1,307
Views
0
CrossRef citations to date
0
Altmetric
Clinical Study

PFKFB3 downregulation aggravates Angiotensin II-induced podocyte detachment

, , , , , , , , , & show all
Article: 2230318 | Received 16 Jan 2023, Accepted 22 Jun 2023, Published online: 10 Jul 2023

References

  • Lennon R, Randles MJ, Humphries MJ. The importance of podocyte adhesion for a healthy glomerulus. Front Endocrinol. 2014;5:1. doi: 10.3389/fendo.2014.00160.
  • Trimarchi H. Mechanisms of podocyte detachment, podocyturia, and risk of progression of glomerulopathies. Kidney Dis. 2020;6(5):324–12. doi: 10.1159/000507997.
  • Ren Q, Yu S, Zeng H, et al. The role of PTEN in puromycin aminonucleoside-induced podocyte injury. Int J Med Sci. 2022;19(9):1451–1459. doi: 10.7150/ijms.72988.
  • Fukuda A, Wickman LT, Venkatareddy MP, et al. Angiotensin II-dependent persistent podocyte loss from destabilized glomeruli causes progression of end stage kidney disease. Kidney Int. 2012;81(1):40–55. doi: 10.1038/ki.2011.306.
  • Gil CL, Hooker E, Larrivee B. Diabetic kidney disease, endothelial damage, and podocyte-endothelial crosstalk. Kidney Med. 2021;3(1):105–115. doi: 10.1016/j.xkme.2020.10.005.
  • Kopp JB, Anders HJ, Susztak K, et al. Podocytopathies. Nat Rev Dis Primers. 2020;6(1):68. doi: 10.1038/s41572-020-0196-7.
  • Yin L, Yu L, He JC, et al. Controversies in podocyte loss: death or detachment? Front Cell Dev Biol. 2021;9:771931. doi: 10.3389/fcell.2021.771931.
  • Yamamoto K, Okabe M, Tanaka K, et al. Podocytes are lost from glomeruli before completing apoptosis. Am J Physiol Renal Physiol. 2022;323(5):F515–f526. doi: 10.1152/ajprenal.00080.2022.
  • Kang JS, Lee SJ, Lee JH, et al. Angiotensin II-mediated MYH9 downregulation causes structural and functional podocyte injury in diabetic kidney disease. Sci Rep. 2019;9(1):7679. doi: 10.1038/s41598-019-44194-3.
  • Marquez A, Wysocki J, Pandit J, et al. An update on ACE2 amplification and its therapeutic potential. Acta Physiol. 2021;231(1):e13513. doi: 10.1111/apha.13513.
  • Urushihara M, Kagami S. Role of the intrarenal renin-angiotensin system in the progression of renal disease. Pediatr Nephrol. 2017;32(9):1471–1479. doi: 10.1007/s00467-016-3449-7.
  • Pilvankar MR, Higgins MA, Ford Versypt AN. Mathematical model for glucose dependence of the local renin-angiotensin system in podocytes. Bull Math Biol. 2018;80(4):880–905. doi: 10.1007/s11538-018-0408-4.
  • Malek V, Suryavanshi SV, Sharma N, et al. Potential of renin-angiotensin-aldosterone system modulations in diabetic kidney disease: old players to new hope!. Rev Physiol Biochem Pharmacol. 2021;179:31–71.
  • Yang Y, Yang Q, Yang J, et al. Angiotensin II induces cholesterol accumulation and injury in podocytes. Sci Rep. 2017;7(1):10672. doi: 10.1038/s41598-017-09733-w.
  • Marquez E, Riera M, Pascual J, et al. Renin-angiotensin system within the diabetic podocyte. Am J Physiol Renal Physiol. 2015;308(1):F1–F10. doi: 10.1152/ajprenal.00531.2013.
  • Shi L, Pan H, Liu Z, et al. Roles of PFKFB3 in cancer. Signal Transduct Target Ther. 2017;2:17044.
  • Sakakibara R, Kato M, Okamura N, et al. Characterization of a human placental fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase. J Biochem. 1997;122(1):122–128. doi: 10.1093/oxfordjournals.jbchem.a021719.
  • Chen W, Shen Y, Fan J, et al. IL-22-mediated renal metabolic reprogramming via PFKFB3 to treat kidney injury. Clin Transl Med. 2021;11(2):e324.
  • Yalcin A, Clem BF, Imbert-Fernandez Y, et al. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis. 2014;5(7):e1337. doi: 10.1038/cddis.2014.292.
  • Gough RE, Jones MC, Zacharchenko T, et al. Talin mechanosensitivity is modulated by a direct interaction with cyclin-dependent kinase-1. J Biol Chem. 2021;297(1):100837. doi: 10.1016/j.jbc.2021.100837.
  • Jin JK, Tien PC, Cheng CJ, et al. Talin1 phosphorylation activates beta1 integrins: a novel mechanism to promote prostate cancer bone metastasis. Oncogene. 2015;34(14):1811–1821. doi: 10.1038/onc.2014.116.
