43608.37.
  • Opinc AH, Makowska JS. Antisynthetase syndrome - much more than just a myopathy. Semin Arthritis Rheum. 2021;51(1):72–83. doi:10.1016/j.semarthrit.2020.09.020.
  • Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146–153. doi:10.1038/nm.4027.
  • Nakazawa D, Masuda S, Tomaru U, Ishizu A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat Rev Rheumatol. 2019;15(2):91–101. doi:10.1038/s41584-018-0145-y.
  • Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194–211. doi:10.1007/s12016-020-08804-7.
  • Kuley R, Stultz RD, Duvvuri B, et al. N-Formyl methionine peptide-mediated neutrophil activation in systemic sclerosis. Front Immunol. 2021;12:785275. doi:10.3389/fimmu.2021.785275.
  • Maugeri N, Campana L, Gavina M, et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 2014;12(12):2074–2088. doi:10.1111/jth.12710.
  • Ma YH, Ma TT, Wang C, et al. High-mobility group box 1 potentiates antineutrophil cytoplasmic antibody-inducing neutrophil extracellular traps formation. Arthritis Res Ther. 2016;18:2. doi:10.1186/s13075-015-0903-z.
  • Maugeri N, Franchini S, Campana L, et al. Circulating platelets as a source of the damage-associated molecular pattern HMGB1 in patients with systemic sclerosis. Autoimmunity. 2012;45(8):584–587. doi:10.3109/08916934.2012.719946.
  • Villanueva E, Yalavarthi S, Berthier CC, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol. 2011;187(1):538–552. doi:10.4049/jimmunol.1100450.
  • Manfredi AA, Ramirez GA, Godino C, et al. Platelet phagocytosis via P-selectin glycoprotein ligand 1 and accumulation of microparticles in systemic sclerosis. Arthritis Rheumatol. 2022;74(2):318–328. doi:10.1002/art.41926.
  • Yang B, Liu X, Mei Q. HMGB1-positive platelet microparticles may be a biomarker of inflammatory bowel disease. Inflamm Bowel Dis. 2020;26(2):e10. doi:10.1093/ibd/izz302.
  • Boudreau LH, Duchez AC, Cloutier N, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014;124(14):2173–2183. doi:10.1182/blood-2014-05-573543.
  • Duchez AC, Boudreau LH, Naika GS, et al. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA. Proc Natl Acad Sci USA. 2015;112:E3564–E3573.
  • Boilard E, Fortin PR. Connective tissue diseases: mitochondria drive NETosis and inflammation in SLE. Nat Rev Rheumatol. 2016;12(4):195–196. doi:10.1038/nrrheum.2016.24.
  • Melki I, Allaeys I, Tessandier N, et al. Platelets release mitochondrial antigens in systemic lupus erythematosus. Sci Transl Med. 2021;13(581):eaav5928. doi:10.1126/scitranslmed.aav5928.
  • Pisetsky DS, Spencer DM, Mobarrez F, et al. The binding of SLE autoantibodies to mitochondria. Clin Immunol. 2020;212:108349. doi:10.1016/j.clim.2020.108349.
  • Cloutier N, Tan S, Boudreau LH, et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med. 2013;5(2):235–249. doi:10.1002/emmm.201201846.
  • Villar-Vesga J, Grajales C, Burbano C, et al. Platelet-derived microparticles generated in vitro resemble circulating vesicles of patients with rheumatoid arthritis and activate monocytes. Cell Immunol. 2019;336:1–11. doi:10.1016/j.cellimm.2018.12.002.
  • McHugh J. Platelets highlighted as a potential source of autoantigens in SLE. Nat Rev Rheumatol. 2021;17(5):251. doi:10.1038/s41584-021-00609-y.
  • Becker YLC, Duvvuri B, Fortin PR, et al. The role of mitochondria in rheumatic diseases. Nat Rev Rheumatol. 2022;18(11):621–640. doi:10.1038/s41584-022-00834-z.
