279
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

RNA methylation: A potential therapeutic target in autoimmune disease

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 160-177 | Received 19 Jan 2023, Accepted 02 Nov 2023, Published online: 17 Nov 2023

References

  • Aslani S, Sobhani S, Gharibdoost F, et al. Epigenetics and pathogenesis of systemic sclerosis; the ins and outs. Hum Immunol 2018;79(3):178–187. doi:10.1016/j.humimm.2018.01.003.
  • Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med 2015;278(4):369–395. doi:10.1111/joim.12395.
  • Tsou PS, Sawalha AH. Unfolding the pathogenesis of scleroderma through genomics and epigenomics. J Autoimmun 2017;83:73–94. doi:10.1016/j.jaut.2017.05.004.
  • Howell KJ, Kraiczy J, Nayak KM, et al. DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology 2018;154(3):585–598. doi:10.1053/j.gastro.2017.10.007.
  • Mistry P, Nakabo S, O'Neil L, et al. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci U S A 2019;116(50):25222–25228. doi:10.1073/pnas.1908576116.
  • Surace AEA, Hedrich CM. The role of epigenetics in autoimmune/inflammatory disease. Front Immunol 2019;10:1525. doi:10.3389/fimmu.2019.01525.
  • Rajamaki K, Taira A, Katainen R, et al. Genetic and epigenetic characteristics of inflammatory bowel disease-associated colorectal cancer. Gastroenterology 2021;161(2):592–607. doi:10.1053/j.gastro.2021.04.042.
  • Broen JC, Radstake TR, Rossato M. The role of genetics and epigenetics in the pathogenesis of systemic sclerosis. Nat Rev Rheumatol 2014;10(11):671–681. doi:10.1038/nrrheum.2014.128.
  • Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. Wiley Interdiscip Rev RNA 2022;13(1):e1691. doi:10.1002/wrna.1691.
  • Frye M, Harada BT, Behm M, et al. RNA modifications modulate gene expression during development. Science 2018;361(6409):1346–1349. doi:10.1126/science.aau1646.
  • Boccaletto P, Stefaniak F, Ray A, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res 2022;50(D1):D231–D235. doi:10.1093/nar/gkab1083.
  • Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation. Cell 2017;169(7):1187–1200. doi:10.1016/j.cell.2017.05.045.
  • Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 2019;20(10):608–624. doi:10.1038/s41580-019-0168-5.
  • Fu Y, Dominissini D, Rechavi G, et al. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet 2014;15(5):293–306. doi:10.1038/nrg3724.
  • Guo G, Shi X, Wang H, et al. Epitranscriptomic N4-acetylcytidine profiling in CD4(+) T cells of systemic lupus erythematosus. Front Cell Dev Biol 2020;8:842. doi:10.3389/fcell.2020.00842.
  • Xie R, Cheng L, Huang M, et al. NAT10 drives cisplatin chemoresistance by enhancing ac4C-associated DNA repair in bladder cancer. Cancer Res 2023;83(10):1666–1683. doi:10.1158/0008-5472.CAN-22-2233.
  • Deng M, Zhang L, Zheng W, et al. Helicobacter pylori-induced NAT10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression. J Exp Clin Cancer Res 2023;42(1):9. doi:10.1186/s13046-022-02586-w.
  • Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A 1974;71(10):3971–3975. doi:10.1073/pnas.71.10.3971.
  • Gong J, Shao D, Xu K, et al. RISE: a database of RNA interactome from sequencing experiments. Nucleic Acids Res 2018;46(D1):D194–D201. doi:10.1093/nar/gkx864.
  • Huang Q, Mo J, Liao Z, et al. The RNA m(6)A writer WTAP in diseases: structure, roles, and mechanisms. Cell Death Dis 2022;13(10):852. doi:10.1038/s41419-022-05268-9.
  • Meyer KD, Jaffrey SR. Rethinking m(6)A readers, writers, and erasers. Annu Rev Cell Dev Biol 2017;33(1):319–342. doi:10.1146/annurev-cellbio-100616-060758.
  • Wei W, Sun J, Zhang H, et al. Circ0008399 interaction with WTAP promotes assembly and activity of the m(6)A methyltransferase complex and promotes cisplatin resistance in bladder cancer. Cancer Res 2021;81(24):6142–6156. doi:10.1158/0008-5472.CAN-21-1518.
  • Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer 2019;18(1):127. doi:10.1186/s12943-019-1053-8.
  • Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2014;10(2):93–95. doi:10.1038/nchembio.1432.
