1,413
Views
0
CrossRef citations to date
0
Altmetric
Hypertension and Volume Management

Current perspectives and trends of the research on hypertensive nephropathy: a bibliometric analysis from 2000 to 2023

, , &
Article: 2310122 | Received 31 Oct 2023, Accepted 21 Jan 2024, Published online: 12 Feb 2024

References

  • Zhou B, Perel P, Mensah GA, et al. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat Rev Cardiol. 2021;18(11):1–18. doi: 10.1038/s41569-021-00559-8.
  • Udani S, Lazich I, Bakris GL. Epidemiology of hypertensive kidney disease. Nat Rev Nephrol. 2011;7(1):11–21. doi: 10.1038/nrneph.2010.154.
  • Wang F, Yang C, Long J, et al. Executive summary for the 2015 annual data report of the China kidney disease network (CK-NET). Kidney Int. 2019;95(3):501–505. doi: 10.1016/j.kint.2018.11.011.
  • Matsushita K, Ballew SH, Wang AYM, et al. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat Rev Nephrol. 2022;18(11):696–707. doi: 10.1038/s41581-022-00616-6.
  • Seccia TM, Caroccia B, Calò LA. Hypertensive nephropathy. Moving from classic to emerging pathogenetic mechanisms. J Hypertens. 2017;35(2):205–212. doi: 10.1097/HJH.0000000000001170.
  • Vanholder R, Annemans L, Bello AK, et al. Fighting the unbearable lightness of neglecting kidney health: the decade of the kidney. Clin Kidney J. 2021;14(7):1719–1730. doi: 10.1093/ckj/sfab070.
  • Carriazo S, Vanessa Perez-Gomez M, Ortiz A. Hypertensive nephropathy: a major roadblock hindering the advance of precision nephrology. Clin Kidney J. 2020;13(4):504–509. doi: 10.1093/ckj/sfaa162.
  • Hart PD, Bakris GL. Hypertensive nephropathy: ­prevention and treatment recommendations. Expert Opin Pharmacother. 2010;11(16):2675–2686. doi: 10.1517/14656566.2010.485612.
  • Griffin KA. Hypertensive kidney injury and the progression of chronic kidney disease. Hypertension. 2017;70(4):687–694. doi: 10.1161/HYPERTENSIONAHA.117.08314.
  • McMaster WG, Kirabo A, Madhur MS, et al. Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 2015;116(6):1022–1033. doi: 10.1161/CIRCRESAHA.116.303697.
  • Bidani AK, Griffin KA. Long-term renal consequences of hypertension for normal and diseased kidneys. Curr Opin Nephrol Hypertens. 2002;11(1):73–80. doi: 10.1097/00041552-200201000-00011.
  • Hill GS, Heudes D, Bariéty J. Morphometric study of arterioles and glomeruli in the aging kidney suggests focal loss of autoregulation. Kidney Int. 2003;63(3):1027–1036. doi: 10.1046/j.1523-1755.2003.00831.x.
  • Hill GS. Hypertensive nephrosclerosis. Curr Opin Nephrol Hypertens. 2008;17(3):266–270. doi: 10.1097/MNH.0b013e3282f88a1f.
  • Mezzano SA, Ruiz-Ortega M, Egido J. Angiotensin II and renal fibrosis. Hypertension. 2001;38(3 Pt 2):635–638. doi: 10.1161/hy09t1.094234.
  • Azushima K, Morisawa N, Tamura K, et al. Recent research advances in renin-angiotensin-Aldosterone system receptors. Curr Hypertens Rep. 2020;22(3):22. doi: 10.1007/s11906-020-1028-6.
  • de Gasparo M, Catt Kj Fau- Inagami T, Inagami T, et al. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52(3):415–472.
  • Padia SH, Carey RM. AT2 receptors: beneficial counter-regulatory role in cardiovascular and renal function. Pflugers Arch. 2013;465(1):99–110. doi: 10.1007/s00424-012-1146-3.
  • Li A, Zhang J, Zhang X, et al. Angiotensin II induces connective tissue growth factor expression in human hepatic stellate cells by a transforming growth factor beta-independent mechanism. Sci Rep. 2017;7(1):7841. doi: 10.1038/s41598-017-08334-x.
  • Xu Z, Li W, Han J, et al. Angiotensin II induces kidney inflammatory injury and fibrosis through binding to myeloid differentiation protein-2 (MD2). Sci Rep. 2017;7(1):44911. doi: 10.1038/srep44911.