  • Burbano C, Villar-Vesga J, Orejuela J, et al. Potential involvement of platelet-derived microparticles and microparticles forming immune complexes during monocyte activation in patients with systemic lupus erythematosus. Front Immunol. 2018;9:322. doi:10.3389/fimmu.2018.00322.
  • Fortin PR, Cloutier N, Bissonnette V, et al. Distinct subtypes of microparticle-containing immune complexes are associated with disease activity, damage, and carotid intima-media thickness in systemic lupus erythematosus. J Rheumatol. 2016;43(11):2019–2025. doi:10.3899/jrheum.160050.
  • Speth C, Rambach G, Würzner R, et al. Complement and platelets: mutual interference in the immune network. Mol Immunol. 2015;67(1):108–118. doi:10.1016/j.molimm.2015.03.244.
  • Yin W, Ghebrehiwet B, Peerschke EI. Expression of complement components and inhibitors on platelet microparticles. Platelets. 2008;19(3):225–233. doi:10.1080/09537100701777311.
  • Peacock-Young B, Macrae FL, Newton DJ, et al. The prothrombotic state in paroxysmal nocturnal hemoglobinuria: a multifaceted source. Haematologica. 2018;103(1):9–17. doi:10.3324/haematol.2017.177618.
  • Zhao Y, Wei W, Liu ML. Extracellular vesicles and lupus nephritis - new insights into pathophysiology and clinical implications. J Autoimmun. 2020;115:102540. doi:10.1016/j.jaut.2020.102540.
  • Yoshida Y, Nishi H. The role of the complement system in kidney glomerular capillary thrombosis. Front Immunol. 2022;13:981375. doi:10.3389/fimmu.2022.981375.
  • Castelli R, Lambertenghi Delilliers G, Gidaro A, et al. Complement activation in patients with immune thrombocytopenic purpura according to phases of disease course. Clin Exp Immunol. 2020;201(3):258–265. doi:10.1111/cei.13475.
  • Zhang Y, Zhang W, Zha C, Liu Y. Platelets activated by the anti-β2GPI/β2GPI complex release microRNAs to inhibit migration and tube formation of human umbilical vein endothelial cells. Cell Mol Biol Lett. 2018;23:24. doi:10.1186/s11658-018-0091-3.
  • Lazar S, Goldfinger LE. Platelets and extracellular vesicles and their cross talk with cancer. Blood. 2021;137(23):3192–3200. doi:10.1182/blood.2019004119.
  • Laffont B, Corduan A, Rousseau M, et al. Platelet microparticles reprogram macrophage gene expression and function. Thromb Haemost. 2016;115(2):311–323. doi:10.1160/TH15-05-0389.
  • Qu M, Zou X, Fang F, et al. Platelet-derived microparticles enhance megakaryocyte differentiation and platelet generation via miR-1915-3p. Nat Commun. 2020;11(1):4964. doi:10.1038/s41467-020-18802-0.
  • Provost P. The clinical significance of platelet microparticle-associated microRNAs. Clin Chem Lab Med. 2017;55(5):657–666. doi:10.1515/cclm-2016-0895.
  • Laffont B, Corduan A, Plé H, et al. Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood. 2013;122(2):253–261. doi:10.1182/blood-2013-03-492801.
  • Szilágyi B, Fejes Z, Rusznyák Á, et al. Platelet microparticles enriched in miR-223 reduce ICAM-1-dependent vascular inflammation in septic conditions. Front Physiol. 2021;12:658524. doi:10.3389/fphys.2021.658524.
  • Bao H, Chen YX, Huang K, et al. Platelet-derived microparticles promote endothelial cell proliferation in hypertension via miR-142-3p. FASEB J. 2018;32(7):3912–3923. doi:10.1096/fj.201701073R.
  • Michael JV, Wurtzel JGT, Mao GF, et al. Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood. 2017;130(5):567–580. doi:10.1182/blood-2016-11-751099.
  • Tang F, Zhou Z, Huang K, et al. MicroRNAs in the regulation of Th17/Treg homeostasis and their potential role in uveitis. Front Genet. 2022;13:848985. doi:10.3389/fgene.2022.848985.