  • Meyer KD, Jaffrey SR. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol 2014;15(5):313–326. doi:10.1038/nrm3785.
  • Elsabbagh RA, Rady M, Watzl C, et al. Impact of N6-methyladenosine (m(6)A) modification on immunity. Cell Commun Signal 2022;20(1):140. doi:10.1186/s12964-022-00939-8.
  • Wang Q, Chen C, Ding Q, et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 2020;69(7):1193–1205. doi:10.1136/gutjnl-2019-319639.
  • You A, Tian W, Yuan H, et al. TTC22 promotes m6A-mediated WTAP expression and colon cancer metastasis in an RPL4 binding-dependent pattern. Oncogene 2022;41(32):3925–3938. doi:10.1038/s41388-022-02402-x.
  • Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014;24(2):177–189. doi:10.1038/cr.2014.3.
  • Yang Y, Hsu PJ, Chen YS, et al. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 2018;28(6):616–624. doi:10.1038/s41422-018-0040-8.
  • Wen J, Lv R, Ma H, et al. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell 2018;69(6):1028–1038 e6. doi:10.1016/j.molcel.2018.02.015.
  • Gong PJ, Shao YC, Yang Y, et al. Analysis of N6-methyladenosine methyltransferase reveals METTL14 and ZC3H13 as tumor suppressor genes in breast cancer. Front Oncol 2020;10:578963. doi:10.3389/fonc.2020.578963.
  • Ben-Haim MS, Moshitch-Moshkovitz S, Rechavi G. FTO: linking m6A demethylation to adipogenesis. Cell Res 2015;25(1):3–4. doi:10.1038/cr.2014.162.
  • Song H, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 2019;15(8):1419–1437. doi:10.1080/15548627.2019.1586246.
  • Zhang Z, Wang L, Zhao L, et al. N6-methyladenosine demethylase ALKBH5 suppresses colorectal cancer progression potentially by decreasing PHF20 mRNA methylation. Clin Transl Med 2022;12(8):e940. doi:10.1002/ctm2.940.
  • Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013;49(1):18–29. doi:10.1016/j.molcel.2012.10.015.
  • Wei J, Liu F, Lu Z, et al. Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell 2018;71(6):973–985 e5. doi:10.1016/j.molcel.2018.08.011.
  • Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 2015;29(13):1343–1355. doi:10.1101/gad.262766.115.
  • Li HB, Tong J, Zhu S, et al. m(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 2017;548(7667):338–342. doi:10.1038/nature23450.
  • Chandola U, Das R, Panda B. Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease. Brief Funct Genomics 2015;14(3):169–179. doi:10.1093/bfgp/elu039.
  • Nombela P, Miguel-Lopez B, Blanco S. The role of m(6)A, m(5)C and Psi RNA modifications in cancer: novel therapeutic opportunities. Mol Cancer 2021;20(1):18. doi:10.1186/s12943-020-01263-w.
  • Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 2018;67(6):2254–2270. doi:10.1002/hep.29683.
  • Chen H, Gao S, Liu W, et al. RNA N(6)-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m(6)A-GLUT1-mTORC1 axis and is a therapeutic target. Gastroenterology 2021;160(4):1284–1300 e16. doi:10.1053/j.gastro.2020.11.013.
  • Zhu D, Zhou J, Zhao J, et al. ZC3H13 suppresses colorectal cancer proliferation and invasion via inactivating Ras-ERK signaling. J Cell Physiol 2019;234(6):8899–8907. doi:10.1002/jcp.27551.
  • Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, et al. Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. Adv Nutr 2019;10(suppl_1):S17–S30. doi:10.1093/advances/nmy078.
  • Qin Y, Li B, Arumugam S, et al. m(6)A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Rep 2021;37(6):109968. doi:10.1016/j.celrep.2021.109968.
  • Zhao X, Yang Y, Sun BF, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 2014;24(12):1403–1419. doi:10.1038/cr.2014.151.
  • Liu S, Lao Y, Wang Y, et al. Role of RNA N6-methyladenosine modification in male infertility and genital system tumors. Front Cell Dev Biol 2021;9:676364. doi:10.3389/fcell.2021.676364.
  • Cai Z, Niu Y, Li H. RNA N6-methyladenosine modification, spermatogenesis, and human male infertility. Mol Hum Reprod 2021;27(6):gaab020. doi:10.1093/molehr/gaab020.
  • Zhao S, Lu J, Chen Y, et al. Exploration of the potential roles of m6A regulators in the uterus in pregnancy and infertility. J Reprod Immunol 2021;146:103341. doi:10.1016/j.jri.2021.103341.
  • Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 2015;347(6225):1002–1006. doi:10.1126/science.1261417.
  • Chen F, Xie X, Chao M, et al. The potential value of m6A RNA methylation in the development of cancers focus on malignant glioma. Front Immunol 2022;13:917153. doi:10.3389/fimmu.2022.917153.
  • Zhang Y, Geng X, Li Q, et al. m6A modification in RNA: biogenesis, functions and roles in gliomas. J Exp Clin Cancer Res 2020;39(1):192. doi:10.1186/s13046-020-01706-8.
  • Sweaad WK, Stefanizzi FM, Chamorro-Jorganes A, et al. Relevance of N6-methyladenosine regulators for transcriptome: implications for development and the cardiovascular system. J Mol Cell Cardiol 2021;160:56–70. doi:10.1016/j.yjmcc.2021.05.006.
  • Liu C, Gu L, Deng W, et al. N6-methyladenosine RNA methylation in cardiovascular diseases. Front Cardiovasc Med 2022;9:887838. doi:10.3389/fcvm.2022.887838.
  • Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell 2019;74(4):640–650. doi:10.1016/j.molcel.2019.04.025.
  • Sheng Y, Wei J, Yu F, et al. A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex-mediated DNA replication. Blood 2021;138(26):2838–2852. doi:10.1182/blood.2021011707.
  • Xiao W, Adhikari S, Dahal U, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell 2016;61(4):507–519. doi:10.1016/j.molcel.2016.01.012.
  • Hou Y, Zhang Q, Pang W, et al. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ 2021;28(11):3105–3124. doi:10.1038/s41418-021-00804-0.
  • Ma L, Chen T, Zhang X, et al. The m(6)A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biol 2021;38:101801. doi:10.1016/j.redox.2020.101801.
  • Ye J, Wang Z, Chen X, et al. YTHDF1-enhanced iron metabolism depends on TFRC m(6)A methylation. Theranostics 2020;10(26):12072–12089. doi:10.7150/thno.51231.
  • Jin D, Guo J, Wu Y, et al. m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol 2019;12(1):135. doi:10.1186/s13045-019-0830-6.
  • Li Q, Ni Y, Zhang L, et al. HIF-1alpha-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther 2021;6(1):76. doi:10.1038/s41392-020-00453-8.
  • Dixit D, Prager BC, Gimple RC, et al. The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discov 2021;11(2):480–499. doi:10.1158/2159-8290.CD-20-0331.
  • Zaccara S, Jaffrey SR. A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell 2020;181(7):1582–1595 e18. doi:10.1016/j.cell.2020.05.012.
  • Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 2018;20(3):285–295. doi:10.1038/s41556-018-0045-z.
  • Li T, Hu PS, Zuo Z, et al. METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer 2019;18(1):112. doi:10.1186/s12943-019-1038-7.
  • Slobodin B, Han R, Calderone V, et al. Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell 2017;169(2):326–337 e12. doi:10.1016/j.cell.2017.03.031.
  • Guy MP, Shaw M, Weiner CL, et al. Defects in tRNA anticodon loop 2'-O-methylation are implicated in nonsyndromic X-linked intellectual disability due to mutations in FTSJ1. Hum Mutat 2015;36(12):1176–1187. doi:10.1002/humu.22897.
  • Liang H, Jiao Z, Rong W, et al. 3'-Terminal 2'-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2. Nucleic Acids Res 2020;48(13):7027–7040. doi:10.1093/nar/gkaa504.
  • Zhuo W, Sun M, Wang K, et al. m(6)Am methyltransferase PCIF1 is essential for aggressiveness of gastric cancer cells by inhibiting TM9SF1 mRNA translation. Cell Discov 2022;8(1):48. doi:10.1038/s41421-022-00395-1.
  • Relier S, Ripoll J, Guillorit H, et al. FTO-mediated cytoplasmic m(6)A(m) demethylation adjusts stem-like properties in colorectal cancer cell. Nat Commun 2021;12(1):1716. doi:10.1038/s41467-021-21758-4.
  • Mauer J, Luo X, Blanjoie A, et al. Reversible methylation of m(6)A(m) in the 5’ cap controls mRNA stability. Nature 2017;541(7637):371–375. doi:10.1038/nature21022.
  • Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 2016;530(7591):441–446. doi:10.1038/nature16998.
  • Wang Q, Zhang Q, Huang Y, et al. m(1)A regulator TRMT10C predicts poorer survival and contributes to malignant behavior in gynecological cancers. DNA Cell Biol 2020;39(10):1767–1778. doi:10.1089/dna.2020.5624.
