56
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Immunological processes of enhancers and suppressors of long non-coding RNAs associated with brain tumors and inflammation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 178-196 | Received 16 Jul 2022, Accepted 02 Nov 2023, Published online: 17 Nov 2023

References

  • Neugut AI, Sackstein P, Hillyer GC, et al. Magnetic resonance imaging-based screening for asymptomatic brain tumors: a review. Oncologist 2019;24(3):375–384. doi:10.1634/theoncologist.2018-0177.[PMC]
  • Kumar RL, Kakarla J, Isunuri BV, et al. Multi-class brain tumor classification using residual network and global average pooling. Multimed Tools Appl 2021;80(9):13429–13438. doi:10.1007/s11042-020-10335-4.
  • Rasheed S, Rehman K, Akash MSH. An insight into the risk factors of brain tumors and their therapeutic interventions. Biomed Pharmacother 2021;143:112119. doi:10.1016/j.biopha.2021.112119.
  • Sevenich L. Brain-resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer. Front Immunol 2018;9:697. doi:10.3389/fimmu.2018.00697.
  • Sampson JH, Gunn MD, Fecci PE, et al. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer 2020;20(1):12–25. doi:10.1038/s41568-019-0224-7.
  • Domingues P, González-Tablas M, Otero Á, et al. Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav Immun 2016;53:1–15. doi:10.1016/j.bbi.2015.07.019.
  • Singh N, Baby D, Rajguru JP, et al. Inflammation and cancer. Ann Afr Med 2019;18(3):121–126. doi:10.4103/aam.aam_56_18.
  • Alghamri MS, McClellan BL, Hartlage CS, et al. Targeting neuroinflammation in brain cancer: uncovering mechanisms, pharmacological targets, and neuropharmaceutical developments. Front Pharmacol 2021;12:680021. doi:10.3389/fphar.2021.680021.
  • Xiang Z, Chen X, Lv Q, et al. A novel inflammatory lncRNAs prognostic signature for predicting the prognosis of low-grade glioma patients. Front Genet 2021;12:697819–697819. doi:10.3389/fgene.2021.697819.
  • Ghasemi S, Xu S, Nabavi SM, et al. Epigenetic targeting of cancer stem cells by polyphenols (cancer stem cells targeting). Phytother Res 2021;35(7):3649–3664. doi:10.1002/ptr.7059.
  • Pop S, Enciu A-M, Necula LG, et al. Long non-coding RNAs in brain tumours: focus on recent epigenetic findings in glioma. J Cell Mol Med 2018;22(10):4597–4610. doi:10.1111/jcmm.13781.
  • Pisignano G, Ladomery M. Post-transcriptional regulation through long non-coding RNAs (lncRNAs). Noncoding RNA 2021;7(2):29. doi:10.3390/ncrna7020029.
  • Li Z, Zhu X, Huang S. Extracellular vesicle long non-coding RNAs and circular RNAs: biology, functions and applications in cancer. Cancer Lett 2020;489:111–120. doi:10.1016/j.canlet.2020.06.006.
  • Mukherjee S, Pillai PP. Current insights on extracellular vesicle-mediated glioblastoma progression: implications in drug resistance and epithelial-mesenchymal transition. Biochim Biophys Acta Gen Subj 2022;1866(3):130065. doi:10.1016/j.bbagen.2021.130065.
  • Razmkhah F, Soleimani M, Ghasemi S, et al. MicroRNA-21 over expression in umbilical cord blood hematopoietic stem progenitor cells by leukemia microvesicles. Genet Mol Biol 2019;42(2):465–471. doi:10.1590/1678-4685-GMB-2018-0073.
  • Razmkhah F, Ghasemi S, Soleimani M, et al. LY86, LRG1 and PDE9A genes overexpression in umbilical cord blood hematopoietic stem progenitor cells by acute myeloid leukemia (M3) microvesicles. Exp Hematol Oncol 2019;8(1):23. doi:10.1186/s40164-019-0147-8.
  • Mahjoum S, Rufino-Ramos D, Pereira de Almeida L, et al. Living Proof of Activity of Extracellular Vesicles in the Central Nervous System. Int J Mol Sci 2021;22(14):7294. doi:10.3390/ijms22147294.
  • Spinelli C, Adnani L, Choi D, et al. Extracellular vesicles as conduits of non-coding RNA emission and intercellular transfer in brain tumors. Noncoding RNA 2018;5(1):1. doi:10.3390/ncrna5010001.
  • Dang Y, Wei X, Xue L, et al. Long non-coding RNA in glioma: target miRNA and signaling pathways. Clin Lab 2018;64(6):887–894. doi:10.7754/Clin.Lab.2018.180107.
  • Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021;6(1):263. doi:10.1038/s41392-021-00658-5.
  • Huang S, Song Z, Zhang T, et al. Identification of immune cell infiltration and immune-related genes in the tumor microenvironment of glioblastomas. Front Immunol 2020;11:585034. doi:10.3389/fimmu.2020.585034.
  • Tomaszewski W, Sanchez-Perez L, Gajewski TF, et al. Brain tumor microenvironment and host state: implications for immunotherapy. Clin Cancer Res 2019;25(14):4202–4210. doi:10.1158/1078-0432.CCR-18-1627.
  • Marozzi M, Parnigoni A, Negri A, et al. Inflammation, extracellular matrix remodeling, and proteostasis in tumor microenvironment. Int J Mol Sci 2021;22(15):8102. doi:10.3390/ijms22158102.
  • Persidsky Y, Ramirez SH, Haorah J, et al. Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 2006;1(3):223–236. doi:10.1007/s11481-006-9025-3.
  • Li X, Li L, Zhou K, et al. Glioma shapes blood–brain barrier integrity and remodels the tumor microenvironment: links with clinical features and prognosis. J Clin Med 2022;11(19):5863. doi:10.3390/jcm11195863.
