1,425
Views
0
CrossRef citations to date
0
Altmetric
Laboratory Study

Protective effect of thymol on glycerol-induced acute kidney injury

, , , , , & show all
Article: 2227728 | Received 19 Dec 2022, Accepted 16 Jun 2023, Published online: 07 Jul 2023

References

  • Hoste EA, Clermont G, Kersten A, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10(3):1. doi:10.1186/cc4915.
  • Schrier RW, Wang W, Poole B, et al. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest. 2004;114(1):5–10. doi:10.1172/JCI200422353.
  • Liaño F, Pascual J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int. 1996;50(3):811–818. doi:10.1038/ki.1996.380.
  • Chander V, Chopra K. Molsidomine, a nitric oxide donor and l-arginine protects against rhabdomyolysis-induced myoglobinuric acute renal failure. Biochim Biophys Acta. 2005;1723(1–3):208–214. doi:10.1016/j.bbagen.2005.01.016.
  • Vanholder R, Sever MS, Erek E, et al. Rhabdomyolysis. J Am Soc Nephrol. 2000;11(8):1553–1561. doi:10.1681/ASN.V1181553.
  • Better OS. The crush syndrome revisited (1940–1990). Nephron. 1990;55(2):97–103. doi:10.1159/000185934.
  • Holt SG, Moore KP. Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med. 2001;27(5):803–811. doi:10.1007/s001340100878.
  • Wu GL, Chen YS, Huang XD, et al. Exhaustive swimming exercise related kidney injury in rats – protective effects of acetylbritannilactone. Int J Sports Med. 2012;33(1):1–7. doi:10.1055/s-0031-1284397.
  • Abul-Ezz SR, Walker PD, Shah SV. Role of glutathione in an animal model of myoglobinuric acute renal failure. Proc Natl Acad Sci USA. 1991;88(21):9833–9837. doi:10.1073/pnas.88.21.9833.
  • Wilson DR, Thiel G, Arce ML, et al. Glycerol induced hemoglobinuric acute renal failure in the rat. 3. Micropuncture study of the effects of mannitol and isotonic saline on individual nephron function. Nephron. 1967;4(6):337–355. doi:10.1159/000179594.
  • Zager RA, Burkhart KM. Differential effects of glutathione and cysteine on Fe2+, Fe3+, H2O2 and myoglobin-induced proximal tubular cell attack. Kidney Int. 1998;53(6):1661–1672. doi:10.1046/j.1523-1755.1998.00919.x.
  • Moore KP, Holt SG, Patel RP, et al. A causative role for redox cycling of myoglobin and its inhibition by alkalinization in the pathogenesis and treatment of rhabdomyolysis-induced renal failure. J Biol Chem. 1998;273(48):31731–31737. doi:10.1074/jbc.273.48.31731.
  • Homsi E, Janino P, de Faria JB. Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int. 2006;69(8):1385–1392. doi:10.1038/sj.ki.5000315.
  • Zhang B, Zeng M, Li B, et al. Arbutin attenuates LPS-induced acute kidney injury by inhibiting inflammation and apoptosis via the PI3K/Akt/Nrf2 pathway. Phytomedicine. 2021;82:153466. doi:10.1016/j.phymed.2021.153466.
  • Zhang MY, Ma LJ, Jiang L, et al. Paeoniflorin protects against cisplatin-induced acute kidney injury through targeting Hsp90AA1-Akt protein–protein interaction. J Ethnopharmacol. 2023;310:116422. doi:10.1016/j.jep.2023.116422.
  • Zhang Y, Liu Y, Luo J, et al. The herbal compound thymol targets multiple Salmonella Typhimurium virulence factors for Lon protease degradation. Front Pharmacol. 2021;12:674955. doi:10.3389/fphar.2021.674955.
  • Saber TM, Arisha AH, Abo-Elmaaty A, et al. Thymol alleviates imidacloprid-induced testicular toxicity by modulating oxidative stress and expression of steroidogenesis and apoptosis-related genes in adult male rats. Ecotoxicol Environ Saf. 2021;221:112435. doi:10.1016/j.ecoenv.2021.112435.