  • Borbet TC, Hines MJ, Koralov SB. MicroRNA regulation of B cell receptor signaling. Immunol Rev. 2021;304(1):111–125. doi:10.1111/imr.13024.
  • Meng Y, Li J, Ye Z, et al. MicroRNA-148a facilitates inflammatory dendritic cell differentiation and autoimmunity by targeting MAFB. JCI Insight. 2020;5(8):e133721. doi:10.1172/jci.insight.133721.
  • Cheng Q, Chen X, Wu H, Du Y. Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis. J Transl Med. 2021;19(1):18. doi:10.1186/s12967-020-02689-y.
  • Payet M, Dargai F, Gasque P, Guillot X. Epigenetic regulation (including micro-RNAs, DNA methylation and histone modifications) of rheumatoid arthritis: a systematic review. IJMS. 2021;22(22):12170. doi:10.3390/ijms222212170.
  • Xu Y, Li W, Liang G, et al. Platelet microparticles-derived miR-25-3p promotes the hepatocyte proliferation and cell autophagy via reducing B-cell translocation gene 2. J Cell Biochem. 2020;121(12):4959–4973. doi:10.1002/jcb.29825.
  • Cha DJ, Mengel D, Mustapic M, et al. miR-212 and miR-132 are downregulated in neurally derived plasma exosomes of Alzheimer’s patients. Front Neurosci. 2019;13:1208. doi:10.3389/fnins.2019.01208.
  • Howe CG, Foley HB, Farzan SF, et al. Urinary metals and maternal circulating extracellular vesicle microRNA in the MADRES pregnancy cohort. Epigenetics. 2022;17(10):1128–1142. doi:10.1080/15592294.2021.1994189.
  • Zhai M, Zhu Y, Yang M, Mao C. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles. Adv Sci (Weinh). 2020;7(19):2001334. doi:10.1002/advs.202001334.
  • Crossland RE, Norden J, Ghimire S, et al. Profiling tissue and biofluid miR-155-5p, miR-155(*), and miR-146a-5p expression in graft vs. host disease. Front Immunol. 2021;12:639171. doi:10.3389/fimmu.2021.639171.
  • Cuomo-Haymour N, Bergamini G, Russo G, et al. Differential expression of serum extracellular vesicle miRNAs in multiple sclerosis: disease-stage specificity and relevance to pathophysiology. IJMS. 2022;23(3):1664. doi:10.3390/ijms23031664.
  • Gao Y, Han D, Feng J. MicroRNA in multiple sclerosis. Clin Chim Acta. 2021;516:92–99. doi:10.1016/j.cca.2021.01.020.
  • Qin Y, Wu L, Ouyang Y, et al. MiR-125a Is a critical modulator for neutrophil development. PLoS Genet. 2017;13(10):e1007027. doi:10.1371/journal.pgen.1007027.
  • Vahed SZ, Nakhjavani M, Etemadi J, et al. Altered levels of immune-regulatory microRNAs in plasma samples of patients with lupus nephritis. Bioimpacts. 2018;8(3):177–183. doi:10.15171/bi.2018.20.
  • Yang J, Wang S, Liu L, et al. Long non-coding RNA NEAT1 and its targets (microRNA-21 and microRNA-125a) in rheumatoid arthritis: altered expression and potential to monitor disease activity and treatment outcome. J Clin Lab Anal. 2021;35(12):e24076. doi:10.1002/jcla.24076.
  • Cheng P, Wang J. The potential of circulating microRNA-125a and microRNA-125b as markers for inflammation and clinical response to infliximab in rheumatoid arthritis patients. J Clin Lab Anal. 2020;34(8):e23329. doi:10.1002/jcla.23329.
  • Cacic D, Reikvam H, Nordgård O, et al. Platelet microparticles protect acute myelogenous leukemia cells against daunorubicin-induced apoptosis. Cancers (Basel). 2021;13(8):1870. doi:10.3390/cancers13081870.
  • Rosinska J, Maciejewska J, Narożny R, et al. Effect of acetylsalicylic acid intake on platelet derived microvesicles in healthy subjects. Platelets. 2020;31(2):206–214. doi:10.1080/09537104.2019.1588242.
