1,444
Views
0
CrossRef citations to date
0
Altmetric
Chronic Kidney Disease and Progression

Ultra-processed food consumption and the risk of incident chronic kidney disease: a systematic review and meta-analysis of cohort studies

, , , , , , , , & show all
Article: 2306224 | Received 19 Jul 2023, Accepted 11 Jan 2024, Published online: 12 Feb 2024

References

  • Bábíčková J, Klinkhammer BM, Buhl EM, et al. Regardless of etiology, progressive renal disease causes ultrastructural and functional alterations of peritubular capillaries. Kidney Int. 2017;91(1):1–10. doi: 10.1016/j.kint.2016.07.038.
  • Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et al. Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 2020;16(5):269–288. doi: 10.1038/s41581-019-0248-y.
  • GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2020;395(10225):709–733. doi: 10.1016/S0140-6736(20)30045-3.
  • Wang J, Zhang L, Tang SCW, et al. Disease burden and challenges of chronic kidney disease in North and East Asia. Kidney Int. 2018;94(1):22–25. doi: 10.1016/j.kint.2017.12.022.
  • He LQ, Wu XH, Huang YQ, et al. Dietary patterns and chronic kidney disease risk: a systematic review and updated meta-analysis of observational studies. Nutr J. 2021;20(1):4. doi: 10.1186/s12937-020-00661-6.
  • Moubarac JC, Parra DC, Cannon G, et al. Food classification systems based on food processing: significance and implications for policies and actions: a systematic literature review and assessment. Curr Obes Rep. 2014;3(2):256–272. doi: 10.1007/s13679-014-0092-0.
  • Monteiro CA, Cannon G, Moubarac JC, et al. The UN decade of nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018;21(1):5–17. doi: 10.1017/S1368980017000234.
  • Baker P, Machado P, Santos T, et al. Ultra-Processed foods and the nutrition transition: global, regional and national trends, food systems transformations and political economy drivers. Obes Rev. 2020;21(12):e13126. doi: 10.1111/obr.13126.
  • Marino M, Puppo F, Del Bo’ C, et al. A systematic review of worldwide consumption of ultra-processed foods: findings and criticisms. Nutrients. 2021;13(8):2778. doi: 10.3390/nu13082778.
  • Mm L, Ja D, S B, et al. Ultraprocessed food and chronic noncommunicable diseases: a systematic review and meta-analysis of 43 observational studies. Obes Rev J Int Assoc Study Obes. 2021;22(3):e13146.
  • Rauber F, Steele EM, Louzada MLdC, et al. Ultra-Processed food consumption and indicators of obesity in the United Kingdom population (2008-2016). PloS One. 2020;15(5):e0232676. doi: 10.1371/journal.pone.0232676.
  • Nardocci M, Leclerc BS, Louzada ML, et al. Consumption of ultra-processed foods and obesity in Canada. Can J Public Health. 2019;110(1):4–14. doi: 10.17269/s41997-018-0130-x.
  • Llavero-Valero M, Escalada-San Martín J, Martínez-González MA, et al. Ultra-Processed foods and type-2 diabetes risk in the SUN project: a prospective cohort study. Clin Nutr. 2021;40(5):2817–2824. doi: 10.1016/j.clnu.2021.03.039.
  • Adams J, White M. Characterisation of UK diets according to degree of food processing and associations with Socio-Demographics and obesity: cross-Sectional analysis of UK national diet and nutrition survey (2008-12). Int J Behav Nutr Phys Act. 2015;12(1):160 doi: 10.1186/s12966-015-0317-y.
  • Son J, Lee Y, Park K. Effects of processed red meat consumption on the risk of type 2 diabetes and cardiovascular diseases among Korean adults: the Korean genome and epidemiology study. Eur J Nutr. 2019;58(6):2477–2484. doi: 10.1007/s00394-018-1799-6.
  • Kityo A, Lee S-A. The intake of ultra-processed foods and prevalence of chronic kidney disease: the health examinees study. Nutrients. 2022;14(17):3548. doi: 10.3390/nu14173548.
  • Rey-García J, Donat-Vargas C, Sandoval-Insausti H, et al. Ultra-Processed food consumption is associated with renal function decline in older adults: a prospective cohort study. Nutrients. 2021;13(2):428. doi: 10.3390/nu13020428.
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71.
  • Delpino FM, Figueiredo LM, Bielemann RM, et al. Ultra-Processed food and risk of type 2 diabetes: a systematic review and meta-analysis of longitudinal studies. Int J Epidemiol. 2022;51(4):1120–1141. doi: 10.1093/ije/dyab247.
  • Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280(19):1690–1691. doi: 10.1001/jama.280.19.1690.
  • Du S, Kim H, Crews DC, et al. Association between ultraprocessed food consumption and risk of incident CKD: a prospective cohort study. Am J Kidney Dis. 2022;80(5):589–598.e1. doi: 10.1053/j.ajkd.2022.03.016.
  • Cai Q, Duan MJ, Dekker LH, et al. Ultraprocessed food consumption and kidney function decline in a population-based cohort in The Netherlands. Am J Clin Nutr. 2022;116(1):263–273. doi: 10.1093/ajcn/nqac073.
  • Gu Y, Li H, Ma H, et al. Consumption of ultraprocessed food and development of chronic kidney disease: the Tianjin chronic Low-Grade systemic inflammation and health and UK biobank cohort studies. Am J Clin Nutr. 2023;117(2):373–382. doi: 10.1016/j.ajcnut.2022.11.005.