  • Wang Y, Zhang F, Xiong N, et al. Remodelling and treatment of the blood-brain barrier in glioma. Cancer Manag Res 2021;13:4217–4232. doi:10.2147/CMAR.S288720.
  • Jackson S, ElAli A, Virgintino D, et al. Blood-brain barrier pericyte importance in malignant gliomas: what we can learn from stroke and Alzheimer’s disease. Neuro Oncol 2017;19(9):1173–1182. doi:10.1093/neuonc/nox058.
  • Al-Kharboosh R, et al. Inflammatory mediators in glioma microenvironment play a dual role in gliomagenesis and mesenchymal stem cell homing: implication for cellular therapy. Mayo Clin Proc Innov Qual Outcomes 2020;4(4):443–459.
  • Tong N, He Z, Ma Y, et al. Tumor associated macrophages, as the dominant immune cells, are an indispensable target for immunologically cold tumor-glioma therapy? Front Cell Dev Biol 2021;9:706286–706286. doi:10.3389/fcell.2021.706286.
  • Basheer AS, Abas F, Othman I, et al. Role of inflammatory mediators, macrophages, and neutrophils in glioma maintenance and progression: mechanistic understanding and potential therapeutic applications. Cancers 2021;13(16):4226. doi:10.3390/cancers13164226.
  • Wu K, Lin K, Li X, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol 2020;11:1731. doi:10.3389/fimmu.2020.01731.
  • Mostofa AGM, Punganuru SR, Madala HR, et al. The process and regulatory components of inflammation in brain oncogenesis. Biomolecules 2017;7(2):34. doi:10.3390/biom7020034.
  • Wang T, Cao L, Dong X, et al. LINC01116 promotes tumor proliferation and neutrophil recruitment via DDX5-mediated regulation of IL-1β in glioma cell. Cell Death Dis 2020;11(5):302. doi:10.1038/s41419-020-2506-0.
  • Kai K, Komohara Y, Esumi S, et al. Macrophage/microglia-derived IL-1β induces glioblastoma growth via the STAT3/NF-κB pathway. Hum Cell 2022;35(1):226–237. doi:10.1007/s13577-021-00619-8.
  • Li S, Jiang M, Wang L, et al. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: recent advancement. Biomed Pharmacother 2020;129:110389. doi:10.1016/j.biopha.2020.110389.
  • Monteleone NJ, Lutz CS. miR-708 negatively regulates TNFα/IL-1β signaling by suppressing NF-κB and arachidonic acid pathways. Mediators Inflamm 2021;2021:5595520.
  • Chen Z, Han ZC. STAT3: a critical transcription activator in angiogenesis. Med Res Rev 2008;28(2):185–200. doi:10.1002/med.20101.
  • Piperi C, Papavassiliou KA, Papavassiliou AG. Pivotal role of STAT3 in shaping glioblastoma immune microenvironment. Cells 2019;8(11):1398. doi:10.3390/cells8111398.
  • Tan MSY, Sandanaraj E, Chong YK, et al. A STAT3-based gene signature stratifies glioma patients for targeted therapy. Nat Commun 2019;10(1):3601. doi:10.1038/s41467-019-11614-x.
  • Yeo ECF, Brown MP, Gargett T, et al. The role of cytokines and chemokines in shaping the immune microenvironment of glioblastoma: implications for immunotherapy. Cells 2021;10(3):607. doi:10.3390/cells10030607.
  • Xu J, Zhang J, Zhang Z, et al. Hypoxic glioma-derived exosomes promote M2-like macrophage polarization by enhancing autophagy induction. Cell Death Dis 2021;12(4):373. doi:10.1038/s41419-021-03664-1.
  • Qian J, Wang C, Wang B, et al. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. J Neuroinflammation 2018;15(1):290. doi:10.1186/s12974-018-1330-2.
  • Hao Y, Baker D, ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 2019;20(11):2767. doi:10.3390/ijms20112767.
  • Zhang G, Feng W, Wu J. Down-regulation of SEPT9 inhibits glioma progression through suppressing TGF-β-induced epithelial-mesenchymal transition (EMT). Biomed Pharmacother 2020;125:109768. doi:10.1016/j.biopha.2019.109768.
  • Tang F, Wang H, Chen E, et al. LncRNA-ATB promotes TGF-β-induced glioma cells invasion through NF-κB and P38/MAPK pathway. J Cell Physiol 2019;234(12):23302–23314. doi:10.1002/jcp.28898.
  • García-Hernández L, García-Ortega MB, Ruiz-Alcalá G, et al. The p38 MAPK components and modulators as biomarkers and molecular targets in cancer. Int J Mol Sci 2021;23(1):370. doi:10.3390/ijms23010370.
  • Guo X, Sui R, Piao H. Tumor-derived small extracellular vesicles: potential roles and mechanism in glioma. J Nanobiotechnology 2022;20(1):383. doi:10.1186/s12951-022-01584-6.
  • Yang E, Wang X, Gong Z, et al. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther 2020;5(1):242. doi:10.1038/s41392-020-00359-5.
  • Wu Y, Niu D, Deng S, et al. Tumor-derived or non-tumor-derived exosomal noncodingRNAs and signaling pathways in tumor microenvironment. Int Immunopharmacol 2022;106:108626. doi:10.1016/j.intimp.2022.108626.
  • Wang T, Nasser MI, Shen J, et al. Functions of exosomes in the triangular relationship between the tumor, inflammation, and immunity in the tumor microenvironment. J Immunol Res 2019;2019:4197829–4197810. doi:10.1155/2019/4197829.
  • Mahinfar P, Baradaran B, Davoudian S, et al. Long non-coding RNAs in multidrug resistance of glioblastoma. Genes 2021;12(3):455. doi:10.3390/genes12030455.