  • Chen Z, Qi M, Shen B, et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res 2019;47(5):2533–2545. doi:10.1093/nar/gky1250.
  • Chen W, Wang H, Mi S, et al. ALKBH1-mediated m(1) A demethylation of METTL3 mRNA promotes the metastasis of colorectal cancer by downregulating SMAD7 expression. Mol Oncol 2023;17(2):344–364. doi:10.1002/1878-0261.13366.
  • Esteve-Puig R, Climent F, Pineyro D, et al. Epigenetic loss of m1A RNA demethylase ALKBH3 in Hodgkin lymphoma targets collagen, conferring poor clinical outcome. Blood 2021;137(7):994–999. doi:10.1182/blood.2020005823.
  • Dai X, Wang T, Gonzalez G, et al. Identification of YTH domain-containing proteins as the readers for N1-methyladenosine in RNA. Anal Chem 2018;90(11):6380–6384. doi:10.1021/acs.analchem.8b01703.
  • Wang Y, Wang J, Li X, et al. N(1)-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nat Commun 2021;12(1):6314. doi:10.1038/s41467-021-26718-6.
  • Wu Y, Chen Z, Xie G, et al. RNA m(1)A methylation regulates glycolysis of cancer cells through modulating ATP5D. Proc Natl Acad Sci U S A 2022;119(28):e2119038119. doi:10.1073/pnas.2119038119.
  • Yang X, Yang Y, Sun BF, et al. 5-Methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res 2017;27(5):606–625. doi:10.1038/cr.2017.55.
  • Selmi T, Hussain S, Dietmann S, et al. Sequence- and structure-specific cytosine-5 mRNA methylation by NSUN6. Nucleic Acids Res 2021;49(2):1006–1022. doi:10.1093/nar/gkaa1193.
  • Wnuk M, Slipek P, Dziedzic M, et al. The roles of host 5-methylcytosine RNA methyltransferases during viral infections. Int J Mol Sci 2020;21(21):8176. doi:10.3390/ijms21218176.
  • Haag S, Sloan KE, Ranjan N, et al. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. Embo J 2016;35(19):2104–2119. doi:10.15252/embj.201694885.
  • Van Haute L, Dietmann S, Kremer L, et al. Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. Nat Commun 2016;7(1):12039. doi:10.1038/ncomms12039.
  • Nakano S, Suzuki T, Kawarada L, et al. NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met). Nat Chem Biol 2016;12(7):546–551. doi:10.1038/nchembio.2099.
  • Chellamuthu A, Gray SG. The RNA methyltransferase NSUN2 and its potential roles in cancer. Cells 2020;9(8):1758. doi:10.3390/cells9081758.
  • Xu Z, Chen S, Zhang Y, et al. Roles of m5C RNA modification patterns in biochemical recurrence and tumor microenvironment characterization of prostate adenocarcinoma. Front Immunol 2022;13:869759. doi:10.3389/fimmu.2022.869759.
  • Wang JZ, Zhu W, Han J, et al. The role of the HIF-1alpha/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun 2021;41(7):560–575. doi:10.1002/cac2.12158.
  • Campbell TM, Castro MAA, de Oliveira KG, et al. ERalpha binding by transcription factors NFIB and YBX1 enables FGFR2 signaling to modulate estrogen responsiveness in breast cancer. Cancer Res 2018;78(2):410–421. doi:10.1158/0008-5472.CAN-17-1153.
  • Garcia-Vilchez R, Sevilla A, Blanco S. Post-transcriptional regulation by cytosine-5 methylation of RNA. Biochim Biophys Acta Gene Regul Mech 2019;1862(3):240–252. doi:10.1016/j.bbagrm.2018.12.003.
  • Trixl L, Lusser A. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip Rev RNA 2019;10(1):e1510. doi:10.1002/wrna.1510.
  • Pandolfini L, Barbieri I, Bannister AJ, et al. METTL1 promotes let-7 microRNA processing via m7G methylation. Mol Cell 2019;74(6):1278–1290 e9. doi:10.1016/j.molcel.2019.03.040.
  • Huang M, Long J, Yao Z, et al. METTL1-mediated m7G tRNA modification promotes lenvatinib resistance in hepatocellular carcinoma. Cancer Res 2023;83(1):89–102. doi:10.1158/0008-5472.CAN-22-0963.
  • Ma J, Han H, Huang Y, et al. METTL1/WDR4-mediated m(7)G tRNA modifications and m(7)G codon usage promote mRNA translation and lung cancer progression. Mol Ther 2021;29(12):3422–3435. doi:10.1016/j.ymthe.2021.08.005.
