1,634
Views
18
CrossRef citations to date
0
Altmetric
Clinical Study

The contribution of genetic variants of SLC2A1 gene in T2DM and T2DM-nephropathy: association study and meta-analysis

, ORCID Icon, , , , , , , , , , , , , & show all
Pages 561-576 | Received 07 Nov 2017, Accepted 28 Jun 2018, Published online: 24 Oct 2018

References

  • Rich SS. Genetics of diabetes and its complications. J Am Soc Nephrol. 2006;17:353–360.
  • Gross JL, de Azevedo MJ, Silveiro SP. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28:164–176.
  • Strojek K, Grzeszczak W, Morawin E, et al. Nephropathy of type II diabetes: evidence for hereditary factors? Kidney Int. 1997;51:1602–1607.
  • Quinn M, Angelico MC, Warram JH, et al. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia 1996;39:940–945.
  • Borch-Johnsen K, Norgaard K, Hommel E, et al. Is diabetic nephropathy an inherited complication? Kidney Int. 1992;41:719–722.
  • Zintzaras E, Stefanidis I. Association between the GLUT1 gene polymorphism and the risk of diabetic nephropathy: a meta-analysis. J Hum Genet. 2005;50:84–91.
  • Zintzaras E, Uhlig K, Koukoulis GN, et al. Methylenetetrahydrofolate reductase gene polymorphism as a risk factor for diabetic nephropathy: a meta-analysis. J Hum Genet. 2007;52:881–890.
  • Tziastoudi M, Stefanidis I, Hadjigeorgiou GM, et al. A systematic review and meta-analysis of genetic association studies for the role of inflammation and the immune system in diabetic nephropathy. Clin Kidney J. 2017;10:293–300.
  • Zintzaras E, Papathanasiou AA, Stefanidis I. Endothelial nitric oxide synthase gene polymorphisms and diabetic nephropathy: a HuGE review and meta-analysis. Genet Med. 2009;11:695–706.
  • Stefanidis I, Kytoudis K, Papathanasiou AA, et al. XbaI GLUT1 gene polymorphism and the risk of type 2 diabetes with nephropathy. Dis Markers. 2009;27:29–35.
  • Stefanidis I, Kreuer K, Dardiotis E, et al. Association between the interleukin-1β Gene (IL1B) C-511T polymorphism and the risk of diabetic nephropathy in type 2 diabetes: a candidate-gene association study. DNA Cell Biol. 2014;33:463–468.
  • Heilig CW, Deb DK, Abdul A, et al. GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy. Am J Nephrol. 2013;38:39–49.
  • Heilig CW, Concepcion LA, Riser BL, et al. Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest. 1995;96:1802–1814.
  • Weigert C, Brodbeck K, Brosius FC, III, et al. Evidence for a novel TGF-beta1-independent mechanism of fibronectin production in mesangial cells overexpressing glucose transporters. Diabetes. 2003;52:527–535.
  • Larkins RG, Dunlop ME. The link between hyperglycaemia and diabetic nephropathy. Diabetologia 1992;35:499–504.
  • Heilig CW, Brosius FC, III, Cunningham C. Role for GLUT1 in diabetic glomerulosclerosis. Expert Rev Mol Med. 2006;8:1–18.
  • Mogyorosi A, Ziyadeh FN. GLUT1 and TGF-beta: the link between hyperglycaemia and diabetic nephropathy. Nephrol Dial Transplant. 1999;14:2827–2829.
  • Wang Y, Heilig K, Saunders T, et al. Transgenic overexpression of GLUT1 in mouse glomeruli produces renal disease resembling diabetic glomerulosclerosis. Am J Physiol Renal Physiol. 2010;299:F99–F111.
  • Heilig CW, Kreisberg JI, Freytag S, et al. Antisense GLUT-1 protects mesangial cells from glucose induction of GLUT-1 and fibronectin expression. Am J Physiol Renal Physiol. 2001;280:F657–F666.
  • Heilig CW, Saunders T, Brosius FC, III, et al. Glucose transporter-1-deficient mice exhibit impaired development and deformities that are similar to diabetic embryopathy. Proc Natl Acad Sci USA. 2003;100:15613–15618.
  • Zintzaras E. The power of generalized odds ratio in assessing association in genetic studies with known mode of inheritance. J Appl Stat. 2012;39:2569–2581.
  • Zintzaras E. The generalized odds ratio as a measure of genetic risk effect in the analysis and meta-analysis of association studies. Stat Appl Genet Mol Biol. 2010;9:Article21. doi: 10.2202/1544-6115.1542.
  • Zintzaras E, Lau J. Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches. J Clin Epidemiol. 2008;61:634–645.
  • Zintzaras E, Santos M. Estimating the mode of inheritance in genetic association studies of qualitative traits based on the degree of dominance index. BMC Med Res Methodol. 2011;11:171
  • Zintzaras E, Santos M. Performance of MAX test and degree of dominance index in predicting the mode of inheritance. Stat Appl Genet Mol Biol. 2012;11:Article-6115.
  • Genuth S, Alberti KG, Bennett P, et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care. 2003;26:3160–3167.
  • Hernandez JL, Weir BS. A disequilibrium coefficient approach to Hardy-Weinberg testing. Biometrics. 1989;45:53–70.
  • Weir BS. Genetic Data Analysis II: Methods for Discrete Population Genetic Data. Sunderland, Massachusetts: Sinauer Associates, 1996.
  • Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the internet. 2001.
  • YONG Y, HE L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–98.
  • Li Z, Zhang Z, He Z, et al. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res. 2009;19:519–523.
  • Cochran WG. The Combination of Estimates from Different Experiments. Biometrics. 1954;10:101.
  • Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–1558.
  • Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315:315–334.
  • Makni K, Jarraya F, Rebaï M, et al. Risk genotypes and haplotypes of the GLUT1 gene for type 2 diabetic nephropathy in the Tunisian population. Ann Hum Biol. 2008;35:490–498.
  • Ng DPK, Canani L, Araki S, et al. Minor effect of GLUT1 polymorphisms on susceptibility to diabetic nephropathy in type 1 diabetes. Diabetes. 2002;51:2264–2269.
  • Hodgkinson AD, Millward BA, Demaine AG. Polymorphisms of the glucose transporter (GLUT1) gene are associated with diabetic nephropathy. Kidney Int. 2001;59:985–989.
  • Tarnow L, Grarup N, Hansen T, et al. Diabetic microvascular complications are not associated with two polymorphisms in the GLUT-1 and PC-1 genes regulating glucose metabolism in Caucasian type 1 diabetic patients. Nephrol Dial Transplant. 2001;16:1653–1656.
  • Liu ZH, Guan TJ, Chen ZH, et al. Glucose transporter (GLUT1) allele (XbaI-) associated with nephropathy in non-insulin-dependent diabetes mellitus. Kidney Int. 1999;55:1843–1848.
  • Grzeszczak W, Moczulski DK, Zychma M, et al. Role of GLUT1 gene in susceptibility to diabetic nephropathy in type 2 diabetes. Kidney Int. 2001;59:631–636.
  • Gutierrez C, Vendrell J, Pastor R, et al. GLUT1 gene polymorphism in non-insulin-dependent diabetes mellitus: genetic susceptibility relationship with cardiovascular risk factors and microangiopathic complications in a Mediterranean population. Diabetes Res Clin Pract. 1998;41:113–120.
  • Marques T, Patente TA, Monteiro MB, et al. Association of single nucleotide polymorphisms in the gene encoding GLUT1 and diabetic nephropathy in Brazilian patients with type 1 diabetes mellitus. Clin Chim Acta. 2015;444:170–175.
  • Amini S, Javanmardi M, Mokarizadeh A, et al. Association of HaeIII single nucleotide polymorphisms in the SLC2A1 gene with risk of diabetic nephropathy; evidence from Kurdish patients with type 2 diabetes mellitus. QJM: An International Journal of Medicine. 2016;109:399–404.
  • Hodgkinson D, Page T, Millward B, et al. A novel polymorphism in the 5’ flanking region of the glucose transporter (GLUT1) gene is strongly associated with diabetic nephropathy in patients with Type 1 diabetes mellitus. J Diabetes Complications. 2005;19:65–69.
  • Mazzucco G, Bertani T, Fortunato M, et al. Different patterns of renal damage in type 2 diabetes mellitus: a multicentric study on 393 biopsies. Am J Kidney Dis. 2002;39:713–720.
  • Cui W, Du B, Zhou W, et al. Relationship between five GLUT1 gene single nucleotide polymorphisms and diabetic nephropathy: a systematic review and meta-analysis. Mol Biol Rep. 2012;39:8551–8558.
  • Myles S, Hradetzky E, Engelken J, et al. Identification of a candidate genetic variant for the high prevalence of type II diabetes in Polynesians. Eur J Hum Genet. 2007;15:584–589.
  • Du B, Liu S, Cui C, et al. Association between glucose transporter 1 rs841853 polymorphism and type 2 diabetes mellitus risk may be population specific (1rs8418532). J Diabetes. 2013;5:291–299.
  • Zintzaras E, Lau J. Trends in meta-analysis of genetic association studies. J Hum Genet. 2008;53:1–9.
  • Mooyaart AL, Valk EJ, van Es LA, et al. Genetic associations in diabetic nephropathy: a meta-analysis. Diabetologia. 2011;54:544–553.
  • Hsu CC, Kao WL, Steffes MW, et al. Genetic variation of glucose transporter-1 (GLUT1) and albuminuria in 10,278 European Americans and African Americans: a case-control study in the Atherosclerosis Risk in Communities (ARIC) study. BMC Med Genet. 2011;12:16.
  • Kitsios GD, Zintzaras E. Genomic convergence of genome-wide investigations for complex traits. Ann Hum Genet. 2009;73:514–519.
  • Kitsios GD, Zintzaras E. Genome-wide association studies: hypothesis-"free" or "engaged"? Transl Res. 2009;154:161–164.
  • Zintzaras E, Ioannidis JP. Meta-analysis for ranked discovery datasets: theoretical framework and empirical demonstration for microarrays. Comput Biol Chem. 2008;32:38–46.
  • Zintzaras E, Ioannidis JP. METRADISC-XL: a program for meta-analysis of multidimensional ranked discovery oriented datasets including microarrays. Comput Methods Programs Biomed. 2012;108:1243–1246.
  • Thomas DC. Are we ready for genome-wide association studies?. Cancer Epidemiol Biomarkers Prev. 2006;15:595–598.
  • Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100:9440–9445.