1,276
Views
0
CrossRef citations to date
0
Altmetric
Clinical Study

Apelin-13 alleviates contrast-induced acute kidney injury by inhibiting endoplasmic reticulum stress

, , , , , , , , & show all
Article: 2179852 | Received 16 Nov 2022, Accepted 08 Feb 2023, Published online: 22 Feb 2023

References

  • Fahling M, Seeliger E, Patzak A, et al. Understanding and preventing contrast-induced acute kidney injury. Nat Rev Nephrol. 2017;13(3):169–180.
  • Davenport MS, Perazella MA, Yee J, et al. Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the American college of radiology and the national kidney foundation. Radiology. 2020;294(3):660–668.
  • Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39(5):930–936.
  • Eng J, Wilson RF, Subramaniam RM, et al. Comparative effect of contrast media type on the incidence of contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med. 2016;164(6):417–424.
  • Weisbord SD, Palevsky PM, Kaufman JS, et al. Contrast-associated acute kidney injury and serious adverse outcomes following angiography. J Am Coll Cardiol. 2020;75(11):1311–1320.
  • Cheng W, Wu X, Liu Q, et al. Post-contrast acute kidney injury in a hospitalized population: short-, mid-, and long-term outcome and risk factors for adverse events. Eur Radiol. 2020;30(6):3516–3527.
  • Nijssen EC, Rennenberg RJ, Nelemans PJ, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389(10076):1312–1322.
  • Nijssen EC, Nelemans PJ, Wildberger JE, et al. Contrast-associated acute kidney injury. N Engl J Med. 2019;381(13):1295–1296.
  • Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol. 2017;13(11):681–696.
  • Zhang Z, Zhang L, Zhou L, et al. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol. 2019;25:101047.
  • Shu S, Zhu J, Liu Z, et al. Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease. EBioMedicine. 2018;37:269–280.
  • Yang Y, Yang D, Yang D, et al. Role of reactive oxygen species-mediated endoplasmic reticulum stress in contrast-induced renal tubular cell apoptosis. Nephron Exp Nephrol. 2014;128(1-2):30–36.
  • Pitkin SL, Maguire JJ, Bonner TI, et al. International union of basic and clinical pharmacology. Pharmacol Rev. 2010;62(3):331–342.
  • Huang Z, Wu L, Chen L. Apelin/APJ system: a novel potential therapy target for kidney disease. J Cell Physiol. 2018;233(5):3892–3900.
  • Falcao-Pires I, Ladeiras-Lopes R, Leite-Moreira AF. The apelinergic system: a promising therapeutic target. Expert Opin Ther Targets. 2010;14(6):633–645.
  • Chapman FA, Nyimanu D, Maguire JJ, et al. The therapeutic potential of apelin in kidney disease. Nat Rev Nephrol. 2021;17(12):840–853.
  • Lu X, Liu S, Luan R, et al. Serum elabela and apelin levels during different stages of chronic kidney disease. Ren Fail. 2020;42(1):667–672.
  • Wu F, Qiu J, Fan Y, et al. Apelin-13 attenuates ER stress-mediated neuronal apoptosis by activating Galphai/Galphaq-CK2 signaling in ischemic stroke. Exp Neurol. 2018;302:136–144.
  • Muller T, Kalea AZ, Marquez A, et al. Apelinergic system in the kidney: implications for diabetic kidney disease. Physiol Rep. 2018;6(23):e13939.
  • Cheng W, Li XW, Xiao YQ, et al. Non-coding RNA-associated ceRNA networks in a new contrast-induced acute kidney injury rat model. Mol Ther Nucleic Acids. 2019;17:102–112.
  • Zhao F, Feng LX, Liu Q, et al. Stanniocalcin-1 alleviates contrast-induced acute kidney injury by regulating mitochondrial quality control via the Nrf2 pathway. Oxid Med Cell Longev. 2020;2020:1898213.:
  • Feng LX, Zhao F, Liu Q, et al. Role of Nrf2 in lipopolysaccharide-induced acute kidney injury: protection by human umbilical cord blood mononuclear cells. Oxid Med Cell Longev. 2020;2020:1–20.
  • Kiss N, Hamar P. Histopathological evaluation of contrast-induced acute kidney injury rodent models. Biomed Res Int. 2016;2016:3763250.
  • Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107.
  • Cao AL, Wang L, Chen X, et al. Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy. Lab Invest. 2016;96(6):610–622.
  • Yang L, Xing G, Wang L, et al. Acute kidney injury in China: a cross-sectional survey. Lancet. 2015;386(10002):1465–1471.
  • Kusirisin P, Chattipakorn SC, Chattipakorn N. Contrast-induced nephropathy and oxidative stress: mechanistic insights for better interventional approaches. J Transl Med. 2020;18(1):400.
  • Li Y, Li Y, Li Y, et al. Inhibition of endoplasmic reticulum stress mediates the ameliorative effect of apelin on vascular calcification. J Mol Cell Cardiol. 2021;152:17–28.
  • Xu W, Li T, Gao L, et al. Apelin-13/APJ system attenuates early brain injury via suppression of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation and oxidative stress in a AMPK-dependent manner after subarachnoid hemorrhage in rats. J Neuroinflammation. 2019;16(1):247.
  • Yan M, Shu S, Guo C, et al. Endoplasmic reticulum stress in ischemic and nephrotoxic acute kidney injury. Ann Med. 2018;50(5):381–390.
  • Wu CT, Weng TI, Chen LP, et al. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury. Toxicol Appl Pharmacol. 2013;266(1):167–175.
  • Peng P, Ma Q, Wang L, et al. Preconditioning with tauroursodeoxycholic acid protects against contrast-induced HK-2 cell apoptosis by inhibiting endoplasmic reticulum stress. Angiology. 2015;66(10):941–949.
  • Peng PA, Wang L, Ma Q, et al. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress. Cell Biol Int. 2015;39(12):1408–1417.
  • Eletto D, Chevet E, Argon Y, et al. Redox controls UPR to control redox. J Cell Sci. 2014;127(Pt 17):3649–3658.
  • Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol. 2006;38(3):317–332.
  • Verfaillie T, Rubio N, Garg AD, et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 2012;19(11):1880–1891.
  • Wei W, Ma N, Fan X, et al. The role of Nrf2 in acute kidney injury: novel molecular mechanisms and therapeutic approaches. Free Radic Biol Med. 2020;158(3):1–12.
  • Xu B, Qin Y, Li D, et al. Inhibition of PDE4 protects neurons against oxygen-glucose deprivation-induced endoplasmic reticulum stress through activation of the Nrf-2/HO-1 pathway. Redox Biol. 2020;28:101342.
  • Zhang B, Wan S, Liu H, et al. Naringenin alleviates renal ischemia reperfusion injury by suppressing er stress-induced pyroptosis and apoptosis through activating Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev. 2022;2022:1–24.
  • Digaleh H, Kiaei M, Khodagholi F. Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy. Cell Mol Life Sci. 2013;70(24):4681–4694.