  • Zhang Y, Jiao L, Lu L, et al. The mechanisms underlying the beneficial effects of stem cell-derived exosomes in repairing ischemic tissue injury. J Cardiovasc Transl Res 2022;15(3):524–534. doi:10.1007/s12265-022-10263-8.
  • Movahedpour A, Khatami SH, Khorsand M, et al. Exosomal noncoding RNAs: key players in glioblastoma drug resistance. Mol Cell Biochem 2021;476(11):4081–4092. doi:10.1007/s11010-021-04221-2.
  • Lin X, Luo M-L, Song E. Long non-coding RNA and non-coding nucleic acids: signaling players in the networks of the tumor ecosystem. Cell Insight 2022;1(1):100004. doi:10.1016/j.cellin.2022.100004.
  • Xie T, Li B, Liu H, et al. Long non-coding RNA as a potential biomarker for prognosis of glioma: a protocol for systematic review and meta-analysis. Medicine 2021;100(33):e26921-e26921. doi:10.1097/MD.0000000000026921.
  • Nie J-H, Li T-X, Zhang X-Q, et al. Roles of non-coding RNAs in normal human brain development, brain tumor, and neuropsychiatric disorders. Noncoding RNA 2019;5(2):36. doi:10.3390/ncrna5020036.
  • Wu Y, Qian Z. Long non-coding RNAs (lncRNAs) and microRNAs regulatory pathways in the tumorigenesis and pathogenesis of glioma. Discov Med 2019;28(153):129–138.
  • Dong D, Mu Z, Zhao C, et al. ZFAS1: a novel tumor-related long non-coding RNA. Cancer Cell Int 2018;18(1):125. doi:10.1186/s12935-018-0623-y.
  • Katsushima K, Natsume A, Ohka F, et al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun 2016;7(1):13616. doi:10.1038/ncomms13616.
  • Han Y, Wu Z, Wu T, et al. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis 2016;7(3):e2123-e2123–e2123. doi:10.1038/cddis.2015.407.
  • Li J, Zhou L. Overexpression of lncRNA DANCR positively affects progression of glioma via activating Wnt/β-catenin signaling. Biomed Pharmacother 2018;102:602–607. doi:10.1016/j.biopha.2018.03.116.
  • Zhang H, Wei D-L, Wan L, et al. Highly expressed lncRNA CCND2-AS1 promotes glioma cell proliferation through Wnt/β-catenin signaling. Biochem Biophys Res Commun 2017;482(4):1219–1225. doi:10.1016/j.bbrc.2016.12.016.
  • Gao XF, He HQ, Zhu XB, et al. LncRNA SNHG20 promotes tumorigenesis and cancer stemness in glioblastoma via activating PI3K/Akt/mTOR signaling pathway. Neoplasma 2019;66(4):532–542. doi:10.4149/neo_2018_180829n656.
  • Ma W, Zhou Y, Liu M, et al. Long non-coding RNA LINC00470 in serum derived exosome: a critical regulator for proliferation and autophagy in glioma cells. Cancer Cell Int 2021;21(1):149. doi:10.1186/s12935-021-01825-y.
  • Wang H, Li L, Yin L. Silencing LncRNA LOXL1-AS1 attenuates mesenchymal characteristics of glioblastoma via NF-κB pathway. Biochem Biophys Res Commun 2018;500(2):518–524. doi:10.1016/j.bbrc.2018.04.133.
  • Ji J, Xu R, Ding K, et al. Long noncoding RNA SChLAP1 forms a growth-promoting complex with HNRNPL in human glioblastoma through stabilization of ACTN4 and activation of NF-κB signaling. Clin Cancer Res 2019;25(22):6868–6881. doi:10.1158/1078-0432.CCR-19-0747.
  • Vallée A, Lecarpentier Y, Guillevin R, et al. Opposite interplay between the canonical WNT/β-catenin pathway and PPAR gamma: a potential therapeutic target in gliomas. Neurosci Bull 2018;34(3):573–588. doi:10.1007/s12264-018-0219-5.
  • Vallée A, Lecarpentier Y, Vallée J-N. Opposed interplay between IDH1 mutations and the WNT/β-catenin pathway: added information for glioma classification. Biomedicines 2021;9(6):619. doi:10.3390/biomedicines9060619.
  • Cheng C, Dong Y, Ru X, et al. LncRNA ANCR promotes glioma cells invasion, migration, proliferation and inhibits apoptosis via interacting with EZH2 and repressing PTEN expression. Cancer Gene Ther 2021;28(9):1025–1034. doi:10.1038/s41417-020-00263-8.
  • Chen M, Yin X, Lu C, et al. Mahanine induces apoptosis, cell cycle arrest, inhibition of cell migration, invasion and PI3K/AKT/mTOR signalling pathway in glioma cells and inhibits tumor growth in vivo. Chem Biol Interact 2019;299:1–7. doi:10.1016/j.cbi.2018.11.009.
  • Ebrahimpour A, Sarfi M, Rezatabar S, et al. Novel insights into the interaction between long non-coding RNAs and microRNAs in glioma. Mol Cell Biochem 2021;476(6):2317–2335. doi:10.1007/s11010-021-04080-x.
  • Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018;18(5):309–324. doi:10.1038/nri.2017.142.
  • Xu X, Liang Y, Gareev I, et al. LncRNA as potential biomarker and therapeutic target in glioma. Mol Biol Rep 2023;50(1):841–851. doi:10.1007/s11033-022-08056-y.
  • Gong X, Huang M-Y. Tumor-suppressive function of lncRNA-MEG3 in glioma cells by regulating miR-6088/SMARCB1 axis. Biomed Res Int 2020;2020:4309161–4309115. doi:10.1155/2020/4309161.