  • Lin S, Liu Q, Lelyveld VS, et al. Mettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell 2018;71(2):244–255 e5. doi:10.1016/j.molcel.2018.06.001.
  • Han H, Yang C, Ma J, et al. N(7)-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat Commun 2022;13(1):1478. doi:10.1038/s41467-022-29125-7.
  • Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature 2007;449(7164):819–826. doi:10.1038/nature06246.
  • Diacovich L, Gorvel JP. Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol 2010;8(2):117–128. doi:10.1038/nrmicro2295.
  • Thaiss CA, Zmora N, Levy M, et al. The microbiome and innate immunity. Nature 2016;535(7610):65–74. doi:10.1038/nature18847.
  • Kraft CT, Agarwal S, Ranganathan K, et al. Trauma-induced heterotopic bone formation and the role of the immune system: a review. J Trauma Acute Care Surg 2016;80(1):156–165. doi:10.1097/TA.0000000000000883.
  • Wang H, Hu X, Huang M, et al. Mettl3-mediated mRNA m(6)A methylation promotes dendritic cell activation. Nat Commun 2019;10(1):1898. doi:10.1038/s41467-019-09903-6.
  • Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature 2019;566(7743):270–274. doi:10.1038/s41586-019-0916-x.
  • Dong C. Cytokine regulation and function in T cells. Annu Rev Immunol 2021;39(1):51–76. doi:10.1146/annurev-immunol-061020-053702.
  • Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 2010;28(1):445–489. doi:10.1146/annurev-immunol-030409-101212.
  • Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol 2011;29(1):621–663. doi:10.1146/annurev-immunol-031210-101400.
  • Crotty S. T follicular helper cell biology: a decade of discovery and diseases. Immunity 2019;50(5):1132–1148. doi:10.1016/j.immuni.2019.04.011.
  • Vinuesa CG, Linterman MA, Yu D, et al. Follicular helper T cells. Annu Rev Immunol 2016;34(1):335–368. doi:10.1146/annurev-immunol-041015-055605.
  • Yao Y, Yang Y, Guo W, et al. METTL3-dependent m(6)A modification programs T follicular helper cell differentiation. Nat Commun 2021;12(1):1333. doi:10.1038/s41467-021-21594-6.
  • Sprent J, Surh CD. Writer’s block: preventing m(6)A mRNA methylation promotes T cell naivety. Immunol Cell Biol 2017;95(10):855–856. doi:10.1038/icb.2017.67.
  • Tong J, Cao G, Zhang T, et al. m(6)A mRNA methylation sustains Treg suppressive functions. Cell Res 2018;28(2):253–256. doi:10.1038/cr.2018.7.
  • Zhou J, Zhang X, Hu J, et al. m(6)A demethylase ALKBH5 controls CD4(+) T cell pathogenicity and promotes autoimmunity. Sci Adv 2021;7(25):eabg0470. doi:10.1126/sciadv.abg0470.
  • Liu Y, Zhou J, Li X, et al. tRNA-m(1)A modification promotes T cell expansion via efficient MYC protein synthesis. Nat Immunol 2022;23(10):1433–1444. doi:10.1038/s41590-022-01301-3.
  • Zheng Z, Zhang L, Cui XL, et al. Control of early B cell development by the RNA N(6)-methyladenosine methylation. Cell Rep 2020;31(13):107819. doi:10.1016/j.celrep.2020.107819.
  • Huang H, Zhang G, Ruan GX, et al. Mettl14-mediated m6A modification is essential for germinal center B cell response. J Immunol 2022;208(8):1924–1936. doi:10.4049/jimmunol.2101071.
  • Grenov A, Hezroni H, Lasman L, et al. YTHDF2 suppresses the plasmablast genetic program and promotes germinal center formation. Cell Rep 2022;39(5):110778. doi:10.1016/j.celrep.2022.110778.
  • Arase H, Mocarski ES, Campbell AE, et al. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 2002;296(5571):1323–1326. doi:10.1126/science.1070884.
  • Liu Y, Liu Z, Tang H, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA. Am J Physiol Cell Physiol 2019;317(4):C762–C775. doi:10.1152/ajpcell.00212.2019.
  • Li Z, Xu Q, Huangfu N, et al. Mettl3 promotes oxLDL-mediated inflammation through activating STAT1 signaling. J Clin Lab Anal 2022;36(1):e24019. doi:10.1002/jcla.24019.
  • Sun Z, Chen W, Wang Z, et al. Matr3 reshapes m6A modification complex to alleviate macrophage inflammation during atherosclerosis. Clin Immunol 2022;245:109176. doi:10.1016/j.clim.2022.109176.
