1,791
Views
0
CrossRef citations to date
0
Altmetric
Chronic Kidney Disease and Progression

Identification of common and specific fibrosis-related genes in three common chronic kidney diseases

, , , , , , , & ORCID Icon show all
Article: 2295431 | Received 12 Sep 2023, Accepted 11 Dec 2023, Published online: 04 Jan 2024

References

  • Chen TK, Knicely DH, Grams ME. Chronic kidney disease diagnosis and management: a review. JAMA. 2019;322(13):1–12. doi: 10.1001/jama.2019.14745.
  • Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016;375(9):905–906. doi: 10.1056/NEJMc1602469.
  • Liu XM, Wang Q, Dong ZY, et al. Clinicopathological features of nondiabetic renal diseases from different age groups: an observational cross-sectional study. Chin Med J (Engl). 2018;131(24):2953–2959. doi: 10.4103/0366-6999.247197.
  • Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;80(1):309–326. doi: 10.1146/annurev-physiol-022516-034227.
  • National kidney F. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60(5):850–886. doi: 10.1053/j.ajkd.2012.07.005.
  • Panizo S, Martinez-Arias L, Alonso-Montes C, et al. Fibrosis in chronic kidney disease: pathogenesis and consequences. Int J Mol Sci. 2021;22(1):408. doi: 10.3390/ijms22010408.
  • Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol. 2010;6(11):643–656. doi: 10.1038/nrneph.2010.120.
  • Webster AC, Nagler EV, Morton RL, et al. Chronic kidney disease. Lancet. 2017;389(10075):1238–1252. doi: 10.1016/S0140-6736(16)32064-5.
  • Nastase MV, Zeng-Brouwers J, Wygrecka M, et al. Targeting renal fibrosis: mechanisms and drug delivery systems. Adv Drug Deliv Rev. 2018;129:295–307. doi: 10.1016/j.addr.2017.12.019.
  • Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et al. Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 2020;16(5):269–288. doi: 10.1038/s41581-019-0248-y.
  • Eitner F, Ostendorf T, Kretzler M, et al. PDGF-C expression in the developing and normal adult human kidney and in glomerular diseases. J Am Soc Nephrol. 2003;14(5):1145–1153. doi: 10.1097/01.asn.0000062964.75006.a8.
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25–29. doi: 10.1038/75556.
  • Kanehisa M, Goto S. KEGG: orea encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27.
  • Al Barashdi MA, Ali A, McMullin MF, et al. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). J Clin Pathol. 2021;74(9):548–552. doi: 10.1136/jclinpath-2020-206927.
  • Park HK, Kim DH, Yun DH, et al. Association between IL10, IL10RA, and IL10RB SNPs and ischemic stroke with hypertension in orean population. Mol Biol Rep. 2013;40(2):1785–1790. doi: 10.1007/s11033-012-2232-5.
  • Mysore V, Tahir S, Furuhashi K, et al. Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. J Exp Med. 2022;219(5):e20210562. doi: 10.1084/jem.20210562.
  • Dejana E, Breviario F, Caveda L. Leukocyte-endothelial cell adhesive receptors. Clin Exp Rheumatol. 1994;12 Suppl 10: s 25–8.
  • Lv W, Booz GW, Wang Y, et al. Inflammation and renal fibrosis: recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol. 2018;820:65–76. doi: 10.1016/j.ejphar.2017.12.016.
  • Jonsson NN, Cox DK, Piper EK, et al. Allelic variation in protein tyrosine phosphatase receptor Type-C in cattle influences erythrocyte, leukocyte and humoral responses to infestation with the cattle tick rhipicephalus australis. Front Immunol. 2021;12:675979. doi: 10.3389/fimmu.2021.675979.
  • Zhang M, Zhang S. T cells in fibrosis and fibrotic diseases. Front Immunol. 2020;11:1142. doi: 10.3389/fimmu.2020.01142.
  • Zhu F, Bai X, Chen X. B lymphocytes in renal interstitial fibrosis. J Cell Commun Signal. 2017;11(3):213–218. doi: 10.1007/s12079-017-0382-x.
