718
Views
0
CrossRef citations to date
0
Altmetric
Cardio-renal Physiology and Disease Processes

Features of cardiovascular magnetic resonance native T1 mapping in maintenance hemodialysis patients and their related factors

, , &
Article: 2310078 | Received 20 Jul 2023, Accepted 21 Jan 2024, Published online: 31 Jan 2024

References

  • Rutherford E, Talle MA, Mangion K, et al. Defining myocardial tissue abnormalities in end-stage renal failure with cardiac magnetic resonance imaging using native T1 mapping. Kidney Int. 2016;90(4):1–7. doi: 10.1016/j.kint.2016.06.014.
  • Marckmann P, Skov L, Rossen K, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17(9):2359–2362. doi: 10.1681/ASN.2006060601.
  • Bull S, White SK, Piechnik SK, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99(13):932–937. doi: 10.1136/heartjnl-2012-303052.
  • Nii M, Ishida M, Dohi K, et al. Myocardial tissue characterization and strain analysis in healthy pregnant women using cardiovascular magnetic resonance native T1 mapping and feature tracking technique. J Cardiovasc Magn Reson. 2018;20(1):52. doi: 10.1186/s12968-018-0476-5.
  • Messroghli DR, Plein S, Higgins DM, et al. Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution: reproducibility study. Radiology. 2006;238(3):1004–1012. doi: 10.1148/radiol.2382041903.
  • Messroghli DR, Walters K, Plein S, et al. Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med. 2007; Jul58(1):34–40. doi: 10.1002/mrm.21272.
  • Lee SP, Lee W, Lee JM, et al. Assessment of diffuse myocardial fibrosis by using MR imaging in asymptomatic patients with aortic stenosis. Radiology. 2015;274(2):359–369. doi: 10.1148/radiol.14141120.
  • de Meester de Ravenstein C, Bouzin C, Lazam S, et al. Histological validation of measurement of diffuse interstitial myocardial fibrosis by myocardial extravascular volume fraction from modified Look-Locker imaging (MOLLI) T1 mapping at 3 T. J Cardiovasc Magn Reson. 2015;17(1):48. doi: 10.1186/s12968-015-0150-0.
  • Graham- Brown MP, Burton JO, McCann GP. The use of T1 mapping to define myocardial fibrosis in hemodialysis patients. Eur Heart J Cardiovasc Imaging. 2016;17(7):832–832. doi: 10.1093/ehjci/jew076.
  • Schelbert EB, Messroghli DR. State of the art: clinical applications of cardiac T1 mapping. Radiology. 2016;278(3):658–676. doi: 10.1148/radiol.2016141802.
  • Puntmann VO, Voigt T, Chen Z, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging. 2013;6(4):475–484. doi: 10.1016/j.jcmg.2012.08.019.
  • Kramer CM, Barkhausen J, Flamm SD, et al. Society for cardiovascular magnetic resonance board of trustees task force on standardized protocols. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson. 2013; Oct;815(1):91. doi: 10.1186/1532-429X-15-91.
  • Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American heart association. Circulation. 2002;105(4):539–542. doi: 10.1161/hc0402.102975.
  • Rauhalammi SM, Mangion K, Barrientos PH, et al. Native myocardial longitudinal (T1) relaxation time: regional, age, and sex associations in the healthy adult heart. J Magn Reson Imaging. 2016;44(3):541–548. doi: 10.1002/jmri.25217.
  • Aoki J, Hara K. Detection of pattern of myocardial fibrosis by contrast- enhanced MRI: is redefinition of uremic cardiomyopathy necessary for management of patients. Kidney Int. 2006;69(10):1711–1712. doi: 10.1038/sj.ki.5000259.
  • Frangogiannis NG. Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 2019;65:70–99. doi: 10.1016/j.mam.2018.07.001.
  • Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117(3):568–575. doi: 10.1172/JCI31044.
  • Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549–574. doi: 10.1007/s00018-013-1349-6.
  • Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021;117(6):1450–1488. doi: 10.1093/cvr/cvaa324.
  • Giordano C, Francone M, Cundari G, et al. Myocardial fibrosis: morphologic patterns and role of imaging in diagnosis and prognostication. Cardiovasc Pathol. 2022; Jan-Feb56:107391. 107391. doi: 10.1016/j.carpath.2021.107391.
  • Dewald O, Frangogiannis NG, Zoerlein M, et al. Development of murine ischemic cardiomyopathy is associated with a transient inflammatory reaction and depends on reactive oxygen species. Proc Natl Acad Sci U S A. 2003;100(5):2700–2705. doi: 10.1073/pnas.0438035100.
  • Zannad F, Alla F, Dousset B, et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). RALES investigators. Circulation. 2000;102(22):2700–2706. doi: 10.1161/01.cir.102.22.2700.
  • Kockova R, Kacer P, Pirk J, et al. Native T1 relaxation value and extracellular volume fraction as accurate markers of diffuse myocardial fibrosis in heart valve disease- comparison with targeted left ventricular myocardial biopsy. Circ J. 2016;80(5):1202–1209. doi: 10.1253/circj.CJ-15-1309.
  • Joseph J, Joseph L, Devi S, et al. Effect of anti-oxidant treatment on hyperhomocysteinemia-induced myocardial fibrosis and diastolic dysfunction. J Heart Lung Transplant. 2008; Nov27(11):1237–1241. doi: 10.1016/j.healun.2008.07.024.
  • Cuspidi C, Ciulla M, Zanchetti A. Hypertensive myocardial fibrosis. Nephrol Dial Transplant. 2006;21(1):20–23. doi: 10.1093/ndt/gfi237.
  • Tyralla K, Amann K. Morphology of the heart and arteries in renal failure. Kidney Int Suppl. 2003;63Supplement(84):S80–S83. doi: 10.1046/j.1523-1755.63.s84.1.x.
  • Neves KR, Graciolli FG, dos Reis LM, et al. Vascular calcification: contribution of parathyroid hormone in renal failure. Kidney Int. 2007;71(12):1262–1270. doi: 10.1038/sj.ki.5002241.
  • Saleh FN, Schirmer H, Sundsfjord J, et al. Parathyroid hormone and left ventricular hypertrophy. Eur Heart J. 2003;24(22):2054–2060. doi: 10.1016/j.ehj.2003.09.010.
  • Zoccali C, Benedetto FA, Mallamaci F, et al. Prognostic value of echocardiographic indicators of left ventricular systolic function in asymptomatic dialysis patients. J Am Soc Nephrol. 2004;15(4):1029–1037. doi: 10.1097/01.asn.0000117977.14912.91.
  • Ito K, Li S, Homma S, et al. Left ventricular dimensions and cardiovascular outcomes in systolic heart failure: the WARCEF trial. ESC Heart Fail. 2021;8(6):4997–5009. doi: 10.1002/ehf2.13560.
  • Park M, Hsu CY, Li Y, et al. Associations between kidney function and subclinical cardiac abnormalities in CKD[J]. J Am Soc Nephrol. 2012;23(10):1725–1734. doi: 10.1681/ASN.2012020145.
  • Yamada S, Ishii H, Takahashi H, et al. Prognostic values of reduced left ventricular ejection fraction at start of hemodialysis therapy on cardiovascular and all- cause mortality in end- stage renal disease patients. Clin J Am Soc Nephrol. 2010;5(10):1793–1798. doi: 10.2215/CJN.00050110.