1,112
Views
0
CrossRef citations to date
0
Altmetric
Transplantation

Longitudinal non-targeted metabolomic profiling of urine samples for monitoring of kidney transplantation patients

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2300736 | Received 29 Aug 2023, Accepted 26 Dec 2023, Published online: 12 Jan 2024

References

  • Oweira H, Ramouz A, Ghamarnejad O, et al. Risk factors of rejection in renal transplant recipients: a narrative review. J Clin Med. 2022;11(5):1–9. doi: 10.3390/jcm11051392.
  • Lemoine M, Beauport DT, Lobbedez T, et al. Risk factors for early graft failure in recipients older Than 70 years. Kidney Int Rep. 2019;4(5):656–666. doi: 10.1016/j.ekir.2019.01.014.
  • Swanson KJ, Aziz F, Garg N, et al. Role of novel biomarkers in kidney transplantation. World J Transplant. 2020;10(9):230–255. doi: 10.5500/wjt.v10.i9.230.
  • Schold JD, Nordyke RJ, Wu Z, et al. Clinical events and renal function in the first year predict long-term kidney transplant survival. Kidney360. 2022;3(4):714–727. doi: 10.34067/KID.0007342021.
  • Hamidi O, Poorolajal J, Farhadian M, et al. Identifying important risk factors for survival in kidney graft failure patients using random survival forests. Iran J Public Health. 2016;45(1):27–33.
  • Hariharan S, Israni AK, Danovitch G. Long-Term survival after kidney transplantation. N Engl J Med. 2021;385(8):729–743. doi: 10.1056/nejmra2014530.
  • Kahraman S, Genctoy G, Cil B, et al. Prediction of renal allograft function with early doppler ultrasonography. Transplant Proc. 2004;36(5):1348–1351. doi: 10.1016/j.transproceed.2004.05.030.
  • First MR. Renal function as a predictor of long-term graft survival in renal transplant patients. Nephrol Dial Transplant. 2003;18 Suppl 1(90001):i3–i6. doi: 10.1093/ndt/gfg1027.
  • Josephson MA. Monitoring and managing graft health in the kidney transplant recipient. Clin J Am Soc Nephrol. 2011;6(7):1774–1780. doi: 10.2215/CJN.01230211.
  • Freudenberger K, Hilbig U, Gauglitz G. Recent advances in therapeutic drug monitoring of immunosuppressive drugs. TrAC - Trends Anal Chem. 2016;79:257–268. doi: 10.1016/j.trac.2015.11.016.
  • Urbschat A, Obermüller N, Haferkamp A. Biomarkers of kidney injury. Biomarkers. 2011;16(sup1):S22–S30. doi: 10.3109/1354750X.2011.587129.
  • Peters B, Nasic S, Segelmark M. Clinical parameters predicting complications in native kidney biopsies. Clin Kidney J. 2021;13(4):654–659. doi: 10.1093/CKJ/SFZ132.
  • Bedair M, Sumner LW. Current and emerging mass-spectrometry technologies for metabolomics. TrAC Trends Anal Chem. 2008;27(3):238–250. doi: 10.1016/j.trac.2008.01.006.
  • Xiao L, Wang C, Dai C, et al. Untargeted tumor metabolomics with liquid chromatography–surface-enhanced raman spectroscopy. Angew Chem Int Ed. 2020;59(9):3439–3443. doi: 10.1002/anie.201912387.
  • Gagnebin Y, Julien B, Belén P, et al. Metabolomics in chronic kidney disease: strategies for extended metabolome coverage. J Pharm Biomed Anal. 2018;161:313–325. doi: 10.1016/j.jpba.2018.08.046.
  • Njoku K, Chiasserini D, Jones ER, et al. Urinary biomarkers and their potential for the non-Invasive detection of endometrial cancer. Front Oncol. 2020;10:559016. doi: 10.3389/fonc.2020.559016.
  • Emwas AHM. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. vol 1277. 2015. doi: 10.1007/978-1-4939-2377-9_13.
  • Kim S, Kyung B, Gwon M, et al. Urinary metabolomic profiling for noninvasive diagnosis of acute T cell- mediated rejection after kidney transplantation. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1118-1119:157–163. doi: 10.1016/j.jchromb.2019.04.047.
