898
Views
5
CrossRef citations to date
0
Altmetric
Laboratory Study

Glibenclamide Effects on Renal Function and Histology after Acute Hemorrhage in Rats under Sevoflurane Anesthesia

, , , , &
Pages 1039-1045 | Published online: 07 Jul 2009

REFERENCES

  • Riddle MC. Sulfonylureas differ in effects on ischemic preconditioning: Is it time to retire glyburide?. J Clin Endocrinol Metab. 2003; 88: 528–530
  • Meinert CL, Knatterud GL, Prout TE, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes, II: Mortality results. Diabetes. 1970; 19: 789–830
  • Cleveland JC, Jr, Meldrum DR, Cain BS, et al. Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited. Circulation. 1997; 96: 29–32
  • Da Silva-Santos JE, Santos-Silva MA, Cunha FQ, Assreuy J. The role of ATP-sensitive potassium channels in neutrophil migration and plasma exudation. J Pharmacol Exp Ther. 2002; 300: 946–951
  • Pompermayer K, Souza DG, Lara GG, et al. The ATP-sensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats. Kidney Int. 2005; 67: 1785–1796
  • Engbersen R, Masereeuw R, van Gestel MA, et al. Glibenclamide depletes ATP in renal proximal tubular cells by interfering with mitochondrial metabolism. Br J Pharmacol. 2005; 145: 1069–1075
  • Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol. 2003; 14: 2199–2210
  • Zaugg M, Lucchinetti E, Spahn DR, et al. Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial KATPchannels via multiple signaling pathways. Anesthesiology. 2002; 97: 4–14
  • Kharasch ED, Schroeder JL, Bammler T, et al. Gene expression profiling of nephrotoxicity from the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl) vinyl ether (“compound A”) in rats. Toxicol Sci. 2006; 90: 419–431
  • Dunn MJ, Zambraski EJ. Renal effects of drugs that inhibit prostaglandin synthesis. Kidney Int. 1980; 18: 609–622
  • Watanabe K, Yaoita H, Ogawa K, et al. Attenuated cardioprotection by ischemic preconditioning in coronary stenosed heart and its restoration by carvedilol. Cardiovasc Res. 2006; 71: 537–547
  • Cheng YJ, Chien CT, Wang YP, et al. Fluid administration prevents renal dysfunction during hypotension under spinal anesthesia in a rat model. Acta Anesthesiol Sin. 2003; 41: 7–12
  • Rönnhedh C, Jaquenod M, Mather LE. Urineless estimation of glomerular filtration rate and renal plasma flow in the rat. J Pharmacol Toxicol Meth. 1996; 36: 123–129
  • De Souza Silva M, Castiglia YMM, Vianna PTG, et al. Rat model of depending prostaglandin renal state: Effect of ketoprofen. Ren Fail. 2006; 28: 77–84
  • Zager RA, Altschuld R. Body temperature an important determinant of severity of ischemic renal injury. Am J Physiol. 1986; 251: 87–93
  • Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001; 345: 588–595
  • Salzman AL, Vromen A, Denenberg A, Szabo C. K(ATP)-channel inhibition improves hemodynamics and cellular energetics in hemorrhagic shock. Am J Physiol. 1997; 272: H688–H694
  • De Nicola L, Blantz RC, Gabbal FB. Nitric oxide and angiotensin, II: Glomerular and tubular interaction in the rat. J Clin Invest. 1992; 89: 1248–1256
  • Musser JB, Bentley TB, Griffith S, et al. Hemorrhagic shock in swine: Nitric oxide and potassium sensitive adenosine triphosphate channel activation. Anesthesiology., 101: 399–408
  • Md S, Moochhala SM, Siew-Yang KL. The role of inducible nitric oxide synthase inhibitor on the arteriolar hyporesponsiveness in hemorrhagic-shocked rats. Life Sci. 2003; 73: 1825–1834
  • Rahgozar M, Willgoss DA, Gobé GC, Endre ZH. ATP-dependent K+channels in renal ischemia-reperfusion injury. Ren Fail. 2003; 25: 885–896
  • Wilson WC, Aronson S. Oliguria. Anesthesiol Clin North Am. 2001; 19: 841–883
  • Obal D, Dettwiler S, Favoccia C, et al. Effect of sevoflurane preconditioning on ischaemia/reperfusion injury in rat kidney in vivo. Eur J Anesthesiol. 2006; 23: 319–326
  • Lochhead KM, Kharasch ED, Zager RA. Spectrum and subcellular determinants of fluorinated anesthetic-mediated proximal tubular injury. Am J Pathol. 1997; 150: 2209–2221
  • Solez K, Kramer EC, Fox JA, Heptinstall RH. Medullary plasma flow and intravascular leukocyte accumulation in acute renal failure. Kidney Int. 1974; 6: 24–37
  • Kelly KJ, Williams WW, Jr, Colvin RB, et al. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest. 1996; 97: 1056–1063
  • Oken DE. Hemodynamic basis for human acute renal failure (vasomotor nephropathy). Am J Med. 1984; 76: 702–710
  • Kwon O, Phillips CL, Molitoris BA. Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol. 2002; 282: F1012–F1019
  • Ribalet B, Mirell CJ, Johnson DG, Levin SR. Free full text sulfonylurea binding to a low-affinity site inhibits the Na/K-ATPase and the KATPchannel in insulin-secreting cells. J Gen Physiol. 1996; 107: 231–241

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.