1,519
Views
7
CrossRef citations to date
0
Altmetric
Laboratory Study

The effect of cholesterol overload on mouse kidney and kidney-derived cells

, , , , , , & show all
Pages 43-50 | Received 26 Apr 2017, Accepted 14 Dec 2017, Published online: 05 Jan 2018

References

  • Samuelsson O, Mulec H, Knight-Gibson C, et al. Lipoprotein abnormalities are associated with increased rate of progression of human chronic renal insufficiency. Nephrol Dial Transplant. 1997;12:1908–1915.
  • Keane WF. Lipids and the kidney. Kidney Int. 1994;46:910–920.
  • Joles JA, Kunter U, Janssen U, et al. Early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats. J Am Soc Nephrol. 2000;11:669–683.
  • Abrass CK. Cellular lipid metabolism and the role of lipids in progressive renal disease. Am J Nephrol. 2004;24:46–53.
  • Blanco S, Vaquero M, Gómez GC, et al. Potential role of angiotensin-converting enzyme inhibitors and statins on early podocyte damage in a model of type 2 diabetes mellitus, obesity and mild hypertension. Am J Hypertens. 2005;18:557–565.
  • Kasiske BL, O’Donnell MP, Cleary MP, et al. Treatment of hyperlipidemia reduces glomerular injury in obese Zucker rats. Kidney Int. 1988;33:667–672.
  • Cases A, Coll E. Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int. 2005;68:87–93.
  • Muntner P, Coresh J, Smith JC, et al. Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int. 2000;58:293–301.
  • Schaeffner ES, Kurth T, Curhan GC, et al. Cholesterol and the risk of renal dysfunction in apparently healthy men. J Am Soc Nephrol. 2003;14:2084–2091.
  • Manttari M, Tiula E, Alikoski T, et al. Effects of hypertension and dyslipidemia on the decline in renal function. Hypertension. 1995;26:670–675.
  • Ozsoy RC, van der Steeg WA, Kastelein JJ, et al. Dyslipidaemia as predictor of progressive renal failure and the impact of treatment with atorvastatin. Nephrol Dial Transplant. 2007;22:1578–1586.
  • Moorhead JF, Chan MK, El-Nahas M, et al. Lipid nephrotoxicity in chronic progressive glomerular and tubule-interstitial disease. Lancet. 1982;2:1309–1311.
  • Ruan XZ, Varghese Z, Moorhead JF. An update on the lipid nephrotoxicity hypothesis. Nat Rev Nephrol. 2009;12:713–721.
  • Diamond JR, Karnovsky MJ. Exacerbation of chronic aminonucleoside nephrosis by dietary cholesterol supplementation. Kidney Int. 1987;32:671–677.
  • Marzolo MP, Farfán P. New insights into the roles of megalin/LRP2 and the regulation of its functional expression. Biol Res. 2011;44:89–105.
  • Perez Bay AE, Schreiner R, Benedicto I, et al. The fast-recycling receptor megalin defines the apical recycling pathway of epithelial cells. Nat Commun. 2016;7:11550.
  • De S, Kuwahara S, Saito A. The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. Membranes (Basel). 2014;4:333–355.
  • Christensen EI, Gburek J. Protein reabsorption in renal proximal tubule-function and dysfunction in kidney pathophysiology. Pediatr Nephrol. 2004;19:714–721.
  • Hori Y, Aoki N, Kuwahara S, et al. Megalin blockade with cilastatin suppresses drug-induced nephrotoxicity. J Am Soc Nephrol. 2017;28:1783–1791.
  • Dalrymple LS, Kaysen GA. The effect of lipoproteins on the development and progression of renal disease. Am J Nephrol. 2008;28:723–731.
  • Tomizawa A, Ishii I, Zhelev Z, et al. Carbamoyl-PROXYL-enhanced MRI detects very small disruptions in brain vascular permeability induced by dietary cholesterol. Biochim Biophys Acta. 2011;1810:1309–1316.
  • Vivier PH, Dolores M, Taylor M, et al. MR urography in children. Part 2: how to use ImageJ MR urography processing software. Pediatr Radiol. 2010;40:739–746.
  • Zhang JL, Morrell G, Rusinek H, et al. New magnetic resonance imaging methods in nephrology. Kidney Int. 2014;85:768–778.
  • Tomizawa A, Hadjidekov G, Ishii I, et al. Nitroxide derivatives for imaging of hypercholesterolemia-induced kidney dysfunction and assessing the effectiveness of antilipidemic drugs. Mol Pharmaceutics. 2011;8:1962–1969.
  • Zhelev Z, Bakalova R, Aoki I, et al. Nitroxyl radicals for labeling of conventional therapeutics and noninvasive magnetic resonance imaging of their permeability for blood-brain barrier: relationship between structure, blood clearance, and MRI signal dynamics in the brain. Mol Pharmaceutics. 2009;6:504–512.
  • Goldstein JL, Ho YK, Brown MS, et al. Cholesteryl ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hypercholesterolemic canine beta-very low density lipoproteins. J Biol Chem. 1980;255:1839–1848.
  • Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med. 1998;339:1448–1456.
  • Kriz W, Gretz N, Lemley KV. Progression of glomerular diseases: is the podocyte the culprit? Kidney Int. 1998;54:687–697.
  • Smeets B, Kuppe C, Sicking EM, et al. Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J Am Soc Nephrol. 2011;22:1262–1274.
  • LeHir M, Kriz W. New insights into structural patterns encountered in glomerulosclerosis. Curr Opin Nephrol Hypertens. 2007;16:184–191.
  • Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int. 2016;89:58–67.
  • Perrey S, Ishibashi S, Kitamine T, et al. The LDL receptor is the major pathway for beta-VLDL uptake by mouse peritoneal macrophages. Atherosclerosis. 2001;154:51–60.
  • Bilheimer DW, Eisenberg S, Levy RI. The metabolism of very low density lipoprotein proteins. I. preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972;260:212–221.
  • Nishikawa T, Kobori S, Takeda H, et al. Beta-migrating very low density lipoproteins induce foam cell formation in mouse mesangial cells. Atherosclerosis. 1995;114:123–132.
  • Willnow TE, Goldstein JL, Orth K, et al. Low-density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem. 1992;267:26172–26180.
  • Chen Q, Amaral J, Biancani P, et al. Excess membrane cholesterol alters human gallbladder muscle contractility anD-MEMbrane fluidity. Gastroenterology. 1999;116:678–685.
  • Gleason MM, Medow MS, Tulenko TN. Excess membrane cholesterol alters calcium movements, cytosolic calcium levels, anD-MEMbrane fluidity in arterial smooth muscle cells. Circ Res. 1991;69:216–227.
  • Yeagle PL. Modulation of membrane function by cholesterol. Biochimie. 1991;73:1303–1310.