  • Rodrigues Prestes TR, Rocha NP, Miranda AS, et al. The anti-Inflammatory potential of ACE2/angiotensin-(1-7)/mas receptor axis: evidence from basic and clinical research. Curr Drug Targets. 2017;18(11):1301–1313. doi: 10.2174/1389450117666160727142401.
  • Soler MJ, Wysocki J, Batlle D. ACE2 alterations in kidney disease. Nephrol Dial Transplant. 2013;28(11):2687–2697. doi: 10.1093/ndt/gft320.
  • Reich HN, Oudit GY, Penninger JM, et al. Decreased glomerular and tubular expression of ACE2 in patients with type 2 diabetes and kidney disease. Kidney Int. 2008;74(12):1610–1616. doi: 10.1038/ki.2008.497.
  • Koka V, Huang XR, Chung ACK, et al. Angiotensin II up-regulates angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP kinase pathway. Am J Pathol. 2008;172(5):1174–1183. doi: 10.2353/ajpath.2008.070762.
  • Nakamura K, Koibuchi N, Nishimatsu H, et al. Candesartan ameliorates cardiac dysfunction observed in angiotensin-converting enzyme 2-deficient mice. Hypertens Res. 2008;31(10):1953–1961. doi: 10.1291/hypres.31.1953.
  • Roca-Ho H, Palau V, Gimeno J, et al. Angiotensin-converting enzyme 2 influences pancreatic and renal function in diabetic mice. Lab Invest. 2020;100(9):1169–1183. doi: 10.1038/s41374-020-0440-5.
  • Costantino VV, Gil Lorenzo AF, Bocanegra V, et al. Molecular mechanisms of hypertensive nephropathy: renoprotective effect of losartan through Hsp70. Cells. 2021;10(11):3146. doi: 10.3390/cells10113146.
  • Lucero CM, Prieto-Villalobos J, Marambio-Ruiz L, et al. Hypertensive nephropathy: unveiling the possible involvement of hemichannels and pannexons. Int J Mol Sci. 2022;23(24):15936. doi: 10.3390/ijms232415936.
  • Wang CJ, Wang ZY, Zhang W. The potential role of complement alternative pathway activation in hypertensive renal damage. Exp Biol Med. 2022;247(9):797–804. doi: 10.1177/15353702221091986.
  • Chen YZ, Wang K, Yang J, et al. Mechanism of ferroptosis in hypertensive nephropathy. Transl Androl Urol. 2022;11(5):617–626. doi: 10.21037/tau-22-276.
  • Hawkins D. Bibliometrics of electronic journals in information science. Inf Res. 2001;7:120.
  • Kokol P, Blažun Vošner H, Završnik J. Application of bibliometrics in medicine: a historical bibliometrics analysis. Health Info Libr J. 2021;38(2):125–138. doi: 10.1111/hir.12295.
  • van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523–538. doi: 10.1007/s11192-009-0146-3.
  • Chen C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci U S A. 2004;101(Suppl 1)1:5303–5310. doi: 10.1073/pnas.0307513100.
  • Singh VK, Singh P, Karmakar M, et al. The journal coverage of web of science, scopus and dimensions: a comparative analysis. Scientometrics. 2021;126(6):5113–5142. doi: 10.1007/s11192-021-03948-5.
  • Wang J, Liu X, Pan D, et al. Chronic kidney disease in the shadow of COVID-19: insights from the bibliometric analysis. Int Urol Nephrol. 2024;56(2):683–697. doi: 10.1007/s11255-023-03706-x.
  • Wang JY, Wang X, Cai XT, et al. Global trends and hotspots in IgA nephropathy: a bibliometric analysis and knowledge map visualization from 2012 to 2023. Int Urol Nephrol. 2023;55(12):3197–3207. doi: 10.1007/s11255-023-03598-x.
  • Synnestvedt MB, Chen C, Holmes JH. CiteSpace II: visualization and knowledge discovery in bibliographic databases. AMIA Annu Symp Proc. 2005;2005:724–728.
  • Shibata N, Kajikawa Y, Takeda Y, et al. Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation. 2008;28(11):758–775. doi: 10.1016/j.technovation.2008.03.009.
  • Sabe M, Pillinger T, Kaiser S, et al. Half a century of research on antipsychotics and schizophrenia: a scientometric study of hotspots, nodes, bursts, and trends. Neurosci Biobehav Rev. 2022;136:104608. doi: 10.1016/j.neubiorev.2022.104608.