  • Chen CA, Chang JM, Yang YL, et al. Macrophage migration inhibitory factor regulates integrin-beta1 and cyclin D1 expression via ERK pathway in podocytes. Biomed Pharmacother. 2020;124:109892. doi: 10.1016/j.biopha.2020.109892.
  • Lay AC, Hale LJ, Stowell-Connolly H, et al. IGFBP-1 expression is reduced in human type 2 diabetic glomeruli and modulates β1-integrin/FAK signalling in human podocytes. Diabetologia. 2021;64(7):1690–1702. doi: 10.1007/s00125-021-05427-1.
  • Pozzi A, Jarad G, Moeckel GW, et al. Beta1 integrin expression by podocytes is required to maintain glomerular structural integrity. Dev Biol. 2008;316(2):288–301. doi: 10.1016/j.ydbio.2008.01.022.
  • Spiess M, Hernandez-Varas P, Oddone A, et al. Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions. J Cell Biol. 2018;217(6):1929–1940. doi: 10.1083/jcb.201707075.
  • Wang L, Cao Y, Gorshkov B, et al. Ablation of endothelial Pfkfb3 protects mice from acute lung injury in LPS-induced endotoxemia. Pharmacol Res. 2019;146:104292. doi: 10.1016/j.phrs.2019.104292.
  • Pekkonen P, Alve S, Balistreri G, et al. Lymphatic endothelium stimulates melanoma metastasis and invasion via MMP14-dependent Notch3 and beta1-integrin activation. Elife. 2018;7:32490. doi: 10.7554/eLife.32490.
  • Cruys B, Wong BW, Kuchnio A, et al. Glycolytic regulation of cell rearrangement in angiogenesis. Nat Commun. 2016;7:12240. doi: 10.1038/ncomms12240.
  • Yang Q, Xu J, Ma Q, et al. Disruption of endothelial Pfkfb3 ameliorates diet-induced murine insulin resistance. J Endocrinol. 2021;250(3):93–104. doi: 10.1530/JOE-20-0524.
  • Cao Y, Zhang X, Wang L, et al. PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension. Proc Natl Acad Sci U S A. 2019;116(27):13394–13403. doi: 10.1073/pnas.1821401116.
  • Gao L, Wang C, Qin B, et al. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase suppresses neuronal apoptosis by increasing glycolysis and cyclin-dependent kinase 1-Mediated phosphorylation of p27 after traumatic spinal cord injury in rats. Cell Transplant. 2020;29:963689720950226. doi: 10.1177/0963689720950226.
  • Rauch C, Feifel E, Kern G, et al. Differentiation of human iPSCs into functional podocytes. PLoS One. 2018;13(9):e0203869. doi: 10.1371/journal.pone.0203869.
  • Mundel P, Heid HW, Mundel TM, et al. Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol. 1997;139(1):193–204. doi: 10.1083/jcb.139.1.193.
  • Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2020;395(10225):709–733. doi: 10.1016/S0140-6736(20)30045-3.
  • Yang Q, Hu J, Yang Y, et al. Sirt6 deficiency aggravates angiotensin II-induced cholesterol accumulation and injury in podocytes. Theranostics. 2020;10(16):7465–7479. doi: 10.7150/thno.45003.
  • Feng J, Chen Z, Ma Y, et al. AKAP1 contributes to impaired mtDNA replication and mitochondrial dysfunction in podocytes of diabetic kidney disease. Int J Biol Sci. 2022;18(10):4026–4042. doi: 10.7150/ijbs.73493.
  • Gao S, Cui Z, Zhao MH. Complement C3a and C3a receptor activation mediates podocyte injuries in the mechanism of primary membranous nephropathy. J Am Soc Nephrol. 2022;33(9):1742–1756. doi: 10.1681/ASN.2021101384.
  • Schunk SJ, Floege J, Fliser D, et al. WNT-β-catenin signalling - a versatile player in kidney injury and repair. Nat Rev Nephrol. 2021;17(3):172–184. doi: 10.1038/s41581-020-00343-w.
  • Carey RM, Siragy HM. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev. 2003;24(3):261–271. doi: 10.1210/er.2003-0001.
  • Chow BSM, Allen TJ. Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease. Clin Sci (Lond). 2016;130(15):1307–1326. doi: 10.1042/CS20160243.
  • Chen Z, Liang W, Hu J, et al. Sirt6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Cell Prolif. 2022;55(10):e13296.
  • Luo Z, Chen Z, Zhu Z, et al. Angiotensin II induces podocyte metabolic reprogramming from glycolysis to glycerol-3-phosphate biosynthesis. Cell Signal. 2022;99:110443. doi: 10.1016/j.cellsig.2022.110443.
  • Erichsen L, Thimm C, Bohndorf M, et al. Activation of the renin-angiotensin system disrupts the cytoskeletal architecture of human urine-derived podocytes. Cells. 2022;11(7):1095. doi: 10.3390/cells11071095.
  • Tian L, Coletti D, Li ZL. Angiotensin II induces the exocytosis of galectin-3 via integrin αv/AKT/NF-κB signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(13):5949–5957.