  • Gordon EJ, Gallant M, Sehgal AR, et al. Medication-taking among adult renal transplant recipients. Transpl Int. 2009;22(5):534–545. doi: 10.1111/j.1432-2277.2008.00827.x.Medication-taking.
  • Kanda M, Murotani K, Tanaka H, et al. A novel dual-marker expression panel for easy and accurate risk stratification of patients with gastric cancer. Cancer Med. 2018;7(6):2463–2471. doi: 10.1002/cam4.1522.
  • Manski CF, Tambur AR, Gmeiner M. Predicting kidney transplant outcomes with partial knowledge of HLA mismatch. Proc Natl Acad Sci U S A. 2019;116(41):20339–20345. doi: 10.1073/pnas.1911281116.
  • Baek CH, Kim H, Baek SD, et al. Outcomes of living donor kidney transplantation in diabetic patients: age and sex matched comparison with non-diabetic patients. Korean J Intern Med. 2018;33(2):356–366. doi: 10.3904/kjim.2016.067.
  • Rojas-Arzola J, Espinoza-Pérez L, Cruz-López R, et al. Kidney graft survival at a year, clinical evolution and associated factors in transplant patients with pre-existing diabetes. Trends Transplant. 2020;14:1–5. doi: 10.15761/tit.1000287.
  • Sun Y, Cui S, Hou Y, et al. The updates of podocyte lipid metabolism in proteinuric kidney disease. Kidney Dis (Basel). 2021;7(6):438–451. doi: 10.1159/000518132.
  • Blydt-Hansen TD, Sharma A, Gibson IW, et al. Urinary metabolomics for noninvasive detection of borderline and acute T cell-mediated rejection in children after kidney transplantation. Am J Transplant. 2014;14(10):2339–2349. doi: 10.1111/ajt.12837.
  • McMillin JB, Dowhan W. Cardiolipin and apoptosis. Biochim Biophys Acta. 2002;1585(2-3):97–107. doi: 10.1016/S1388-1981(02)00329-3.
  • Miranda-Díaz AG, Cardona-Muñoz EG, Pacheco-Moisés FP. The role of cardiolipin and mitochondrial damage in kidney transplant. Oxid Med Cell Longev. 2019;2019:3836186–3836113. doi: 10.1155/2019/3836186.
  • Mallela SK, Merscher S, Fornoni A. Implications of sphingolipid metabolites in kidney diseases. Int J Mol Sci. 2022;23(8):4244. doi: 10.3390/ijms23084244.
  • Mitrofanova A, Drexler Y, Merscher S, et al. Role of sphingolipid signaling in glomerular diseases: focus on DKD and FSGS. J Cell Signal. 2020;1(3):56–69. doi: 10.33696/signaling.1.013.
  • Vinson AJ, Tennankore KK. Minding the missing link: the effect of donor-recipient pairing on kidney transplant outcomes. Clin J Am Soc Nephrol. 2018;13(10):1581–1583. doi: 10.2215/CJN.03730318.
  • Park KM, Kim JI, Ahn Y, et al. Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem. 2004;279(50):52282–52292. doi: 10.1074/jbc.M407629200.
  • Kuczera P, Adamczak M, Wiecek A. Endocrine abnormalities in patients with chronic kidney disease. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2015;36(2):109–118. doi: 10.1515/prilozi-2015-0059.
  • Lofaro D, Perri A, Aversa A, et al. Testosterone in renal transplant patients: effect on body composition and clinical parameters. J Nephrol. 2018;31(5):775–783. doi: 10.1007/s40620-018-0513-3.
  • Reinhardt W, Kübber H, Dolff S, et al. Rapid recovery of hypogonadism in male patients with end stage renal disease after renal transplantation. Endocrine. 2018;60(1):159–166. doi: 10.1007/s12020-018-1543-2.
  • Szypulska-koziarska D, Misiakiewicz-has K, Wiszniewska B. Hormonal (ım)balance and reproductive system’s disorders in transplant recipients—a review. Biology. 2021;10(4):271. doi: 10.3390/biology10040271.