  • Kleinberg J. Bursty and hierarchical structure in streams. Data Min Knowl Discov. 2003;7(4):373–397. doi: 10.1023/A:1024940629314.
  • Donthu N, Kumar S, Mukherjee D, et al. How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. 2021;133:285–296. doi: 10.1016/j.jbusres.2021.04.070.
  • Wang ZY, Ma DB, Pang R, et al. Research progress and development trend of social media big data (SMBD): knowledge mapping analysis based on CiteSpace. IJGI. 2020;9(11):632. doi: 10.3390/ijgi9110632.
  • Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci U S A. 2005;102(46):16569–16572. doi: 10.1073/pnas.0507655102.
  • Zhang G, Song J, Feng Z, et al. Artificial intelligence applicated in gastric cancer: a bibliometric and visual analysis via CiteSpace. Front Oncol. 2022;12:1075974. doi: 10.3389/fonc.2022.1075974.
  • Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–869. doi: 10.1056/NEJMoa011161.
  • Appel LJ, Wright JT, Greene T, et al. Long-term effects of renin-angiotensin system-blocking therapy and a low blood pressure goal on progression of hypertensive chronic kidney disease in African Americans. Arch Intern Med. 2008;168(8):832–839. doi: 10.1001/archinte.168.8.832.
  • Genovese G, Friedman DJ, Ross MD, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329(5993):841–845. doi: 10.1126/science.1193032.
  • Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993;329(20):1456–1462. doi: 10.1056/NEJM199311113292004.
  • Maschio G, Alberti D, Janin G, et al. Effect of the angiotensin-converting–enzyme inhibitor benazepril on the progression of chronic renal insufficiency. N Engl J Med. 1996;334(15):939–945. doi: 10.1056/NEJM199604113341502.
  • GISEN Group. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet. 1997;349(9069):1857–1863.
  • Ruggenenti P, Perna A, Gherardi G, et al. Renal function and requirement for dialysis in chronic nephropathy patients on long-term ramipril: REIN follow-up trial. Lancet. 1998;352(9136):1252–1256. doi: 10.1016/s0140-6736(98)04433-x.
  • Agodoa LY, Appel L, Bakris GL, et al. Effect of ramipril vs amlodipine on renal outcomes in hypertensive nephrosclerosis – A randomized controlled trial. Jama-J Am Med Assoc. 2001;285(21):2719–2728. doi: 10.1001/jama.285.21.2719.
  • Wright JT, Bakris G, Greene T, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease – Results from the AASK trial. JAMA. 2002;288(19):2421–2431.
  • Gassman JJ, Greene T, Wright JT, et al. Design and statistical aspects of the African American study of kidney disease and hypertension (AASK). J Am Soc Nephrol. 2003;14(7 Suppl 2):S154–S165. doi: 10.1097/01.asn.0000070080.21680.cb.
  • Walker WG, Neaton JD, Cutler JA, et al. Renal function change in hypertensive members of the multiple risk factor intervention trial: racial and treatment effects. JAMA. 1992;268(21):3085–3091. doi: 10.1001/jama.1992.03490210067037.
  • Freedman BI, Hicks PJ, Bostrom MA, et al. Polymorphisms in the non-muscle myosin heavy chain 9 gene (MYH9) are strongly associated with end-stage renal disease historically attributed to hypertension in African Americans. Kidney Int. 2009;75(7):736–745. doi: 10.1038/ki.2008.701.
  • Lipkowitz MS, Freedman BI, Langefeld CD, et al. Gene variants associate with hypertension-attributed nephropathy and the rate of kidney function decline in African Americans. Kidney Int. 2013;83(1):114–120. doi: 10.1038/ki.2012.263.
  • Freedman BI, Julian BA, Pastan SO, et al. Apolipoprotein L1 gene variants in deceased organ donors are associated with renal allograft failure. Am J Transplant. 2015;15(6):1615–1622. doi: 10.1111/ajt.13223.
  • Liu H, Jiang YC, Li M, et al. Ginsenoside Rg3 attenuates angiotensin II-mediated renal injury in rats and mice by upregulating angiotensin-converting enzyme 2 in the renal tissue. Evid-Based Compl Alt. 2019;2019:6741057. doi: 10.1155/2019/6741057.
  • Wang ZZ, Wang SS, Zhao JQ, et al. Naringenin ameliorates renovascular hypertensive renal damage by normalizing the balance of renin-angiotensin system components in rats. Int J Med Sci. 2019;16(5):644–653. doi: 10.7150/ijms.31075.