  • He Z, Long J, Yang C, et al. LncRNA DGCR5 plays a tumor-suppressive role in glioma via the miR-21/Smad7 and miR-23a/PTEN axes. Aging 2020;12(20):20285–20307. doi:10.18632/aging.103800.
  • Sheng J, He X, Yu W, et al. p53-Targeted lncRNA ST7-AS1 acts as a tumour suppressor by interacting with PTBP1 to suppress the Wnt/β-catenin signalling pathway in glioma. Cancer Lett 2021;503:54–68. doi:10.1016/j.canlet.2020.12.039.
  • Chae Y, Roh J, Kim W. The roles played by long non-coding RNAs in glioma resistance. Int J Mol Sci 2021;22(13):6834. doi:10.3390/ijms22136834.
  • Di Martino MT, Riillo C, Scionti F, et al. miRNAs and lncRNAs as novel therapeutic targets to improve cancer immunotherapy. Cancers 2021;13(7):1587. doi:10.3390/cancers13071587.
  • Kim S-H, Lim K-H, Yang S, et al. Long non-coding RNAs in brain tumors: roles and potential as therapeutic targets. J Hematol Oncol 2021;14(1):77. doi:10.1186/s13045-021-01088-0.
  • Li X, Sun L, Wang X, et al. A five immune-related lncRNA signature as a prognostic target for glioblastoma. Front Mol Biosci 2021;8:632837. doi:10.3389/fmolb.2021.632837.
  • Wang X, Gao M, Ye J, et al. An immune gene-related five-lncRNA signature for to predict glioma prognosis. Front Genet 2020;11:612037. doi:10.3389/fgene.2020.612037.
  • Peng L, Chen Z, Chen Y, et al. MIR155HG is a prognostic biomarker and associated with immune infiltration and immune checkpoint molecules expression in multiple cancers. Cancer Med 2019;8(17):7161–7173. doi:10.1002/cam4.2583.
  • Zheng J, Liu X, Wang P, et al. CRNDE promotes malignant progression of glioma by attenuating miR-384/PIWIL4/STAT3 Axis. Mol Ther 2016;24(7):1199–1215. doi:10.1038/mt.2016.71.
  • Hu Y, Luo H, Zhu X, et al. CRNDE/ETS1/GPR17 facilitates the proliferation, migration, and invasion of glioma. Comput Math Methods Med 2021;2021:7566365–7566311. doi:10.1155/2021/7566365.
  • Ahmad S, Abbas M, Ullah MF, et al. Long non-coding RNAs regulated NF-κB signaling in cancer metastasis: micromanaging by not so small non-coding RNAs. Semin Cancer Biol 2022;85:155–163. doi:10.1016/j.semcancer.2021.07.015.
  • Tian Y, Ke Y-Q, Ma Y. Immune-related lncRNA correlated with transcription factors provide strong prognostic prediction in gliomas. J Oncol 2020;2020:2319194–2319112. doi:10.1155/2020/2319194.
  • Lu Y, Sha H, Sun X, et al. CRNDE: an oncogenic long non-coding RNA in cancers. Cancer Cell Int 2020;20(1):162. doi:10.1186/s12935-020-01246-3.
  • Zhang J, Yin M, Peng G, et al. CRNDE: an important oncogenic long non-coding RNA in human cancers. Cell Prolif 2018;51(3):e12440. doi:10.1111/cpr.12440.
  • Zhong C, Tao B, Li X, et al. HOXA-AS2 contributes to regulatory T cell proliferation and immune tolerance in glioma through the miR-302a/KDM2A/JAG1 axis. Cell Death Dis 2022;13(2):160. doi:10.1038/s41419-021-04471-4.
  • Zhang Q, Liu X-J, Li Y, et al. Prognostic value of immune-related lncRNA SBF2-AS1 in diffuse lower-grade glioma. Technol Cancer Res Treat 2021;20:15330338211011966–15330338211011966. doi:10.1177/15330338211011966.
  • Lu Q, Lou J, Cai R, et al. Emerging roles of a pivotal lncRNA SBF2-AS1 in cancers. Cancer Cell Int 2021;21(1):417. doi:10.1186/s12935-021-02123-3.
  • Guo X-D, Ji J, Xue T-F, et al. FTY720 exerts anti-glioma effects by regulating the glioma microenvironment through increased CXCR4 internalization by glioma-associated microglia. Front Immunol 2020;11:178. doi:10.3389/fimmu.2020.00178.
  • Tang T, Wang L-X, Yang M-L, et al. lncRNA TPTEP1 inhibits stemness and radioresistance of glioma through miR‑106a‑5p‑mediated P38 MAPK signaling. Mol Med Rep 2020;22(6):4857–4867. doi:10.3892/mmr.2020.11542.
  • Cheng H, Zhao H, Xiao X, et al. Long non-coding RNA MALAT1 upregulates ZEB2 expression to promote malignant progression of glioma by attenuating miR-124. Mol Neurobiol 2021;58(3):1006–1016. doi:10.1007/s12035-020-02165-0.
  • Yang J, Sun G, Hu Y, et al. Extracellular vesicle lncRNA metastasis-associated lung adenocarcinoma transcript 1 released from glioma stem cells modulates the inflammatory response of microglia after lipopolysaccharide stimulation through regulating miR-129-5p/high mobility group box-1 protein axis. Front Immunol 2019;10:3161. doi:10.3389/fimmu.2019.03161.
  • Shi T, Guo D, Xu H, et al. HOTAIRM1, an enhancer lncRNA, promotes glioma proliferation by regulating long-range chromatin interactions within HOXA cluster genes. Mol Biol Rep 2020;47(4):2723–2733. doi:10.1007/s11033-020-05371-0.
  • Liang Q, Li X, Guan G, et al. Long non-coding RNA, HOTAIRM1, promotes glioma malignancy by forming a ceRNA network. Aging 2019;11(17):6805–6838. doi:10.18632/aging.102205.