  • Nikolic-Paterson DJ. CD4+ T cells: a potential player in renal fibrosis. Kidney Int. 2010;78(4):333–335. doi: 10.1038/ki.2010.182.
  • Wei W, Zhao Y, Zhang Y, et al. The role of IL-10 in kidney disease. Int Immunopharmacol. 2022;108:108917. doi: 10.1016/j.intimp.2022.108917.
  • Kapelski P, Skibinska M, Maciukiewicz M, et al. Family-based association study of interleukin 10 (IL10) and interleukin 10 receptor alpha (IL10RA) functional polymorphisms in schizophrenia in polish population. J Neuroimmunol. 2016;297:92–97. doi: 10.1016/j.jneuroim.2016.05.010.
  • Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther. 2022;7(1):182. doi: 10.1038/s41392-022-01036-5.
  • Hirohama D, Abedini A, Moon S, et al. Unbiased human kidney tissue proteomics identifies matrix metalloproteinase 7 as a kidney disease biomarker. J Am Soc Nephrol. 2023;34(7):1279–1291. doi: 10.1681/ASN.0000000000000141.
  • Steen EH, Wang X, Balaji S, et al. The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis. Adv Wound Care (New Rochelle). 2020;9(4):184–198. doi: 10.1089/wound.2019.1032.
  • Ouyang W, Rutz S, Crellin NK, et al. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29(1):71–109. doi: 10.1146/annurev-immunol-031210-101312.
  • Yang CA, Li JP, Lai YH, et al. Assessing the immune cell subset and genetic mutations in patients with palindromic rheumatism seronegative for rheumatoid factor and anti-Cyclic citrullinated peptide. Arthritis Rheumatol. 2023;75(2):187–200. doi: 10.1002/art.42297.
  • Berjaoui S, Povedano M, Garcia-Esparcia P, et al. Complex inflammation mRNA-related response in ALS is region dependent. Neural Plast. 2015;2015:573784–573711. doi: 10.1155/2015/573784.
  • Singh R, Sobhia ME. Structure prediction and molecular dynamics simulations of a G-protein coupled receptor: human CCR2 receptor. J Biomol Struct Dyn. 2013;31(7):694–715. doi: 10.1080/07391102.2012.707460.
  • Vande Broek I, Asosingh K, Vanderkerken K, et al. Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. Br J Cancer. 2003;88(6):855–862. doi: 10.1038/sj.bjc.6600833.
  • Braga TT, Correa-Costa M, Silva RC, et al. CCR2 con­tributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development. Inflam­mopharmacology. 2018;26(2):403–411. doi: 10.1007/s10787-017-0317-4.
  • Kitagawa K, Wada T, Furuichi K, et al. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol. 2004;165(1):237–246. doi: 10.1016/S0002-9440(10)63292-0.
  • Xu L, Sharkey D, Cantley LG. Tubular GM-CSF promotes late MCP-1/CCR2-Mediated fibrosis and inflammation after ischemia/reperfusion injury. J Am Soc Nephrol. 2019;30(10):1825–1840. doi: 10.1681/ASN.2019010068.
  • Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. Nat Rev Mol Cell Biol. 2023;24(2):142–161. doi: 10.1038/s41580-022-00531-5.
  • Hintermann E, Christen U. The many roles of cell adhesion molecules in hepatic fibrosis. Cells. 2019;8(12):1503. doi: 10.3390/cells8121503.
  • Choi HJ, Kim NE, Kim BM, et al. TNF-alpha-Induced Yap/TAZ activity mediates leukocyte-endothelial adhesion by regulating VCAM1 expression in endothelial cells. Int J Mol Sci. 2018;19(11):3428. doi: 10.3390/ijms19113428.
  • Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol. 2016;12(1):13–26. doi: 10.1038/nrneph.2015.175.
  • Kilic ID, Findikoglu G, Alihanoglu YI, et al. Circulating adhesion molecules and arterial stiffness. Cardiovasc J Afr. 2015;26(1):21–24. doi: 10.5830/CVJA-2014-060.