  • Bourayou E, Golub R. Inflammatory-driven NK cell maturation and its impact on pathology. Front Immunol 2022;13:1061959. doi:10.3389/fimmu.2022.1061959.
  • Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol 2022;43(10):833–847. doi:10.1016/j.it.2022.08.004.
  • Song H, Song J, Cheng M, et al. METTL3-mediated m(6)A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat Commun 2021;12(1):5522. doi:10.1038/s41467-021-25803-0.
  • Ma S, Yan J, Barr T, et al. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J Exp Med 2021;218(8):e20210279. doi:10.1084/jem.20210279.
  • Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet 2010;376(9746):1094–1108. doi:10.1016/S0140-6736(10)60826-4.
  • Wang M, Wu J, Lei S, et al. Genome-wide identification of RNA modification-related single nucleotide polymorphisms associated with rheumatoid arthritis. BMC Genomics 2023;24(1):153. doi:10.1186/s12864-023-09227-2.
  • Shi W, Zheng Y, Luo S, et al. METTL3 promotes activation and inflammation of FLSs through the NF-kappaB signaling pathway in rheumatoid arthritis. Front Med 2021;8:607585. doi:10.3389/fmed.2021.607585.
  • Wang J, Yan S, Lu H, et al. METTL3 attenuates LPS-induced inflammatory response in macrophages via NF-kappaB signaling pathway. Mediators Inflamm 2019;2019:3120391–3120398. doi:10.1155/2019/3120391.
  • Zhang J, Yang J, Gao X, et al. METTL3 regulates the inflammatory response in CPB2 toxin-exposed IPEC-J2 cells through the TLR2/NF-kappaB signaling pathway. Int J Mol Sci 2022;23(24):15833. doi:10.3390/ijms232415833.
  • Luo Q, Gao Y, Zhang L, et al. Decreased ALKBH5, FTO, and YTHDF2 in peripheral blood are as risk factors for rheumatoid arthritis. Biomed Res Int 2020;2020:5735279–5735279. doi:10.1155/2020/5735279.
  • Zhang X, Li X, Jia H, et al. The m(6)A methyltransferase METTL3 modifies PGC-1alpha mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes. J Biol Chem 2021;297(3):101058. doi:10.1016/j.jbc.2021.101058.
  • Xiao ZX, Miller JS, Zheng SG. An updated advance of autoantibodies in autoimmune diseases. Autoimmun Rev 2021;20(2):102743. doi:10.1016/j.autrev.2020.102743.
  • Barber MRW, Drenkard C, Falasinnu T, et al. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol 2021;17(9):515–532. doi:10.1038/s41584-021-00668-1.
  • Nusbaum JS, Mirza I, Shum J, et al. Sex differences in systemic lupus erythematosus: epidemiology, clinical considerations, and disease pathogenesis. Mayo Clin Proc 2020;95(2):384–394. doi:10.1016/j.mayocp.2019.09.012.
  • Luo Q, Fu B, Zhang L, et al. Decreased peripheral blood ALKBH5 correlates with markers of autoimmune response in systemic lupus erythematosus. Dis Markers 2020;2020:8193895–8193811. doi:10.1155/2020/8193895.
  • Luo Q, Rao J, Zhang L, et al. The study of METTL14, ALKBH5, and YTHDF2 in peripheral blood mononuclear cells from systemic lupus erythematosus. Mol Genet Genomic Med 2020;8(9):e1298. doi:10.1002/mgg3.1298.
  • Kuriyama Y, Shimizu A, Kanai S, et al. Coordination of retrotransposons and type I interferon with distinct interferon pathways in dermatomyositis, systemic lupus erythematosus and autoimmune blistering disease. Sci Rep 2021;11(1):23146. doi:10.1038/s41598-021-02522-6.
  • Sippl N, Faustini F, Ronnelid J, et al. Arthritis in systemic lupus erythematosus is characterized by local IL-17A and IL-6 expression in synovial fluid. Clin Exp Immunol 2021;205(1):44–52. doi:10.1111/cei.13585.
  • Ma K, Du W, Xiao F, et al. IL-17 sustains the plasma cell response via p38-mediated Bcl-xL RNA stability in lupus pathogenesis. Cell Mol Immunol 2021;18(7):1739–1750. doi:10.1038/s41423-020-00540-4.
  • Malkiel S, Barlev AN, Atisha-Fregoso Y, et al. Plasma cell differentiation pathways in systemic lupus erythematosus. Front Immunol 2018;9:427. doi:10.3389/fimmu.2018.00427.
