835
Views
0
CrossRef citations to date
0
Altmetric
Transplantation

Research prospects for kidney xenotransplantation: a bibliometric analysis

, , , , , & show all
Article: 2301681 | Received 12 Oct 2023, Accepted 30 Dec 2023, Published online: 23 Feb 2024

References

  • Jager KJ, Kovesdy C, Langham R, et al. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol Dial Transplant. 2019;34(11):1–12. doi: 10.1093/ndt/gfz174.
  • Kramer A, Pippias M, Noordzij M, et al. The European Renal Association – European Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report 2015: a summary. Clin Kidney J. 2018;11(1):108–122. doi: 10.1093/ckj/sfx149.
  • Porrett PM, Orandi BJ, Kumar V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transplant. 2022;22(4):1037–1053. doi: 10.1111/ajt.16930.
  • Carrier AN, Verma A, Mohiuddin M, et al. Xenotransplantation: a new era. Front Immunol. 2022;13:900594. doi: 10.3389/fimmu.2022.900594.
  • Wijkstrom M, Iwase H, Paris W, et al. Renal xenotransplantation: experimental progress and clinical prospects. Kidney Int. 2017;91(4):790–796. doi: 10.1016/j.kint.2016.08.035.
  • Yu X-H, Deng W-Y, Jiang H-T, et al. Kidney xenotransplantation: recent progress in preclinical research. Clin Chim Acta. 2021;514:15–23. doi: 10.1016/j.cca.2020.11.028.
  • Rodger D, Cooper D. Kidney xenotransplantation: future clinical reality or science fiction? Nurs Health Sci. 2022;25(1):161–170. doi: 10.1111/nhs.12994.
  • Adams AB, Lovasik BP, Faber DA, et al. Anti-C5 antibody tesidolumab reduces early antibody-mediated rejection and prolongs survival in renal xenotransplantation. Ann Surg. 2021;274(3):473–480. doi: 10.1097/SLA.0000000000004996.
  • Anand RP, Layer JV, Heja D, et al. Design and testing of a humanized porcine donor for xenotransplantation. Nature. 2023;622(7982):393–401.
  • Firl DJ, Lassiter G, Hirose T, et al. Clinical and molecular correlation defines activity of physiological pathways in life-sustaining kidney xenotransplantation. Nat Commun. 2023;14(1):3022. doi: 10.1038/s41467-023-38465-x.
  • Söllner J-H, Sake HJ, Frenzel A, et al. In vitro genome editing activity of Cas9 in somatic cells after random and transposon-based genomic Cas9 integration. PLOS One. 2022;17(12):e0279123. doi: 10.1371/journal.pone.0279123.
  • Cowan PJ, Hawthorne WJ, Nottle MB. Xenogeneic transplantation and tolerance in the era of CRISPR–Cas9. Curr Opin Organ Transplant. 2019;24(1):5–11. doi: 10.1097/MOT.0000000000000589.
  • Watanabe S, et al. The combinational use of CRISPR/Cas9 and targeted toxin technology enables efficient isolation of bi-allelic knockout non-human mammalian clones. Int J Mol Sci. 2018;19(4):1075.
  • Niu D, Ma X, Yuan T, et al. Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev. 2021;168:229–245. doi: 10.1016/j.addr.2020.04.001.
  • Fishman JA, Sachs DH, Yamada K, et al. Absence of interaction between porcine endogenous retrovirus and porcine cytomegalovirus in pig-to-baboon renal xenotransplantation in vivo. Xenotransplantation. 2018;25(5):e12395. doi: 10.1111/xen.12395.
  • Cowan PJ, Robson SC. Progress towards overcoming coagulopathy and hemostatic dysfunction associated with xenotransplantation. Int J Surg. 2015;23(Pt B):296–300. doi: 10.1016/j.ijsu.2015.07.682.
  • Montgomery RA, Stern JM, Lonze BE, et al. Results of two cases of pig-to-human kidney xenotransplantation. N Engl J Med. 2022;386(20):1889–1898. doi: 10.1056/NEJMoa2120238.
  • Jiang D, Ji T, Liu W, et al. Four decades of clinical liver transplantation research: results of a comprehensive bibliometric analysis. Transplantation. 2022;106(10):1897–1908. doi: 10.1097/TP.0000000000004224.