  • Hauser IA, Riess R, Hausknecht B, et al. Expression of cell adhesion molecules in primary renal disease and renal allograft rejection. Nephrol Dial Transplant. 1997;12(6):1122–1131. doi: 10.1093/ndt/12.6.1122.
  • Roy-Chaudhury P, Wu B, King G, et al. Adhesion molecule interactions in human glomerulonephritis: importance of the tubulointerstitium. Kidney Int. 1996;49(1):127–134. doi: 10.1038/ki.1996.17.
  • Bui TM, Wiesolek HL, Sumagin R. ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 2020;108(3):787–799. doi: 10.1002/JLB.2MR0220-549R.
  • Haydinger CD, Ashander LM, Tan ACR, et al. Intercellular adhesion molecule 1: more than a leukocyte adhesion molecule. Biology (Basel). 2023;12(5):743. doi: 10.3390/biology12050743.
  • Arnaout MA. Cell adhesion molecules in inflammation and thrombosis: status and prospects. Am J Kidney Dis. 1993;21(1):72–76. doi: 10.1016/s0272-6386(12)80725-6.
  • Gao J, Gu Z. The role of peroxisome Proliferator-Activated receptors in kidney diseases. Front Pharmacol. 2022;13:832732. doi: 10.3389/fphar.2022.832732.
  • Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications. Eur J Med Chem. 2019;166:502–513. doi: 10.1016/j.ejmech.2019.01.067.
  • Kagan HM, Li W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem. 2003;88(4):660–672. doi: 10.1002/jcb.10413.
  • Smith-Mungo LI, Kagan HM. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol. 1998;16(7):387–398. doi: 10.1016/s0945-053x(98)90012-9.
  • Zhang X, Zhou W, Niu Y, et al. Lysyl oxidase promotes renal fibrosis via accelerating collagen cross-link driving by beta-arrestin/ERK/STAT3 pathway. FASEB Journal: official Publication of the Federation of American Societies for Experimental Biology. 2022;36(8):e22427.
  • Nuthakki VK, Fleser PS, Malinzak LE, et al. Lysyl oxidase expression in a rat model of arterial balloon injury. J Vasc Surg. 2004;40(1):123–129. doi: 10.1016/j.jvs.2004.02.028.
  • Shin HD, Park BL, Cheong HS, et al. SPP1 polymorphisms associated with HBV clearance and HCC occurrence. Int J Epidemiol. 2007;36(5):1001–1008. doi: 10.1093/ije/dym093.
  • Xie Y, Sakatsume M, Nishi S, et al. Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int. 2001;60(5):1645–1657. doi: 10.1046/j.1523-1755.2001.00032.x.
  • Yu XQ, Wu LL, Huang XR, et al. Osteopontin expression in progressive renal injury in remnant kidney: role of angiotensin II. Kidney Int. 2000;58(4):1469–1480. doi: 10.1046/j.1523-1755.2000.00309.x.
  • Cheng Y, Li Y, Scherer N, et al. Genetics of osteopontin in patients with chronic kidney disease: the german chronic kidney disease study. PLoS Genet. 2022;18(4):e1010139. doi: 10.1371/journal.pgen.1010139.
  • Zhu X, Cheng YQ, Du L, et al. Mangiferin attenuates renal fibrosis through down-regulation of osteopontin in diabetic rats. Phytother Res. 2015;29(2):295–302. doi: 10.1002/ptr.5254.
  • Dong L, Wei W, Han M, et al. Utility of non-HDL-C in predicting proteinuria remission of idiopathic membranous nephropathy: a retrospective cohort study. Lipids Health Dis. 2021;20(1):122. doi: 10.1186/s12944-021-01558-x.
  • Fujita T, Nakamura N, Kumasaka R, et al. Comparison of lipid and fatty acid metabolism between minimal change nephrotic syndrome and membranous nephropathy. In Vivo. 2006;20(6B):891–893.
  • Haas M, Kerjaschki D, Mayer G. Lipid-lowering therapy in membranous nephropathy. Kidney Int Suppl. 1999;71: s 110–2. doi: 10.1046/j.1523-1755.1999.07127.x.