  • Friese RS, Altshuler AE, Zhang K, et al. MicroRNA-22 and promoter motif polymorphisms at the Chga locus in genetic hypertension: functional and therapeutic implications for gene expression and the pathogenesis of hypertension. Hum Mol Genet. 2013;22(18):3624–3640. doi: 10.1093/hmg/ddt213.
  • Zhang KX, Mir SA, Hightower CM, et al. Molecular mechanism for hypertensive renal disease: differential regulation of chromogranin a expression at 3′-untranslated region polymorphism C + 87T by MicroRNA-107. J Am Soc Nephrol. 2015;26(8):1816–1825. doi: 10.1681/ASN.2014060537.
  • Chen YQ, Rao FW, Wen G, et al. Naturally occurring genetic variants in human chromogranin A (CHGA) associated with hypertension as well as hypertensive renal disease. Cell Mol Neurobiol. 2010;30(8):1395–1400. doi: 10.1007/s10571-010-9600-2.
  • Du HX, Xiao GX, Xue ZF, et al. QiShenYiQi ameliorates salt-induced hypertensive nephropathy by balancing ADRA1D and SIK1 expression in dahl salt-sensitive rats. Biomed Pharmacother. 2021;141:111941. doi: 10.1016/j.biopha.2021.111941.
  • Lan HY. Smad7 as a therapeutic agent for chronic kidney diseases. Front Biosci. 2008;13:4984–4992. doi: 10.2741/3057.
  • Liu GX, Li YQ, Huang XR, et al. Smad7 inhibits AngII-mediated hypertensive nephropathy in a mouse model of hypertension. Clin Sci. 2014;127(3):195–208. doi: 10.1042/CS20130706.
  • Liu Z, Huang XR, Chen HY, et al. Deletion of angiotensin-Converting enzyme-2 promotes hypertensive nephropathy by targeting Smad7 for ubiquitin degradation. Hypertension. 2017;70(4):822–830. doi: 10.1161/HYPERTENSIONAHA.117.09600.
  • Dugbartey GJ. H2S as a possible therapeutic alternative for the treatment of hypertensive kidney injury. Nitric Oxide. 2017;64:52–60. doi: 10.1016/j.niox.2017.01.002.
  • Gao N, Zhang YZ, Li L, et al. Hyperhomocysteinemia-Induced oxidative stress aggravates renal damage in hypertensive rats. Am J Hypertens. 2020;33(12):1127–1135. doi: 10.1093/ajh/hpaa086.
  • Du X, Ma XL, Tan Y, et al. B cell-derived anti-beta 2 glycoprotein I antibody mediates hyperhomocysteinemia-aggravated hypertensive glomerular lesions by triggering ferroptosis. Signal Transduct Target Ther. 2023;8(1):103. doi: 10.1038/s41392-023-01313-x.
  • Zhong Y, Tang R, Lu Y, et al. Irbesartan may relieve renal injury by suppressing Th22 cells chemotaxis and infiltration in Ang II-induced hypertension. Int Immunopharmacol. 2020;87:106789. doi: 10.1016/j.intimp.2020.106789.
  • Wang W, Lu Y, Hu XL, et al. Interleukin-22 exacerbates angiotensin II-induced hypertensive renal injury. Int Immunopharmacol. 2022;109:108840. doi: 10.1016/j.intimp.2022.108840.
  • Ding K, Wang Y, Jiang WM, et al. Qian yang Yu yin granule-containing serum inhibits angiotensin II-induced proliferation, reactive oxygen species production, and inflammation in human mesangial cells via an NADPH oxidase 4-dependent pathway. Bmc Complem Altern M. 2015;15:81. doi: 10.1186/s12906-015-0619-2.
  • Ma S, Xu J, Zheng Y, et al. Qian yang Yu yin granule improves hypertensive renal damage: a potential role for TRPC6-CaMKKβ-AMPK-mTOR-mediated autophagy. J Ethnopharmacol. 2023;302(Pt A):115878. doi: 10.1016/j.jep.2022.115878.
  • Chen D, Long L, Lin S, et al. Qingda granule alleviate angiotensin ii-induced hypertensive renal injury by suppressing oxidative stress and inflammation through NOX1 and NF-κB pathways. Biomed Pharmacother. 2022;153:113407. doi: 10.1016/j.biopha.2022.113407.