  • Lang P-P, Bai J, Zhang Y-L, et al. Blockade of intercellular adhesion molecule-1 prevents angiotensin II-induced hypertension and vascular dysfunction. Lab Invest. 2020;100(3):378–386. doi: 10.1038/s41374-019-0320-z.
  • Ruan Y, Chen L, Xie D, et al. Mechanisms of cell adhesion molecules in endocrine-related cancers: a concise outlook. Front Endocrinol. 2022;13:865436. doi: 10.3389/fendo.2022.865436.
  • Sachs N, Sonnenberg A. Cell-matrix adhesion of podocytes in physiology and disease. Nat Rev Nephrol. 2013;9(4):200–210. doi: 10.1038/nrneph.2012.291.
  • Artelt N, Ludwig TA, Rogge H, et al. The role of palladin in podocytes. J Am Soc Nephrol. 2018;29(6):1662–1678. doi: 10.1681/ASN.2017091039.
  • Farmer LK, Rollason R, Whitcomb DJ, et al. TRPC6 binds to and activates calpain, independent of its channel activity, and regulates podocyte cytoskeleton, cell adhesion, and motility. J Am Soc Nephrol. 2019;30(10):1910–1924. doi: 10.1681/ASN.2018070729.
  • Zhang L, Wen Z, Han L, et al. Research progress on the pathological mechanisms of podocytes in diabetic nephropathy. J Diabetes Res. 2020;2020:7504798.
  • Martin CE, Phippen NJ, Keyvani Chahi A, et al. Complementary Nck1/2 signaling in podocytes controls actinin-4-Mediated actin organization, adhesion, and basement membrane composition. J Am Soc Nephrol. 2022;33(8):1546–1567. doi: 10.1681/ASN.2021101343.
  • Rogg M, Maier JI, Van Wymersch C, et al. α-Parvin defines a specific integrin adhesome to maintain the glomerular filtration barrier. J Am Soc Nephrol. 2022;33(4):786–808. doi: 10.1681/ASN.2021101319.
  • Wang B, Li D, Ilnytskyy Y, et al. A miR-34a-guided, tRNA-derived, piR_019752-like fragment (tRiMetF31) suppresses migration and angiogenesis of breast cancer cells via targeting PFKFB3. Cell Death Discov. 2022;8(1):355. doi: 10.1038/s41420-022-01054-w.
  • Hu M, Bao R, Lin M, et al. ALK fusion promotes metabolic reprogramming of cancer cells by transcriptionally upregulating PFKFB3. Oncogene. 2022;41(40):4547–4559. doi: 10.1038/s41388-022-02453-0.
  • Wang S, Yu H, Gao J, et al. PALMD regulates aortic valve calcification via altered glycolysis and NF-κB-mediated inflammation. J Biol Chem. 2022;298(5):101887. doi: 10.1016/j.jbc.2022.101887.
  • Icard P, Alifano M, Donnadieu E, et al. Fructose-1,6-bisphosphate promotes PI3K and glycolysis in T cells? Trends Endocrinol Metab. 2021;32(8):540–543. doi: 10.1016/j.tem.2021.04.013.
  • Wen L, Wei Q, Livingston MJ, et al. PFKFB3 mediates tubular cell death in cisplatin nephrotoxicity by activating CDK4. Transl Res. 2023;253:31–40. doi: 10.1016/j.trsl.2022.10.001.
  • Song C, Wang S, Fu Z, et al. IGFBP5 promotes diabetic kidney disease progression by enhancing PFKFB3-mediated endothelial glycolysis. Cell Death Dis. 2022;13(4):340. doi: 10.1038/s41419-022-04803-y.
  • Shen A-R, Zhong X, Tang T-T, et al. Integrin, exosome and kidney disease. Front Physiol. 2020;11:627800. doi: 10.3389/fphys.2020.627800.
  • Kadry YA, Calderwood DA. Chapter 22: structural and signaling functions of integrins. Biochim Biophys Acta Biomembr. 2020;1862(5):183206. doi: 10.1016/j.bbamem.2020.183206.
  • Chen C-A, Chang J-M, Chang E-E, et al. TGF-β1 modulates podocyte migration by regulating the expression of integrin-β1 and -β3 through different signaling pathways. Biomed Pharmacother. 2018;105:974–980. doi: 10.1016/j.biopha.2018.06.054.
  • Yuan X, Wang W, Wang J, et al. Down-regulation of integrin β1 and focal adhesion kinase in renal glomeruli under various hemodynamic conditions. PLoS One. 2014;9(4):e94212. doi: 10.1371/journal.pone.0094212.
  • Huang H, Fan Y, Gao Z, et al. HIF-1α contributes to ang II-induced inflammatory cytokine production in podocytes. BMC Pharmacol Toxicol. 2019;20(1):59. doi: 10.1186/s40360-019-0340-8.
  • Long Q, Zou X, Song Y, et al. PFKFB3/HIF-1α feedback loop modulates sorafenib resistance in hepato­cellular carcinoma cells. Biochem Biophys Res Commun. 2019;513(3):642–650. doi: 10.1016/j.bbrc.2019.03.109.