  • Ding H, Cui L, Wang C. Long noncoding RNA LIFR-AS1 suppresses proliferation, migration and invasion and promotes apoptosis through modulating miR-4262/NF-κB pathway in glioma. Neurol Res 2021;43(3):210–219. doi:10.1080/01616412.2020.1836465.
  • Xia S, Ji R, Zhan W. Long noncoding RNA papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) inhibits proliferation and invasion of glioma cells by suppressing the Wnt/β-catenin signaling pathway. BMC Neurol 2017;17(1):30. doi:10.1186/s12883-017-0813-6.
  • Guo H, Hu G, Yang Q, et al. Knockdown of long non-coding RNA CCAT2 suppressed proliferation and migration of glioma cells. Oncotarget 2016;7(49):81806–81814. doi:10.18632/oncotarget.13242.
  • Astaneh M, Ghafouri-Fard S. Long non-coding RNAs as regulators of Wnt/β catenin pathway. Gene Reports 2019;16:100404. doi:10.1016/j.genrep.2019.100404.
  • Gong X, Huang M. Long non-coding RNA MEG3 promotes the proliferation of glioma cells through targeting Wnt/β-catenin signal pathway. Cancer Gene Ther 2017;24(9):381–385. doi:10.1038/cgt.2017.32.
  • Wang Y, Chen X, Tang G, et al. AS-IL 6 promotes glioma cell invasion by inducing H3K27Ac enrichment at the IL 6 promoter and activating IL 6 transcription. FEBS Lett 2016;590(24):4586–4593. doi:10.1002/1873-3468.12485.
  • Ke J, Yao Y-l, Zheng J, et al. Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326. Oncotarget 2015;6(26):21934–21949. doi:10.18632/oncotarget.4290.
  • Cao S, et al. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function. Am J Cancer Rese 2016;6(11):2561.
  • Wang P, Peng X, Zhang J, et al. LncRNA-135528 inhibits tumor progression by up-regulating CXCL10 through the JAK/STAT pathway. Apoptosis 2018;23(11–12):651–666. doi:10.1007/s10495-018-1482-7.
  • Hu Y-W, Kang C-M, Zhao J-J, et al. Lnc RNA PLAC 2 down-regulates RPL 36 expression and blocks cell cycle progression in glioma through a mechanism involving STAT 1. J Cell Mol Med 2018;22(1):497–510. doi:10.1111/jcmm.13338.
  • Katsushima K, Jallo G, Eberhart CG, et al. Long non-coding RNAs in brain tumors. NAR Cancer 2021;3(1):zcaa041. doi:10.1093/narcan/zcaa041.
  • Shang C, Guo Y, Hong Y, et al. Long non-coding RNA TUSC7, a target of miR-23b, plays tumor-suppressing roles in human gliomas. Front Cell Neurosci 2016;10:235. doi:10.3389/fncel.2016.00235.
  • Dai J, Ma J, Yu B, et al. Long noncoding RNA TUNAR represses growth, migration, and invasion of human glioma cells through regulating miR-200a and Rac1. Oncol Res 2018;27(1):107–115. doi:10.3727/096504018X15205622257163.
  • Wang A, Meng M, Zhao X, et al. Long non-coding RNA ENST00462717 suppresses the proliferation, survival, and migration by inhibiting MDM2/MAPK pathway in glioma. Biochem Biophys Res Commun 2017;485(2):513–521. doi:10.1016/j.bbrc.2017.02.015.
  • Han M, Wang S, Fritah S, et al. Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling. Brain 2020;143(2):512–530. doi:10.1093/brain/awz406.
  • Gao R, Zhang R, Zhang C, et al. Long noncoding RNA CCAT1 promotes cell proliferation and metastasis in human medulloblastoma via MAPK pathway. Tumori Journal 2018;104(1):43–50. doi:10.5301/tj.5000662.
  • Li Y, Zhu G, Zeng W, et al. Long noncoding RNA AB073614 promotes the malignance of glioma by activating Wnt/β-catenin signaling through downregulating SOX7. Oncotarget 2017;8(39):65577–65587. doi:10.18632/oncotarget.19305.
  • Guo A, et al. Overexpression of lncRNA IRAIN restrains the progression and Temozolomide resistance of glioma via repressing IGF-1R-PI3K-NF-κB signaling pathway. Histol Histopathol 2022;37(6);543–554.
  • Gao X, Guo X, Xue H, et al. lncTCF7 is a negative prognostic factor, and knockdown of lncTCF7 inhibits migration, proliferation and tumorigenicity in glioma. Sci Rep 2017;7(1):17456. doi:10.1038/s41598-017-17340-y.
  • Yang Y, Ren M, Song C, et al. LINC00461, a long non-coding RNA, is important for the proliferation and migration of glioma cells. Oncotarget 2017;8(48):84123–84139. doi:10.18632/oncotarget.20340.
  • Zhu Z, Dai J, Liao Y, et al. Knockdown of long noncoding RNA LINC00152 suppresses cellular proliferation and invasion in glioma cells by regulating miR-4775. Oncol Res 2018;26(6):857–867. doi:10.3727/096504017X15016337254597.
  • Liu H, Li C, Yang J, et al. Long noncoding RNA CASC9/miR-519d/STAT3 positive feedback loop facilitate the glioma tumourigenesis. J Cell Mol Med 2018;22(12):6338–6344. doi:10.1111/jcmm.13932.
  • Wang R, Li Y, Zhu G, et al. Long noncoding RNA CASC2 predicts the prognosis of glioma patients and functions as a suppressor for gliomas by suppressing Wnt/β-catenin signaling pathway. Neuropsychiatr Dis Treat 2017;13:1805–1813. doi:10.2147/NDT.S137171.