  • Du X, Tao Q, Du H, et al. Tengdan capsule prevents hypertensive kidney damage in SHR by inhibiting periostin-mediated renal fibrosis. Front Pharmacol. 2021;12:638298. doi: 10.3389/fphar.2021.638298.
  • Xiong D, Hu W, Ye ST, et al. Isoliquiritigenin alleviated the ang II-induced hypertensive renal injury through suppressing inflammation cytokines and oxidative stress-induced apoptosis via Nrf2 and NF-κB pathways. Biochem Biophys Res Commun. 2018;506(1):161–168. doi: 10.1016/j.bbrc.2018.09.013.
  • Dong Z, Dai H, Feng Z, et al. Mechanism of herbal medicine on hypertensive nephropathy (review). Mol Med Rep. 2021;23(4):234. doi: 10.3892/mmr.2021.11873.
  • Yu DH, Petermann A, Kunter U, et al. Urinary podocyte loss is a more specific marker of ongoing glomerular damage than proteinuria. J Am Soc Nephrol. 2005;16(6):1733–1741. doi: 10.1681/ASN.2005020159.
  • Fan YQ, Cheng J, Yang Q, et al. Sirt6-mediated Nrf2/HO-1 activation alleviates angiotensin II-induced DNA DSBs and apoptosis in podocytes. Food Funct. 2021;12(17):7867–7882. doi: 10.1039/d0fo03467c.
  • Zhang Y, Zhang NJ, Zou YM, et al. Deacetylation of Septin4 by SIRT2 (silent mating type information regulation 2 homolog-2) mitigates damaging of hypertensive nephropathy. Circ Res. 2023;132(5):601–624. doi: 10.1161/CIRCRESAHA.122.321591.
  • Chen XL, Cao YL, Wang Z, et al. Bioinformatic ­analysis  eveals novel hub genes and pathways associated with hypertensive nephropathy. Nephrology. 2019;24(11):1103–1114. doi: 10.1111/nep.13508.
  • Li X, Wang L, Ma SJ, et al. Combination of Oxalobacter formigenes and Veillonella parvula in gastrointestinal microbiota related to bile-acid metabolism as a biomarker for hypertensive nephropathy. Int J Hypertens. 2022;2022:5999530. doi: 10.1155/2022/5999530.
  • Falke LL, Gholizadeh S, Goldschmeding R, et al. Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat Rev Nephrol. 2015;11(4):233–244. doi: 10.1038/nrneph.2014.246.
  • Liu Y, Wang JY. Ferroptosis, a rising force against renal fibrosis. Oxid Med Cell Longev. 2022;2022:7686956–7686912. doi: 10.1155/2022/7686956.
  • Bielesz B, Sirin Y, Si H, et al. Epithelial notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest. 2010;120(11):4040–4054. doi: 10.1172/JCI43025.
  • Halt K, Vainio S. Coordination of kidney organogenesis by wnt signaling. Pediatr Nephrol. 2014;29(4):737–744. doi: 10.1007/s00467-013-2733-z.
  • Ding H, Zhou D, Hao S, et al. Sonic hedgehog signaling mediates epithelial–mesenchymal communication and promotes renal fibrosis. J Am Soc Nephrol. 2012;23(5):801–813. doi: 10.1681/ASN.2011060614.
  • Kumar S, Liu J, Pang P, et al. Sox9 activation highlights a cellular pathway of renal repair in the acutely injured mammalian kidney. Cell Rep. 2015;12(8):1325–1338. doi: 10.1016/j.celrep.2015.07.034.
  • Canaud G, Bonventre JV. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant. 2015;30(4):575–583. doi: 10.1093/ndt/gfu230.
  • Tang PMK, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 2019;15(3):144–158. doi: 10.1038/s41581-019-0110-2.
  • Pei G, Yao Y, Yang Q, et al. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. Sci Adv. 2019;5(6):eaaw5075. doi: 10.1126/sciadv.aaw5075.
  • Ryu S, Shin JW, Kwon S, et al. Siglec-F–expressing neutrophils are essential for creating a profibrotic microenvironment in renal fibrosis. J Clin Investig. 2022;132(12):e156876. doi: 10.1172/JCI156876.
  • Doke T, Abedini A, Aldridge DL, et al. Single-cell analysis identifies the interaction of altered renal tubules with basophils orchestrating kidney fibrosis. Nat Immunol. 2022;23(6):947–959. doi: 10.1038/s41590-022-01200-7.
  • Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol. 2019;15(6):327–345. doi: 10.1038/s41581-019-0135-6.
  • Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 2018;378(14):1323–1334. doi: 10.1056/NEJMra1402513.