  • Panahi KE, Sadeghi H, Kazemi S, et al. Nephroprotective effects of Zataria multiflora Boiss. hydroalcoholic extract, carvacrol, and thymol on kidney toxicity induced by cisplatin in rats. Evid Based Complement Alternat Med. 2021;2021:8847212. doi:10.1155/2021/8847212.
  • Oskouei BG, Abbaspour-Ravasjani S, Jamal MS, et al. In vivo evaluation of anti-hyperglycemic, anti-hyperlipidemic and anti-oxidant status of liver and kidney of thymol in STZ-induced diabetic rats. Drug Res. 2019;69(1):46–52. doi:10.1055/a-0646-3803.
  • Wang Q, Shen Z, Qi G, et al. Thymol alleviates AGEs-induced podocyte injury by a pleiotropic effect via NF-κB-mediated by RhoA/ROCK signalling pathway. Cell Adh Migr. 2020;14(1):42–56. doi:10.1080/19336918.2020.1721172.
  • Amirshahrokhi K. Thalidomide reduces glycerol-induced acute kidney injury by inhibition of NF-κB, NLRP3 inflammasome, COX-2 and inflammatory cytokines. Cytokine. 2021;144:155574. doi:10.1016/j.cyto.2021.155574.
  • Li YF, Xu BY, An R, et al. Protective effect of anisodamine in rats with glycerol-induced acute kidney injury. BMC Nephrol. 2019;20(1):223. doi:10.1186/s12882-019-1394-y.
  • Zhang Y, Du Y, Yu H, et al. Protective effects of Ophiocordyceps lanpingensis on glycerol-induced acute renal failure in mice. J Immunol Res. 2017;2017:2012585. doi:10.1155/2017/2012585.
  • Wang J, Hou Y, Duan D, et al. The structure and nephroprotective activity of oligo-porphyran on glycerol-induced acute renal failure in rats. Mar Drugs. 2017;15(5):135.
  • Abd-Ellatif RN, Hegab II, Atef MM, et al. Diacerein protects against glycerol-induced acute kidney injury: modulating oxidative stress, inflammation, apoptosis and necroptosis. Chem Biol Interact. 2019;306:47–53. doi:10.1016/j.cbi.2019.04.008.
  • Al-Otaibi KE, Al EA, Tariq M, et al. Simvastatin attenuates contrast-induced nephropathy through modulation of oxidative stress, proinflammatory myeloperoxidase, and nitric oxide. Oxid Med Cell Longev. 2012;2012:831748. doi:10.1155/2012/831748.
  • Al AA, Al SK, Obaid AA, et al. Protective effect of quinacrine against glycerol-induced acute kidney injury in rats. BMC Nephrol. 2017;18(1):41. doi:10.1186/s12882-017-0450-8.
  • Ayvaz S, Aksu B, Kanter M, et al. Preventive effects of hyperbaric oxygen treatment on glycerol-induced myoglobinuric acute renal failure in rats. J Mol Histol. 2012;43(2):161–170. doi:10.1007/s10735-012-9391-5.
  • Panizo N, Rubio-Navarro A, Amaro-Villalobos JM, et al. Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury. Kidney Blood Press Res. 2015;40(5):520–532. doi:10.1159/000368528.
  • Nara A, Yajima D, Nagasawa S, et al. Evaluations of lipid peroxidation and inflammation in short-term glycerol-induced acute kidney injury in rats. Clin Exp Pharmacol Physiol. 2016;43(11):1080–1086. doi:10.1111/1440-1681.12633.
  • Kaur T, Singh D, Pathak D, et al. Umbelliferone attenuates glycerol-induced myoglobinuric acute kidney injury through peroxisome proliferator-activated receptor-γ agonism in rats. J Biochem Mol Toxicol. 2021;35(11):e22892. doi:10.1002/jbt.22892.