  • Liang J, Liu N, Xin H. Knockdown long non-coding RNA PEG10 inhibits proliferation, migration and invasion of glioma cell line U251 by regulating miR-506. Gen Physiol Biophys 2019;38(4):295–304. doi:10.4149/gpb_2019018.
  • Cao W, Liu B, Ma H. Long non-coding RNA GHET1 promotes viability, migration and invasion of glioma cell line U251 by down-regulation of miR-216a. Eur Rev Med Pharmacol Sci 2019;23(4):1591–1599.
  • Liu B, Cao W, Ma H. Knockdown of lncRNA LSINCT5 suppresses growth and metastasis of human glioma cells via up-regulating miR-451. Artif Cells Nanomed Biotechnol 2019;47(1):2507–2515. doi:10.1080/21691401.2019.1626404.
  • Zheng J, Li X-d, Wang P, et al. CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186. Oncotarget 2015;6(28):25339–25355. doi:10.18632/oncotarget.4509.
  • Chen W-L, Chen H-J, Hou G-Q, et al. LINC01198 promotes proliferation and temozolomide resistance in a NEDD4-1-dependent manner, repressing PTEN expression in glioma. Aging 2019;11(16):6053–6068. doi:10.18632/aging.102162.
  • Li B, Zhao H, Song J, et al. LINC00174 down-regulation decreases chemoresistance to temozolomide in human glioma cells by regulating miR-138-5p/SOX9 axis. Hum Cell 2020;33(1):159–174. doi:10.1007/s13577-019-00281-1.
  • Ma Y, Zhou G, Li M, et al. Long noncoding RNA DANCR mediates cisplatin resistance in glioma cells via activating AXL/PI3K/Akt/NF-κB signaling pathway. Neurochem Int 2018;118:233–241. doi:10.1016/j.neuint.2018.03.011.
  • Cai H, Xue Y, Wang P, et al. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget 2015;6(23):19759–19779. doi:10.18632/oncotarget.4331.
  • Cai H, Liu X, Zheng J, et al. Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma. Oncogene 2017;36(3):318–331. doi:10.1038/onc.2016.212.
  • Li J, An G, Zhang M, et al. Long non-coding RNA TUG1 acts as a miR-26a sponge in human glioma cells. Biochem Biophys Res Commun 2016;477(4):743–748. doi:10.1016/j.bbrc.2016.06.129.
  • Gong W, Zheng J, Liu X, et al. Knockdown of NEAT1 restrained the malignant progression of glioma stem cells by activating microRNA let-7e. Oncotarget 2016;7(38):62208–62223. doi:10.18632/oncotarget.11403.
  • Zhen L, Yun-Hui L, Hong-Yu D, et al. Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumour Biol 2016;37(1):673–683. doi:10.1007/s13277-015-3843-y.
  • Yang X, Xiao Z, Du X, et al. Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol Rep 2017;37(1):555–562. doi:10.3892/or.2016.5266.
  • Wu W, Yu T, Wu Y, et al. The miR155HG/miR-185/ANXA2 loop contributes to glioblastoma growth and progression. J Exp Clin Cancer Res 2019;38(1):1–14. doi:10.1186/s13046-019-1132-0.
  • Tang J, Yu B, Li Y, et al. TGF-β-activated lncRNA LINC00115 is a critical regulator of glioma stem-like cell tumorigenicity. EMBO Rep 2019;20(12):e48170. doi:10.15252/embr.201948170.
  • He Z, You C, Zhao D. Long non-coding RNA UCA1/miR-182/PFKFB2 axis modulates glioblastoma-associated stromal cells-mediated glycolysis and invasion of glioma cells. Biochem Biophys Res Commun 2018;500(3):569–576. doi:10.1016/j.bbrc.2018.04.091.
  • Cai J, Zhang J, Wu P, et al. Blocking LINC00152 suppresses glioblastoma malignancy by impairing mesenchymal phenotype through the miR-612/AKT2/NF-κB pathway. J Neurooncol 2018;140(2):225–236. doi:10.1007/s11060-018-2951-0.
  • Ren J, Yang Y, Xue J, et al. Long noncoding RNA SNHG7 promotes the progression and growth of glioblastoma via inhibition of miR-5095. Biochem Biophys Res Commun 2018;496(2):712–718. doi:10.1016/j.bbrc.2018.01.109.
  • Wu X, Wang Y, Yu T, et al. Blocking MIR155HG/miR-155 axis inhibits mesenchymal transition in glioma. Neuro Oncol 2017;19(9):1195–1205. doi:10.1093/neuonc/nox017.
  • Yu H, Zheng J, Liu X, et al. Transcription factor NFAT5 promotes glioblastoma cell-driven angiogenesis via SBF2-AS1/miR-338-3p-mediated EGFL7 expression change. Front Mol Neurosci 2017;10:301. doi:10.3389/fnmol.2017.00301.
  • Zhang Y, Zhang Y, Wang S, et al. SP1-induced lncRNA ZFPM2 antisense RNA 1 (ZFPM2-AS1) aggravates glioma progression via the miR-515-5p/Superoxide dismutase 2 (SOD2) axis. Bioengineered 2021;12(1):2299–2310. doi:10.1080/21655979.2021.1934241.
  • Li Z, Zhang J, Zheng H, et al. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme. J Exp Clin Cancer Res 2019;38(1):1–13. doi:10.1186/s13046-019-1371-0.
  • Lu C, Wei Y, Wang X, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. p. Mol Cancer 2020;19(1):28. doi:10.1186/s12943-020-1137-5.
  • Liu B, Zhou J, Wang C, et al. LncRNA SOX2OT promotes temozolomide resistance by elevating SOX2 expression via ALKBH5-mediated epigenetic regulation in glioblastoma. Cell Death Dis 2020;11(5):384. doi:10.1038/s41419-020-2540-y.