  • Baghban N, Ullah M, Nabipour I. The current trend of exosome in epithelial ovarian cancer studies: a bibliometric review. Front Pharmacol. 2023;14:1082066. doi: 10.3389/fphar.2023.1082066.
  • Guo K, Li J, Li X, et al. Emerging trends and focus on the link between gut microbiota and type 1 diabetes: a bibliometric and visualization analysis. Front Microbiol. 2023;14:1137595. doi: 10.3389/fmicb.2023.1137595.
  • Phelps CJ, Koike C, Vaught TD, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 2003;299(5605):411–414.
  • Yamada K, Yazawa K, Shimizu A, et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med. 2005;11(1):32–34. doi: 10.1038/nm1172.
  • Kuwaki K, Tseng Y-L, Dor FJMF, et al. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med. 2005;11(1):29–31. doi: 10.1038/nm1171.
  • Good AH, et al. Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in humans. Transplant Proc. 1992;24(2):559–562.
  • Cozzi E, White DJ. The generation of transgenic pigs as potential organ donors for humans. Nat Med. 1995;1(9):964–966. doi: 10.1038/nm0995-964.
  • Lai L, Kolber-Simonds D, Park K-W, et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 2002;295(5557):1089–1092. doi: 10.1126/science.1068228.
  • Kolber-Simonds D, Lai L, Watt SR, et al. Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc Natl Acad Sci U S A. 2004;101(19):7335–7340. doi: 10.1073/pnas.0307819101.
  • Platt JL, Fischel RJ, Matas AJ, et al. Immunopathology of hyperacute xenograft rejection in a swine-to-primate model. Transplantation. 1991;52(2):214–220. doi: 10.1097/00007890-199108000-00006.
  • Galili U, Shohet SB, Kobrin E, et al. Man, apes, and old world monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem. 1988;263(33):17755–17762. doi: 10.1016/S0021-9258(19)77900-9.
  • Sandrin MS, Vaughan HA, Dabkowski PL, et al. Anti-pig IgM antibodies in human serum react predominantly with gal(alpha 1–3)gal epitopes. Proc Natl Acad Sci U S A. 1993;90(23):11391–11395. doi: 10.1073/pnas.90.23.11391.
  • Jagdale A, Cooper DKC, Iwase H, et al. Chronic dialysis in patients with end-stage renal disease: relevance to kidney xenotransplantation. Xenotransplantation. 2019;26(2):e12471. doi: 10.1111/xen.12471.
  • Wang Y, Lei T, Wei L, et al. Xenotransplantation in China: present status. Xenotransplantation. 2019;26(1):e12490. doi: 10.1111/xen.12490.
  • Cooper D, Pierson RR. Milestones on the path to clinical pig organ xenotransplantation. Am J Transplant. 2023;23(3):326–335. doi: 10.1016/j.ajt.2022.12.023.
  • Sykes M, Sachs DH. Progress in xenotransplantation: overcoming immune barriers. Nat Rev Nephrol. 2022;18(12):745–761. doi: 10.1038/s41581-022-00624-6.
  • Lee W, Hara H, Ezzelarab MB, et al. Initial in vitro studies on tissues and cells from GTKO/CD46/NeuGcKO pigs. Xenotransplantation. 2016;23(2):137–150. doi: 10.1111/xen.12229.
  • Firl DJ, Markmann JF. Measuring success in pig to non-human-primate renal xenotransplantation: systematic review and comparative outcomes analysis of 1051 life-sustaining NHP renal allo- and xeno-transplants. Am J Transplant. 2022;22(6):1527–1536. doi: 10.1111/ajt.16994.
  • Yamada K, Sykes M, Sachs DH. Tolerance in xenotransplantation. Curr Opin Organ Transplant. 2017;22(6):522–528. doi: 10.1097/MOT.0000000000000466.
  • Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016;7(1):11138. doi: 10.1038/ncomms11138.
  • Abicht J-M, Sfriso R, Reichart B, et al. Multiple genetically modified GTKO/hCD46/HLA-E/hbeta2-mg porcine hearts are protected from complement activation and natural killer cell infiltration during ex vivo perfusion with human blood. Xenotransplantation. 2018;25(5):e12390. doi: 10.1111/xen.12390.
  • Hara H, Long C, Lin YJ, et al. In vitro investigation of pig cells for resistance to human antibody-mediated rejection. Transpl Int. 2008;21(12):1163–1174. doi: 10.1111/j.1432-2277.2008.00736.x.