  • Wang N, Tang H, Wang X, et al. Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes. Biochem Biophys Res Commun 2017;493(1):94–99. doi:10.1016/j.bbrc.2017.09.069.
  • Yin Y, Choi SC, Xu Z, et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med 2015;7(274):274ra18. doi:10.1126/scitranslmed.aaa0835.
  • Guo G, Wang H, Shi X, et al. Disease activity-associated alteration of mRNA m(5) C methylation in CD4(+) T cells of systemic lupus erythematosus. Front Cell Dev Biol 2020;8:430. doi:10.3389/fcell.2020.00430.
  • Zhao X, Dong R, Zhang L, et al. N6-methyladenosine-dependent modification of circGARS acts as a new player that promotes SLE progression through the NF-kappaB/A20 axis. Arthritis Res Ther 2022;24(1):37. doi:10.1186/s13075-022-02732-x.
  • Berulava T, Buchholz E, Elerdashvili V, et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail 2020;22(1):54–66. doi:10.1002/ejhf.1672.
  • Ryan FJ, Ahern AM, Fitzgerald RS, et al. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat Commun 2020;11(1):1512. doi:10.1038/s41467-020-15342-5.
  • Sebastian-delaCruz M, Olazagoitia-Garmendia A, Gonzalez-Moro I, et al. Implication of m6A mRNA methylation in susceptibility to inflammatory bowel disease. Epigenomes 2020;4(3):16. doi:10.3390/epigenomes4030016.
  • Lu TX, Zheng Z, Zhang L, et al. A new model of spontaneous colitis in mice induced by deletion of an RNA m(6)A methyltransferase component METTL14 in T cells. Cell Mol Gastroenterol Hepatol 2020;10(4):747–761. doi:10.1016/j.jcmgh.2020.07.001.
  • Zhang T, Ding C, Chen H, et al. m(6)A mRNA modification maintains colonic epithelial cell homeostasis via NF-kappaB-mediated antiapoptotic pathway. Sci Adv 2022;8(12):eabl5723. doi:10.1126/sciadv.abl5723.
  • Yang L, Wu G, Wu Q, et al. METTL3 overexpression aggravates LPS-induced cellular inflammation in mouse intestinal epithelial cells and DSS-induced IBD in mice. Cell Death Discov 2022;8(1):62. doi:10.1038/s41420-022-00849-1.
  • Chen Y, Lei J, He S. m(6)A modification mediates mucosal immune microenvironment and therapeutic response in inflammatory bowel disease. Front Cell Dev Biol 2021;9:692160. doi:10.3389/fcell.2021.692160.
  • Alfen JS, Larghi P, Facciotti F, et al. Intestinal IFN-gamma-producing type 1 regulatory T cells coexpress CCR5 and programmed cell death protein 1 and downregulate IL-10 in the inflamed guts of patients with inflammatory bowel disease. J Allergy Clin Immunol 2018;142(5):1537–1547 e8. doi:10.1016/j.jaci.2017.12.984.
  • Denton CP, Khanna D. Systemic sclerosis. Lancet 2017;390(10103):1685–1699. doi:10.1016/S0140-6736(17)30933-9.
  • Gibson F, Hanly A, Grbic N, et al. Epigenetic dysregulation in autoimmune and inflammatory skin diseases. Clin Rev Allergy Immunol 2022;63(3):447–471. doi:10.1007/s12016-022-08956-8.
  • Bairkdar M, Rossides M, Westerlind H, et al. Incidence and prevalence of systemic sclerosis globally: a comprehensive systematic review and meta-analysis. Rheumatology 2021;60(7):3121–3133. doi:10.1093/rheumatology/keab190.
  • Chifflot H, Fautrel B, Sordet C, et al. Incidence and prevalence of systemic sclerosis: a systematic literature review. Semin Arthritis Rheum 2008;37(4):223–235. doi:10.1016/j.semarthrit.2007.05.003.
  • Gale SL, Trinh H, Mathew N, et al. Characterizing disease manifestations and treatment patterns among adults with systemic sclerosis: a retrospective analysis of a US healthcare claims population. Rheumatol Ther 2020;7(1):89–99. doi:10.1007/s40744-019-00181-8.
  • De Martinis M, Ciccarelli F, Sirufo MM, et al. An overview of environmental risk factors in systemic sclerosis. Expert Rev Clin Immunol 2016;12(4):465–478. doi:10.1586/1744666X.2016.1125782.