  • Behan MW, Fox SC, Heptinstall S, Storey RF. Inhibitory effects of P2Y12 receptor antagonists on TRAP-induced platelet aggregation, procoagulant activity, microparticle formation and intracellular calcium responses in patients with acute coronary syndromes. Platelets. 2005;16(2):73–80. doi:10.1080/09537100400005634.
  • Gąsecka A, Rogula S, Eyileten C, et al. Role of P2Y Receptors in Platelet Extracellular Vesicle Release. Int J Mol Sci. 2020;21(17):6065. doi:10.3390/ijms21176065.
  • Giacomazzi A, Degan M, Calabria S, et al. Antiplatelet agents inhibit the generation of platelet-derived microparticles. Front Pharmacol. 2016;7:314. doi:10.3389/fphar.2016.00314.
  • Gemmell CH, Sefton MV, Yeo EL. Platelet-derived microparticle formation involves glycoprotein IIb-IIIa. Inhibition by RGDS and a Glanzmann’s thrombasthenia defect. J Biol Chem. 1993;268(20):14586–14589. doi:10.1016/S0021-9258(18)82371-7.
  • Pontiggia L, Steiner B, Ulrichts H, et al. Platelet microparticle formation and thrombin generation under high shear are effectively suppressed by a monoclonal antibody against GPIba. Thromb Haemost. 2006;96(6):774–780.
  • Tamburrelli C, Crescente M, Izzi B, et al. Epoprostenol inhibits human platelet-leukocyte mixed conjugate and platelet microparticle formation in whole blood. Thromb Res. 2011;128(5):446–451. doi:10.1016/j.thromres.2011.05.010.
  • Bacha NC, Levy M, Guerin CL, et al. Treprostinil treatment decreases circulating platelet microvesicles and their procoagulant activity in pediatric pulmonary hypertension. Pediatr Pulmonol. 2019;54(1):66–72. doi:10.1002/ppul.24190.
  • Ed Nignpense B, Chinkwo KA, Blanchard CL, Santhakumar AB. Black sorghum phenolic extract modulates platelet activation and platelet microparticle release. Nutrients. 2020;12(6):1760. doi:10.3390/nu12061760.
  • Nijhara R, van Hennik PB, Gignac ML, et al. Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes. J Immunol. 2004;173(8):4985–4993. doi:10.4049/jimmunol.173.8.4985.
  • Wang Y, Luo L, Mörgelin M, Thorlacius H. Rac1 regulates sepsis-induced formation of platelet-derived microparticles and thrombin generation. Biochem Biophys Res Commun. 2017;487(4):887–891. doi:10.1016/j.bbrc.2017.04.147.
  • Chen X. Rac1 regulates platelet microparticles formation and rheumatoid arthritis deterioration. Platelets. 2020;31(1):112–119. doi:10.1080/09537104.2019.1584669.
  • Hsu J, Gu Y, Tan SL, et al. Bruton’s Tyrosine Kinase mediates platelet receptor-induced generation of microparticles: a potential mechanism for amplification of inflammatory responses in rheumatoid arthritis synovial joints. Immunol Lett. 2013;150(1–2):97–104. doi:10.1016/j.imlet.2012.12.007.
  • An G, Wu F, Huang S, et al. Effects of CCL5 on the biological behavior of breast cancer and the mechanisms of its interaction with tumor‑associated macrophages. Oncol Rep. 2019;42(6):2499–2511. doi:10.3892/or.2019.7344.
  • Quemener C, Baud J, Boyé K, et al. Dual roles for CXCL4 chemokines and CXCR3 in angiogenesis and invasion of pancreatic cancer. Cancer Res. 2016;76(22):6507–6519. doi:10.1158/0008-5472.CAN-15-2864.
  • Guo Q, Jian Z, Jia B, Chang L. CXCL7 promotes proliferation and invasion of cholangiocarcinoma cells. Oncol Rep. 2017;37(2):1114–1122. doi:10.3892/or.2016.5312.