  • Jagdale A, Nguyen H, Li J, et al. Does expression of a human complement-regulatory protein on xenograft cells protect them from systemic complement activation? Int J Surg. 2020;83:184–188. doi: 10.1016/j.ijsu.2020.09.034.
  • Ekser B, Rigotti P, Gridelli B, et al. Xenotransplantation of solid organs in the pig-to-primate model. Transpl Immunol. 2009;21(2):87–92. doi: 10.1016/j.trim.2008.10.005.
  • Lee KFE, Lu B, Roussel JC, et al. Protective effects of transgenic human endothelial protein C receptor expression in murine models of transplantation. Am J Transplant. 2012;12(9):2363–2372. doi: 10.1111/j.1600-6143.2012.04122.x.
  • Takeuchi K, Ariyoshi Y, Shimizu A, et al. Expression of human CD47 in pig glomeruli prevents proteinuria and prolongs graft survival following pig-to-baboon xenotransplantation. Xenotransplantation. 2021;28(6):e12708. doi: 10.1111/xen.12708.
  • Yamamoto T, Hara H, Foote J, et al. Life-supporting kidney xenotransplantation from genetically engineered pigs in baboons: a comparison of two immunosuppressive regimens. Transplantation. 2019;103(10):2090–2104.
  • Cooper D. Recent progress in the pig-to-nonhuman primate kidney transplantation model: report of a symposium. Xenotransplantation. 2022;29(1):e12728. doi: 10.1111/xen.12728.
  • Iwase H, Hara H, Ezzelarab M, et al. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts. Xenotransplantation. 2017;24(2). doi: 10.1111/xen.12293.
  • Reese PP, Parent B. Promoting safety, transparency, and quality in xenotransplantation. Ann Intern Med. 2022;175(7):1032–1034. doi: 10.7326/M22-0539.
  • Fischer K, Schnieke A. Xenotransplantation becoming reality. Transgenic Res. 2022;31(3):391–398. doi: 10.1007/s11248-022-00306-w.
  • Cowan PJ, Cooper DK, D’Apice AJ. Kidney xenotransplantation. Kidney Int. 2014;85(2):265–275. doi: 10.1038/ki.2013.381.
  • Iwase H, Klein EC, Cooper DK. Physiologic aspects of pig kidney transplantation in nonhuman primates. Comp Med. 2018;68(5):332–340. doi: 10.30802/AALAS-CM-17-000117.
  • DeLaura I, Anwar IJ, Ladowski J, et al. Attitudes of patients with renal disease on xenotransplantation: a systematic review. Xenotransplantation. 2023;30(2):e12794. doi: 10.1111/xen.12794.
  • Hansen-Estruch C, Cooper D, Judd E. Physiological aspects of pig kidney xenotransplantation and implications for management following transplant. Xenotransplantation. 2022;29(3):e12743. doi: 10.1111/xen.12743.
  • Rodger D, Hurst DJ, Cooper DK. Xenotransplantation: a historical-ethical account of viewpoints. Xenotransplantation. 2023;30(2):e12797. doi: 10.1111/xen.12797.
  • Hawthorne WJ, Thomas A, Pierson RN. Ethics and theoretical issues in kidney xenotransplantation. Semin Nephrol. 2022;42(4):151288. doi: 10.1016/j.semnephrol.2022.151288.
  • Cengiz N, Wareham CS. Ethical considerations in xenotransplantation: a review. Curr Opin Organ Transplant. 2020;25(5):483–488. doi: 10.1097/MOT.0000000000000796.
  • Tatapudi VS, Griesemer AD. Physiologic considerations of pig-to-human kidney xenotransplantation. Curr Opin Nephrol Hypertens. 2023;32(2):193–198. doi: 10.1097/MNH.0000000000000858.
  • Hansen-Estruch C, Bikhet MH, Javed M, et al. Renin–angiotensin–aldosterone system function in the pig-to-baboon kidney xenotransplantation model. Am J Transplant. 2023;23(3):353–365. doi: 10.1016/j.ajt.2022.11.022.
  • Hansen-Estruch C, Bikhet MH, Shaik IH, et al. Assessment of glomerular filtration and tubular secretion in baboons with life-supporting pig kidney grafts. Xenotransplantation. 2023;30(2):e12795. doi: 10.1111/xen.12795.