  • Zhang Y, Yu R, Li Q, et al. SNHG1/miR-556-5p/TCF12 feedback loop enhances the tumorigenesis of meningioma through Wnt signaling pathway. J Cell Biochem 2020;121(2):1880–1889. doi:10.1002/jcb.29423.
  • Li T, Ren J, Ma J, et al. LINC00702/miR-4652-3p/ZEB1 axis promotes the progression of malignant meningioma through activating Wnt/β-catenin pathway. Biomed Pharmacother 2019;113:108718. doi:10.1016/j.biopha.2019.108718.
  • Xu Z, Sun Y, Wang D, et al. SNHG16 promotes tumorigenesis and cisplatin resistance by regulating miR-338-3p/PLK4 pathway in neuroblastoma cells. Cancer Cell Int 2020;20(1):236. doi:10.1186/s12935-020-01291-y.
  • Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 2019;51(1):27–41. doi:10.1016/j.immuni.2019.06.025.
  • Zhang Y, Wang X, Hu C, et al. Shiny transcriptional junk: lncRNA-derived peptides in cancers and immune responses. Life Sci 2023;316:121434. doi:10.1016/j.lfs.2023.121434.
  • Chen Z, Wu H, Zhang M. Long non-coding RNA: an underlying bridge linking neuroinflammation and central nervous system diseases. Neurochem Int 2021;148:105101. doi:10.1016/j.neuint.2021.105101.
  • Li N, Shi K, Li W. TUSC7: a novel tumor suppressor long non-coding RNA in human cancers. J Cell Physiol 2018;233(9):6401–6407. doi:10.1002/jcp.26544.
  • Tan X, Jiang H, Fang Y, et al. The essential role of long non-coding RNA GAS5 in glioma: interaction with microRNAs, chemosensitivity and potential as a biomarker. J Cancer 2021;12(1):224–231. doi:10.7150/jca.49203.
  • Liu Q, Yu W, Zhu S, et al. Long noncoding RNA GAS5 regulates the proliferation, migration, and invasion of glioma cells by negatively regulating miR-18a-5p. J Cell Physiol 2018;234(1):757–768. doi:10.1002/jcp.26889.
  • Wang X-P, Shan C, Deng X-L, et al. Long non-coding RNA PAR5 inhibits the proliferation and progression of glioma through interaction with EZH2. Oncol Rep 2017;38(5):3177–3186. doi:10.3892/or.2017.5986.
  • Zheng Q, Lin Z, Li X, et al. Inflammatory cytokine IL6 cooperates with CUDR to aggravate hepatocyte-like stem cells malignant transformation through NF-κB signaling. Sci Rep 2016;6(1):36843. doi:10.1038/srep36843.
  • Yeh JE, Frank DA. STAT3-interacting proteins as modulators of transcription factor function: implications to targeted cancer therapy. ChemMedChem 2016;11(8):795–801. doi:10.1002/cmdc.201500482.
  • Jia L, Tian Y, Chen Y, et al. The silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/β-catenin pathway. Onco Targets Ther 2018;11:313–321. doi:10.2147/OTT.S154339.
  • Guo LP, et al. Influences of LncRNA SNHG20 on proliferation and apoptosis of glioma cells through regulating the PTEN/PI3K/AKT signaling pathway. Eur Rev Med Pharmacol Sci 2019;23(1):253–261.
  • Chen W, Li Q, Zhang G, et al. LncRNA HOXA-AS3 promotes the malignancy of glioblastoma through regulating miR-455-5p/USP3 axis. J Cell Mol Med 2020;24(20):11755–11767. doi:10.1111/jcmm.15788.
  • Tripathi, Shraddha, Shree, Bakhya, Mohapatra, Stuti, et al., The expanding regulatory mechanisms and cellular functions of long non-coding RNAs (lncRNAs) in neuroinflammation.Mol Neurobiol, 2021. 58(6): p 2916–2939. doi:10.1007/s12035-020-02268-8.
  • Chu L, Yu L, Liu J, et al. Long intergenic non-coding LINC00657 regulates tumorigenesis of glioblastoma by acting as a molecular sponge of miR-190a-3p. Aging 2019;11(5):1456–1470. doi:10.18632/aging.101845.
  • Guo A, Fang G, Lin Z, et al. Overexpression of lncRNA IRAIN restrains the progression and Temozolomide resistance of glioma via repressing IGF-1R-PI3K-NF-kappaB signaling pathway. Histol Histopathol 2022;37(6):543–554.
  • Chen Q, Wang W, Wu Z, et al. Over-expression of lncRNA TMEM161B-AS1 promotes the malignant biological behavior of glioma cells and the resistance to temozolomide via up-regulating the expression of multiple ferroptosis-related genes by sponging hsa-miR-27a-3p. Cell Death Discov 2021;7(1):311. doi:10.1038/s41420-021-00709-4.
  • Zhang B, Fang S, Cheng Y, et al. The long non-coding RNA, urothelial carcinoma associated 1, promotes cell growth, invasion, migration, and chemo-resistance in glioma through Wnt/β-catenin signaling pathway. Aging 2019;11(19):8239–8253. doi:10.18632/aging.102317.
  • Ghafouri-Fard S, Hajiesmaeili M, Shoorei H, et al. The impact of lncRNAs and miRNAs in regulation of function of cancer stem cells and progression of cancer. Front Cell Dev Biol 2021;9:696820. doi:10.3389/fcell.2021.696820.
  • Wu X, Yang L, Wang J, et al. The Involvement of Long Non-Coding RNAs in Glioma: from Early Detection to Immunotherapy. Front Immunol 2022;13:897754. doi:10.3389/fimmu.2022.897754.