  • Wang W, Deng Z, Liu G, et al. Platelet-derived extracellular vesicles promote the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes via CXCR2 signaling. Exp Ther Med. 2021;22(4):1120. doi:10.3892/etm.2021.10554.
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3(2):133–149. doi:10.2147/ijn.s596.
  • Zhao Y, Li A, Jiang L, et al. Hybrid membrane-coated biomimetic nanoparticles (HM@BNPs): a multifunctional nanomaterial for biomedical applications. Biomacromolecules. 2021;22(8):3149–3167. doi:10.1021/acs.biomac.1c00440.
  • Johnson J, Wu YW, Blyth C, et al. Prospective therapeutic applications of platelet extracellular vesicles. Trends Biotechnol. 2021;39(6):598–612. doi:10.1016/j.tibtech.2020.10.004.
  • Spakova T, Janockova J, Rosocha J. Characterization and therapeutic use of extracellular vesicles derived from platelets. IJMS. 2021;22(18):9701. doi:10.3390/ijms22189701.
  • Gupta D, Zickler AM, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev. 2021;178:113961. doi:10.1016/j.addr.2021.113961.
  • Dai Z, Zhao T, Song N, et al. Platelets and platelet extracellular vesicles in drug delivery therapy: a review of the current status and future prospects. Front Pharmacol. 2022;13:1026386. doi:10.3389/fphar.2022.1026386.
  • Liu L, Deng QJ. Role of platelet-derived extracellular vesicles in traumatic brain injury-induced coagulopathy and inflammation. Neural Regen Res. 2022;17(10):2102–2107. doi:10.4103/1673-5374.335825.
  • Mabrouk M, Guessous F, Naya A, et al. The pathophysiological role of platelet-derived extracellular vesicles. Semin Thromb Hemost. 2023;49(03):279–283. doi:10.1055/s-0042-1756705.
  • Abdelgawwad MS, Cao W, Zheng L, et al. Transfusion of platelets loaded with recombinant ADAMTS13 (A disintegrin and metalloprotease with thrombospondin type 1 Repeats-13) is efficacious for inhibiting arterial thrombosis associated with thrombotic thrombocytopenic purpura. Arterioscler Thromb Vasc Biol. 2018;38(11):2731–2743. doi:10.1161/ATVBAHA.118.311407.
  • Liu T, Li M, Tang J, et al. An acoustic strategy for gold nanoparticle loading in platelets as biomimetic multifunctional carriers. J Mater Chem B. 2019;7(13):2138–2144. doi:10.1039/C9TB00227H.
  • Rao L, Bu LL, Ma L, et al. Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew Chem Int Ed Engl. 2018;57(4):986–991. doi:10.1002/anie.201709457.
  • Ma Q, Yao C, Shi H, et al. Targeted delivery of dexamethasone in acute pneumonia. Biomater Sci. 2021;9(16):5569–5576. doi:10.1039/d1bm00924a.
  • Ma Q, Fan Q, Han X, et al. Platelet-derived extracellular vesicles to target plaque inflammation for effective anti-atherosclerotic therapy. J Control Release. 2021;329:445–453. doi:10.1016/j.jconrel.2020.11.064.
  • Kailashiya J, Gupta V, Dash D. Engineered human platelet-derived microparticles as natural vectors for targeted drug delivery. Oncotarget. 2019;10(56):5835–5846. doi:10.18632/oncotarget.27223.
  • Gasperi V, Vangapandu C, Savini I, et al. Polyunsaturated fatty acids modulate the delivery of platelet microvesicle-derived microRNAs into human breast cancer cell lines. J Nutr Biochem. 2019;74:108242. doi:10.1016/j.jnutbio.2019.108242.
  • Deng C, Zhao X, Chen Y, et al. Engineered platelet microparticle-membrane camouflaged nanoparticles for targeting the golgi apparatus of synovial fibroblasts to attenuate rheumatoid arthritis. ACS Nano. 2022;16(11):18430–18447. doi:10.1021/acsnano.2c06584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.