  • Chen C, Lu C, Qian Y, et al. Urinary miR-21 as a potential biomarker of hypertensive kidney injury and fibrosis. Sci Rep. 2017;7(1):17737. doi: 10.1038/s41598-017-18175-3.
  • Huang YQ, Huang C, Li J, et al. The association of miR-29a with proteinuria in essential hypertension. J Hum Hypertens. 2018;32(11):775–780. doi: 10.1038/s41371-018-0097-3.
  • Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther. 2022;7(1):182. doi: 10.1038/s41392-022-01036-5.
  • Hsu TW, Liu JS, Hung SC, et al. Renoprotective effect of renin-angiotensin-aldosterone system blockade in patients with predialysis advanced chronic kidney disease, hypertension, and anemia. JAMA Intern Med. 2014;174(3):347–354. doi: 10.1001/jamainternmed.2013.12700.
  • Wheeler DC, Stefánsson BV, Jongs N, et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021;9(1):22–31. doi: 10.1016/S2213-8587(20)30369-7.
  • Heerspink HJL, Parving HH, Andress DL, et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 2019;393(10184):1937–1947. doi: 10.1016/S0140-6736(19)30772-X.
  • Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in Later-Stage autosomal dominant polycystic kidney disease. N Engl J Med. 2017;377(20):1930–1942. doi: 10.1056/NEJMoa1710030.
  • Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219–2229. doi: 10.1056/NEJMoa2025845.
  • Liu W, Li Y, Xiong X, et al. Traditional Chinese medicine protects against hypertensive kidney injury in dahl salt-sensitive rats by targeting transforming growth factor-β signaling pathway. Biomed Pharmacother. 2020;131:110746. doi: 10.1016/j.biopha.2020.110746.
  • Aibara Y, Nakashima A, Kawano KI, et al. Daily low-intensity pulsed ultrasound ameliorates renal fibrosis and inflammation in experimental hypertensive and diabetic nephropathy. Hypertension. 2020;76(6):1906–1914. doi: 10.1161/HYPERTENSIONAHA.120.15237.
  • Huang C-C, Lin Y-Y, Yang A-L, et al. Anti-renal fibrotic effect of exercise training in hypertension. Int J Mol Sci. 2018;19(2):613. doi: 10.3390/ijms19020613.
  • Barcellos FC, Del Vecchio FB, Reges A, et al. Exercise in patients with hypertension and chronic kidney disease: a randomized controlled trial. J Hum Hypertens. 2018;32(6):397–407. doi: 10.1038/s41371-018-0055-0.
  • Rahman M, Greene T, Phillips RA, et al. A trial of 2 strategies to reduce nocturnal blood pressure in blacks with chronic kidney disease. Hypertension. 2013;61(1):82–88. doi: 10.1161/HYPERTENSIONAHA.112.200477.
  • Juraschek SP, Appel LJ, Miller ER. Metoprolol increases uric acid and risk of gout in African Americans with chronic kidney disease attributed to hypertension. Am J Hypertens. 2017;30(9):871–875. doi: 10.1093/ajh/hpx113.
  • Siddiqi L, Oey PL, Blankestijn PJ. Aliskiren reduces sympathetic nerve activity and blood pressure in chronic kidney disease patients. Nephrol Dial Transplant. 2011;26(9):2930–2934. doi: 10.1093/ndt/gfq857.
  • Li SY, Chen YT, Yang WC, et al. Effect of add-on direct renin inhibitor aliskiren in patients with non-diabetes related chronic kidney disease. BMC Nephrol. 2012;13(1):89. doi: 10.1186/1471-2369-13-89.
  • Morishita Y, Hanawa S, Chinda J, et al. Effects of aliskiren on blood pressure and the predictive biomarkers for cardiovascular disease in hemodialysis-dependent chronic kidney disease patients with hypertension. Hypertens Res. 2011;34(3):308–313. doi: 10.1038/hr.2010.238.
  • Bakris GL, Zhao L, Kupfer S, et al. Long-term efficacy and tolerability of azilsartan medoxomil/chlorthalidone vs olmesartan medoxomil/hydrochlorothiazide in chronic kidney disease. J Clin Hypertens. 2018;20(4):694–702. doi: 10.1111/jch.13230.
  • Kokol P, Kokol M, Zagoranski S. Machine learning on small size samples: a synthetic knowledge synthesis. Sci Prog. 2022;105(1):368504211029777. doi: 10.1177/00368504211029777.