  • Nazmi A, Tseng M, Robinson D, et al. A nutrition education intervention using NOVA is more effective than MyPlate alone: a proof-of-Concept randomized controlled trial. Nutrients. 2019;11(12):2965. doi: 10.3390/nu11122965.
  • Xia Y, Xiang Q, Gu Y, et al. A dietary pattern rich in animal organ, seafood and processed meat products is associated with newly diagnosed hyperuricaemia in Chinese adults: a propensity score-matched case-control study. Br J Nutr. 2018;119(10):1177–1184. doi: 10.1017/S0007114518000867.
  • Siebelink E, Geelen A, de Vries JH. Self-reported energy intake by FFQ compared with actual energy intake to maintain body weight in 516 adults. Br J Nutr. 2011;106(2):274–281. doi: 10.1017/S0007114511000067.
  • Streppel MT, de Vries JH, Meijboom S, et al. Relative validity of the food frequency questionnaire used to assess dietary intake in the Leiden longevity study. Nutr J. 2013;12(1):75. doi: 10.1186/1475-2891-12-75.
  • Willett WC, Sampson L, Stampfer MJ, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol. 1985;122(1):51–65. doi: 10.1093/oxfordjournals.aje.a114086.
  • Du S, Kim H, Rebholz CM. Higher ultra-processed food consumption is associated with increased risk of incident coronary artery disease in the atherosclerosis risk in communities study. J Nutr. 2021;151(12):3746–3754. doi: 10.1093/jn/nxab285.
  • Stevens J, Metcalf PA, Dennis BH, et al. Reliability of a food frequency questionnaire by ethnicity, gender, age and education. Nutr Res. 1996;16(5):735–745. doi: 10.1016/0271-5317(96)00064-4.
  • Liu B, Young H, Crowe FL, et al. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr. 2011;14(11):1998–2005. doi: 10.1017/S1368980011000942.
  • Bradbury KE, Young HJ, Guo W, et al. Dietary assessment in UK biobank: an evaluation of the performance of the touchscreen dietary questionnaire. J Nutr Sci. 2018;7:e6. doi: 10.1017/jns.2017.66.
  • Monteiro CA, Cannon G, Levy RB, et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr. 2019;22(5):936–941. doi: 10.1017/S1368980018003762.
  • Nie C, Li Y, Qian H, et al. Advanced glycation end products in food and their effects on intestinal tract. Crit Rev Food Sci Nutr. 2022;62(11):3103–3115. doi: 10.1080/10408398.2020.1863904.
  • Feng JX, Hou FF, Liang M, et al. Restricted intake of dietary advanced glycation end products retards renal progression in the remnant kidney model. Kidney Int. 2007;71(9):901–911. doi: 10.1038/sj.ki.5002162.
  • Fotheringham AK, Gallo LA, Borg DJ, et al. Advanced glycation end products (AGEs) and chronic kidney disease: does the modern diet AGE the kidney? Nutrients. 2022;14(13):2675. doi: 10.3390/nu14132675.
  • Martínez-Pineda M, Vercet A, Yagüe-Ruiz C. Are food additives a really problematic hidden source of potassium for chronic kidney disease patients? Nutrients. 2021;13(10):3569. doi: 10.3390/nu13103569.
  • Abd-Elhakim YM, Behairy A, Hashem MMM, et al. Toll-like receptors and nuclear factor kappa B signaling pathway involvement in hepatorenal oxidative damage induced by some food preservatives in rats. Sci Rep. 2023;13(1):5938. doi: 10.1038/s41598-023-32887-9.
  • Poti JM, Braga B, Qin B. Ultra-processed food intake and obesity: what really matters for health-processing or nutrient content? Curr Obes Rep. 2017;6(4):420–431. doi: 10.1007/s13679-017-0285-4.
  • Chen Y, Dabbas W, Gangemi A, et al. Obesity management and chronic kidney disease. Semin Nephrol. 2021;41(4):392–402. doi: 10.1016/j.semnephrol.2021.06.010.
  • Sánchez-Lozada LG, Tapia E, Jiménez A, et al. Fructose-Induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol. 2007;292(1):F423–429. doi: 10.1152/ajprenal.00124.2006.
  • Zheng Z, Harman JL, Coresh J, et al. The dietary fructose: vitamin C intake ratio is associated with hyperuricemia in African-American adults. J Nutr. 2018;148(3):419–426. doi: 10.1093/jn/nxx054.
  • Asselman M, Verkoelen CF. Fructose intake as a risk factor for kidney stone disease. Kidney Int. 2008;73(2):139–140. doi: 10.1038/sj.ki.5002700.
  • Johnson RJ, Nakagawa T, Jalal D, et al. Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transplant. 2013;28(9):2221–2228. doi: 10.1093/ndt/gft029.
  • Sánchez-Lozada LG, Lanaspa MA, Cristóbal-García M, et al. Uric acid-Induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol. 2012;121(3-4):e71-78–e78. doi: 10.1159/000345509.
  • Sánchez-Lozada LG, Soto V, Tapia E, et al. Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am J Physiol Renal Physiol. 2008;295(4):F1134–1141. doi: 10.1152/ajprenal.00104.2008.
  • Sánchez-Lozada LG, Tapia E, Santamaría J, et al. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int. 2005;67(1):237–247. doi: 10.1111/j.1523-1755.2005.00074.x.
  • Dinh QN, Drummond GR, Sobey CG, et al. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int. 2014;2014:406960. doi: 10.1155/2014/406960.