  • Colak H, Sert I, Kurtulmus Y, et al. The relation between serum testosterone levels and cardiovascular risk factors in patients with kidney transplantation and chronic kidney disease. Saudi J Kidney Dis Transpl. 2014;25(5):951–959. doi: 10.4103/1319-2442.139862.
  • Grossmann M, Hoermann R, Ng Tang Fui M, et al. Sex steroids levels in chronic kidney disease and kidney transplant recipients: associations with disease severity and prediction of mortality. Clin Endocrinol (Oxf). 2015;82(5):767–775. doi: 10.1111/cen.12656.
  • Pietrzak B, Bobrowska K, Jabiry-Zieniewicz Z, et al. Oral and transdermal hormonal contraception in women After kidney transplantation. Transplant Proc. 2007;39(9):2759–2762. doi: 10.1016/j.transproceed.2007.09.014.
  • Hocher B, Adamski J. Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol. 2017;13(5):269–284. doi: 10.1038/nrneph.2017.30.
  • Piontek U, Wallaschofski H, Kastenmüller G, et al. Sex-specific metabolic profiles of androgens and its main binding protein SHBG in a Middle aged population without diabetes. Sci Rep. 2017;7(1):2235. doi: 10.1038/s41598-017-02367-y.
  • Clayton P, McDonald S, Chadban S. Steroids and recurrent IgA nephropathy after kidney transplantation. Am J Transplant. 2011;11(8):1645–1649. doi: 10.1111/j.1600-6143.2011.03667.x.
  • Moroni G, Longhi S, Quaglini S, et al. The long-term outcome of renal transplantation of IgA nephropathy and the impact of recurrence on graft survival. Nephrol Dial Transplant. 2013;28(5):1305–1314. doi: 10.1093/ndt/gfs472.
  • Infante B, Rossini M, Di Lorenzo A, et al. Recurrence of immunoglobulin A nephropathy after kidney transplantation: a narrative review of the incidence, risk factors, pathophysiology and management of immunosuppressive therapy. Clin Kidney J. 2020;13(5):758–767. doi: 10.1093/CKJ/SFAA060.
  • Mao Y y, Bai J Q, Chen J h, et al. A pilot study of GC/MS-based serum metabolic profiling of acute rejection in renal transplantation. Transpl Immunol. 2008;19(1):74–80. doi: 10.1016/j.trim.2008.01.006.
  • He J, Yang M, Quan X, et al. Microbial and metabolic features in renal transplant recipients with post-transplantation diabetes mellitus. Int J Urol. 2023;30(6):504–513. doi: 10.1111/iju.15158.
  • Dong H, Zhang S, Du W, et al. Pharmacodynamics and metabonomics study of tianma gouteng decoction for treatment of spontaneously hypertensive rats with liver-yang hyperactivity syndrome. J Ethnopharmacol. 2020;253:112661. doi: 10.1016/j.jep.2020.112661.
  • Stadler K, Goldberg IJ, Susztak K. The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease. Curr Diab Rep. 2015;15(7):40. doi: 10.1007/s11892-015-0611-8.
  • Noels H, Lehrke M, Vanholder R, et al. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. Nat Rev Nephrol. 2021;17(8):528–542. doi: 10.1038/s41581-021-00423-5.
  • Mika A, Halinski LP, Sledzinski T, et al. Analysis of serum fatty acids profile in kidney transplant recipients. Nutrients. 2021;13(3):805. doi: 10.3390/nu13030805.
  • Yan S, Yang XF, Liu HL, et al. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World J Gastroenterol. 2015;21(12):3492–3498. doi: 10.3748/wjg.v21.i12.3492.
  • Miller IJ, Peters SR, Overmyer KA, Paulson BR, Westphall MS, Coon JJ. Real-time health monitoring through urine metabolomics. Npj Digit Med. 2019;2. doi: 10.1038/s41746-019-0185-y.
  • Mizuno H, Ueda K, Kobayashi Y, Tsuyama N, Todoroki K, Min JZ, et al. The great importance of normalization of LC–MS data for highly-accurate non-targeted metabolomics. Biomed Chromatogr. 2017;31:1–7. doi: 10.1002/bmc.3864.