  • Angiolilli C, Marut W, van der Kroef M, et al. New insights into the genetics and epigenetics of systemic sclerosis. Nat Rev Rheumatol 2018;14(11):657–673. doi:10.1038/s41584-018-0099-0.
  • Xie Z, Yu W, Zheng G, et al. TNF-alpha-mediated m(6)A modification of ELMO1 triggers directional migration of mesenchymal stem cell in ankylosing spondylitis. Nat Commun 2021;12(1):5373. doi:10.1038/s41467-021-25710-4.
  • Luo Q, Guo Y, Xiao Q, et al. Expression and clinical significance of the m6A RNA-binding proteins YTHDF2 in peripheral blood mononuclear cells from new-onset ankylosing spondylitis. Front Med 2022;9:922219. doi:10.3389/fmed.2022.922219.
  • Li X, Han Y, Zhou Q, et al. Apigenin, a potent suppressor of dendritic cell maturation and migration, protects against collagen-induced arthritis. J Cell Mol Med 2016;20(1):170–180. doi:10.1111/jcmm.12717.
  • Huang X, He Y, Han J, et al. Not only anti-inflammation, etanercept abrogates collagen-induced arthritis by inhibiting dendritic cell migration and maturation. Cent Eur J Immunol 2019;44(3):237–245. doi:10.5114/ceji.2019.89595.
  • Wang L, Yu M, Yang H. Recent progress in the diagnosis and precise nanocarrier-mediated therapy of inflammatory bowel disease. J Inflamm Res 2021;14:1701–1716. doi:10.2147/JIR.S304101.
  • Xie H, Li J, Ying Y, et al. METTL3/YTHDF2 m(6) A axis promotes tumorigenesis by degrading SETD7 and KLF4 mRNAs in bladder cancer. J Cell Mol Med 2020;24(7):4092–4104. doi:10.1111/jcmm.15063.
  • Paulines MJ, Limbach PA. Stable isotope labeling for improved comparative analysis of RNA digests by mass spectrometry. J Am Soc Mass Spectrom 2017;28(3):551–561. doi:10.1007/s13361-017-1593-3.
  • Ross R, Cao X, Yu N, et al. Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry. Methods 2016;107:73–78. doi:10.1016/j.ymeth.2016.03.016.
  • Hauenschild R, Tserovski L, Schmid K, et al. The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Res 2015;43(20):9950–9964. doi:10.1093/nar/gkv895.
  • Zheng Y, Nie P, Peng D, et al. m6AVar: a database of functional variants involved in m6A modification. Nucleic Acids Res 2018;46(D1):D139–D145. doi:10.1093/nar/gkx895.
  • Ayyala DN, Lin J, Ouyang Z. Differential RNA methylation using multivariate statistical methods. Brief Bioinform 2022;23(1):bbab309. doi:10.1093/bib/bbab309.
  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012;485(7397):201–206. doi:10.1038/nature11112.
  • Ke S, Alemu EA, Mertens C, et al. A majority of m6A residues are in the last exons, allowing the potential for 3’ UTR regulation. Genes Dev 2015;29(19):2037–2053. doi:10.1101/gad.269415.115.
  • Wang X, Wu R, Liu Y, et al. m(6)A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy 2020;16(7):1221–1235. doi:10.1080/15548627.2019.1659617.
  • Guo X, Li K, Jiang W, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer 2020;19(1):91. doi:10.1186/s12943-020-01158-w.
  • Wan W, Ao X, Chen Q, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer 2022;21(1):60. doi:10.1186/s12943-021-01447-y.
  • Boileau E, Dieterich C. RNA modification level estimation with pulseR. Genes 2018;9(12):619. doi:10.3390/genes9120619.
  • Liu C, Sun H, Yi Y, et al. Absolute quantification of single-base m(6)A methylation in the mammalian transcriptome using GLORI. Nat Biotechnol 2023;41(3):355–366. doi:10.1038/s41587-022-01487-9.
  • Liu T, Yang S, Sui J, et al. Dysregulated N6-methyladenosine methylation writer METTL3 contributes to the proliferation and migration of gastric cancer. J Cell Physiol 2020;235(1):548–562. doi:10.1002/jcp.28994.
  • Zhang HM, Qi FF, Wang J, et al. The m6A methyltransferase METTL3-mediated N6-methyladenosine modification of DEK mRNA to promote gastric cancer cell growth and metastasis. Int J Mol Sci 2022;23(12):6451. doi:10.3390/ijms23126451.
  • Lu M, Zhang Z, Xue M, et al. N(6)-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol 2020;5(4):584–598. doi:10.1038/s41564-019-0653-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.