  • Park CH, Tanaka T, Cho EJ, et al. Glycerol-induced renal damage improved by 7-O-galloyl-d-sedoheptulose treatment through attenuating oxidative stress. Biol Pharm Bull. 2012;35(1):34–41. doi:10.1248/bpb.35.34.
  • Bai X, Zhu Y, Jie J, et al. Maackiain protects against sepsis via activating AMPK/Nrf2/HO-1 pathway. Int Immunopharmacol. 2022;108:108710. doi:10.1016/j.intimp.2022.108710.
  • Uc A, Zhu X, Wagner BA, et al. Heme oxygenase-1 is protective against nonsteroidal anti-inflammatory drug-induced gastric ulcers. J Pediatr Gastroenterol Nutr. 2012;54(4):471–476. doi:10.1097/MPG.0b013e3182334fdf.
  • Ndisang JF. Role of the heme oxygenase–adiponectin–atrial natriuretic peptide axis in renal function. Curr Pharm Des. 2015;21(30):4380–4391. doi:10.2174/1381612821666150803145508.
  • Liu BC, Tang TT, Lv LL, et al. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int. 2018;93(3):568–579. doi:10.1016/j.kint.2017.09.033.
  • Huang RS, Zhou JJ, Feng YY, et al. Pharmacological inhibition of macrophage toll-like receptor 4/nuclear factor-kappa B alleviates rhabdomyolysis-induced acute kidney injury. Chin Med J. 2017;130(18):2163–2169. doi:10.4103/0366-6999.213406.
  • Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303–306. doi:10.4103/0976-500X.119726.
  • Guijarro C, Egido J. Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int. 2001;59(2):415–424. doi:10.1046/j.1523-1755.2001.059002415.x.
  • Geng X, Wang Y, Hong Q, et al. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury. Int J Clin Exp Pathol. 2015;8(11):14087–14098.
  • Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169(3):381–405. doi:10.1016/j.cell.2017.04.001.
  • Park EJ, Dusabimana T, Je J, et al. Honokiol protects the kidney from renal ischemia and reperfusion injury by upregulating the glutathione biosynthetic enzymes. Biomedicines. 2020;8(9):352. doi:10.3390/biomedicines8090352.
  • Ullah M, Liu DD, Rai S, et al. Reversing acute kidney injury using pulsed focused ultrasound and MSC therapy: a role for HSP-mediated PI3K/AKT signaling. Mol Ther Methods Clin Dev. 2020;17:683–694. doi:10.1016/j.omtm.2020.03.023.
  • Kuwana H, Terada Y, Kobayashi T, et al. The phosphoinositide-3 kinase gamma–Akt pathway mediates renal tubular injury in cisplatin nephrotoxicity. Kidney Int. 2008;73(4):430–445. doi:10.1038/sj.ki.5002702.
  • Covarrubias AJ, Aksoylar HI, Horng T. Control of macrophage metabolism and activation by mTOR and Akt signaling. Semin Immunol. 2015;27(4):286–296. doi:10.1016/j.smim.2015.08.001.
  • So L, Fruman DA. PI3K signalling in B- and T-lymphocytes: new developments and therapeutic advances. Biochem J. 2012;442(3):465–481. doi:10.1042/BJ20112092.
  • Pathania AS, Guru SK, Verma MK, et al. Disruption of the PI3K/AKT/mTOR signaling cascade and induction of apoptosis in HL-60 cells by an essential oil from Monarda citriodora. Food Chem Toxicol. 2013;62:246–254. doi:10.1016/j.fct.2013.08.037.
  • Li Y, Wen JM, Du CJ, et al. Thymol inhibits bladder cancer cell proliferation via inducing cell cycle arrest and apoptosis. Biochem Biophys Res Commun. 2017;491(2):530–536. doi:10.1016/j.bbrc.2017.04.009.
  • Hussein RM, Arafa EA, Raheem SA, et al. Thymol protects against bleomycin-induced pulmonary fibrosis via abrogation of oxidative stress, inflammation, and modulation of miR-29a/TGF-β and PI3K/Akt signaling in mice. Life Sci. 2023;314:121256. doi:10.1016/j.lfs.2022.121256.