  • He X, Qi Y, Zhang X, et al. Current landscape of tumor-derived exosomal ncRNAs in glioma progression, detection, and drug resistance. Cell Death Dis 2021;12(12):1145. doi:10.1038/s41419-021-04430-z.
  • Eades G, Zhang Y-S, Li Q-L, et al. Long non-coding RNAs in stem cells and cancer. World J Clin Oncol 2014;5(2):134–141. doi:10.5306/wjco.v5.i2.134.
  • Cao Y. Adipocyte and lipid metabolism in cancer drug resistance. J Clin Invest 2019;129(8):3006–3017. doi:10.1172/JCI127201.
  • Ni Y, Zhou X, Yang J, et al. The role of tumor-stroma interactions in drug resistance within tumor microenvironment. Front Cell Dev Biol 2021;9:637675. doi:10.3389/fcell.2021.637675.
  • Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012;81(1):145–166. doi:10.1146/annurev-biochem-051410-092902.
  • Winkle M, El-Daly SM, Fabbri M, et al. Noncoding RNA therapeutics—challenges and potential solutions. Nat Rev Drug Discov 2021;20(8):629–651. doi:10.1038/s41573-021-00219-z.
  • Zhu Z, Zhong S, Shen Z. Targeting the inflammatory pathways to enhance chemotherapy of cancer. Cancer Biol Ther 2011;12(2):95–105. doi:10.4161/cbt.12.2.15952.
  • Ansari MA, Thiruvengadam M, Venkidasamy B, et al. Exosome-based nanomedicine for cancer treatment by targeting inflammatory pathways: current status and future perspectives. Semin Cancer Biol 2022;86(Pt 2):678–696. doi:10.1016/j.semcancer.2022.04.005.
  • Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2012;4(3):a006049.
  • Cadwell K. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat Rev Immunol 2016;16(11):661–675. doi:10.1038/nri.2016.100.
  • Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018;9(6):7204–7218. doi:10.18632/oncotarget.23208.
  • Han Li C, Chen Y. Small and long non-coding RNAs: novel targets in perspective cancer therapy. Curr Genomics 2015;16(5):319–326. doi:10.2174/1389202916666150707155851.
  • Park E-G, Pyo S-J, Cui Y, et al. Tumor immune microenvironment lncRNAs. Brief Bioinform 2022;23(1):bbab504. doi:10.1093/bib/bbab504.
  • Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res 2017;77(15):3965–3981. doi:10.1158/0008-5472.CAN-16-2634.
  • Wilusz JE. Long noncoding RNAs: re-writing dogmas of RNA processing and stability. Biochim Biophys Acta 2016;1859(1):128–138. doi:10.1016/j.bbagrm.2015.06.003.
  • Yadav B, Pal S, Rubstov Y, et al. LncRNAs associated with glioblastoma: from transcriptional noise to novel regulators with a promising role in therapeutics. Mol Ther Nucleic Acids 2021;24:728–742. doi:10.1016/j.omtn.2021.03.018.
  • Li J, Zhao J, Tan T, et al. Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: a comprehensive review. Int J Nanomedicine 2020;15:2563–2582. doi:10.2147/IJN.S243223.
  • Ratti M, Lampis A, Ghidini M, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target Oncol 2020;15(3):261–278. doi:10.1007/s11523-020-00717-x.
  • Mehdipour G, Wintrasiri MN, Ghasemi S. CPP-based bioactive drug delivery to penetrate the blood-brain barrier: a potential therapy for glioblastoma multiforme. Curr Drug Targets 2022;23(7):719–728. doi:10.2174/1389450123666220207143750.
  • Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet 2018;392(10145):432–446. doi:10.1016/S0140-6736(18)30990-5.
  • Aldape K, Brindle KM, Chesler L, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol 2019;16(8):509–520. doi:10.1038/s41571-019-0177-5.
  • Latowska J, Grabowska A, Zarębska Ż, et al. Non-coding RNAs in brain tumors, the contribution of lncRNAs, circRNAs, and snoRNAs to cancer development—their diagnostic and therapeutic potential. Int J Mol Sci 2020;21(19):7001. doi:10.3390/ijms21197001.
  • Boussiotis VA, Charest A. Immunotherapies for malignant glioma. Oncogene 2018;37(9):1121–1141. doi:10.1038/s41388-017-0024-z.
  • Pancholi S, Tripathi A, Bhan A, et al. Emerging concepts on the role of extracellular vesicles and its cargo contents in glioblastoma-microglial crosstalk. Mol Neurobiol 2022;59(5):2822–2837. doi:10.1007/s12035-022-02752-3.
  • Chew CL, Conos SA, Unal B, et al. Noncoding RNAs: master regulators of inflammatory signaling. Trends Mol Med 2018;24(1):66–84. doi:10.1016/j.molmed.2017.11.003.
  • He L, Zhou H, Zeng Z, et al. Wnt/β-catenin signaling cascade: a promising target for glioma therapy. J Cell Physiol 2019;234(3):2217–2228. doi:10.1002/jcp.27186.
  • Ghafouri-Fard S, Glassy MC, Abak A, et al. The interaction between miRNAs/lncRNAs and Notch pathway in human disorders. Biomed Pharmacother 2021;138:111496. doi:10.1016/j.biopha.2021.111496.
  • Shi J, Dong B, Cao J, et al. Long non-coding RNA in glioma: signaling pathways. Oncotarget 2017;8(16):27582–27592. doi:10.18632/oncotarget.15175.
  • Chen Y, Jin Y, Wu N. Role of tumor-derived extracellular vesicles in glioblastoma. Cells 2021;10(3):512. doi:10.3390/cells10030512.
  • Simon T, Jackson E, Giamas G. Breaking through the glioblastoma micro-environment via extracellular vesicles. Oncogene 2020;39(23):4477–4490. doi:10.1038/s41388-020-1308-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.