305
Views
0
CrossRef citations to date
0
Altmetric
Basic Sciences Investigations

Study on effects and relevant mechanisms of Mudan granules on renal fibrosis in streptozotocin-induced diabetes rats

, , , &
Article: 2310733 | Received 25 Oct 2023, Accepted 23 Jan 2024, Published online: 15 Feb 2024

References

  • Kushwaha K, Kabra U, Dubey R, et al. Diabetic nephropathy: pathogenesis to cure. Curr Drug Targets. 2022;23(15):1–10. doi: 10.2174/1389450123666220820110801.
  • Samsu N. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021;2021:1497449. doi: 10.1155/2021/1497449.
  • Pan Y, Zhang Y, Li J, et al. A proteoglycan isolated from Ganoderma lucidum attenuates diabetic kidney disease by inhibiting oxidative stress-induced renal fibrosis both in vitro and in vivo. J Ethnopharmacol. 2023;310:116405. doi: 10.1016/j.jep.2023.116405.
  • Zhu D, Zhang L, Cheng L, et al. Pancreatic kininogenase ameliorates renal fibrosis in streptozotocin induced-diabetic nephropathy rat. Kidney Blood Press Res. 2016;41(1):9–17. doi: 10.1159/000368542.
  • Zheng Z, Ma T, Lian X, et al. Clopidogrel reduces fibronectin accumulation and improves diabetes-induced renal fibrosis. Int J Biol Sci. 2019;15(1):239–252. doi: 10.7150/ijbs.29063.
  • Zhang ZH, Li MH, Liu D, et al. Rhubarb protect against tubulointerstitial fibrosis by inhibiting TGF-beta/smad pathway and improving abnormal metabolome in chronic kidney disease. Front Pharmacol. 2018;9:1029. doi: 10.3389/fphar.2018.01029.
  • Ma TT, Meng XM. TGF-beta/smad and renal fibrosis. Adv Exp Med Biol. 2019;1165:347–364. doi: 10.1007/978-981-13-8871-2_16.
  • Zhao T, Sun S, Zhang H, et al. Therapeutic effects of tangshen formula on diabetic nephropathy in rats. PLoS One. 2016;11(1):e147693. doi: 10.1371/journal.pone.0147693.
  • Zhang X, Zhao L, Xiang S, et al. Yishen tongluo formula alleviates diabetic kidney disease through regulating Sirt6/TGF-beta1/Smad2/3 pathway and promoting degradation of TGF-beta1. J Ethnopharmacol. 2023;307:116243. doi: 10.1016/j.jep.2023.116243.
  • Zhang Y, Jin D, Duan Y, et al. Efficacy of mudan granule (combined with methylcobalamin) on type 2 diabetic peripheral neuropathy: study protocol for a Double-Blind, randomized, Placebo-Controlled, Parallel-Arm, Multi-Center trial. Front Pharmacol. 2021;12:676503. doi: 10.3389/fphar.2021.676503.
  • Xu J, Wang M, Yu S. Experimental and clinical research evidence of mudan granules (tangmoning) in the treatment of diabetes and multiple complications. Chinese Archives of Traditional Chinese Medicine. 2018;36(02):384–387.
  • Zhang X, Zhang L, Chen Z, et al. Exogenous spermine attenuates diabetic kidney injury in rats by inhibiting AMPK/mTOR signaling pathway. Int J Mol Med. 2021;47(3):1–11. doi: 10.3892/ijmm.2021.4860.
  • Liu Y, Zheng JY, Wei ZT, et al. Therapeutic effect and mechanism of combination therapy with ursolic acid and insulin on diabetic nephropathy in a type I diabetic rat model. Front Pharmacol. 2022;13:969207. doi: 10.3389/fphar.2022.969207.
  • Qi SS, Zheng HX, Jiang H, et al. Protective effects of chromium picolinate against diabetic-induced renal dysfunction and renal fibrosis in streptozotocin-induced diabetic rats. Biomolecules. 2020;10(3):398. doi: 10.3390/biom10030398.
  • Gao F, Yao M, Cao Y, et al. Valsartan ameliorates podocyte loss in diabetic mice through the notch pathway. Int J Mol Med. 2016;37(5):1328–1336. doi: 10.3892/ijmm.2016.2525.
  • Jiao B, Wang YS, Cheng YN, et al. Valsartan attenuated oxidative stress, decreased MCP-1 and TGF-beta1 expression in glomerular mesangial and epithelial cells induced by high-glucose levels. Biosci Trends. 2011;5(4):173–181. doi: 10.5582/bst.2011.v5.4.173.
  • Tang L, Yi R, Yang B, et al. Valsartan inhibited HIF-1alpha pathway and attenuated renal interstitial fibrosis in streptozotocin-diabetic rats. Diabetes Res Clin Pract. 2012;97(1):125–131. doi: 10.1016/j.diabres.2012.01.037.
  • Oh SW, Kim S, Na KY, et al. Clinical implications of pathologic diagnosis and classification for diabetic nephropathy. Diabetes Res Clin Pract. 2012;97(3):418–424. doi: 10.1016/j.diabres.2012.03.016.
  • Ricciardi CA, Gnudi L. Kidney disease in diabetes: from mechanisms to clinical presentation and treatment strategies. Metabolism. 2021;124:154890. doi: 10.1016/j.metabol.2021.154890.
  • Zheng ZC, Zhu W, Lei L, et al. Wogonin ameliorates renal inflammation and fibrosis by inhibiting NF-kappaB and TGF-beta1/Smad3 signaling pathways in diabetic nephropathy. Drug Des Devel Ther. 2020;14:4135–4148. doi: 10.2147/DDDT.S274256.
  • Dorotea D, Koya D, Ha H. Recent insights into SREBP as a direct mediator of kidney fibrosis via lipid-Independent pathways. Front Pharmacol. 2020;11:265. doi: 10.3389/fphar.2020.00265.
  • Sun J, Chen X, Liu T, et al. Berberine protects against Palmitate-Induced apoptosis in tubular epithelial cells by promoting fatty acid oxidation. Med Sci Monit. 2018;24:1484–1492. doi: 10.12659/msm.908927.
  • Kolset SO, Reinholt FP, Jenssen T. Diabetic nephropathy and extracellular matrix. J Histochem Cytochem. 2012;60(12):976–986. doi: 10.1369/0022155412465073.
  • Sureshbabu A, Muhsin SA, Choi ME. TGF-beta signaling in the kidney: profibrotic and protective effects. Am J Physiol Renal Physiol. 2016;310(7):F596–F606. doi: 10.1152/ajprenal.00365.2015.
  • Loboda A, Sobczak M, Jozkowicz A, et al. TGF-beta1/smads and miR-21 in renal fibrosis and inflammation. Mediators Inflamm. 2016;2016:8319283. doi: 10.1155/2016/8319283.
  • Chang AS, Hathaway CK, Smithies O, et al. Transforming growth factor-beta1 and diabetic nephropathy. Am J Physiol Renal Physiol. 2016;310(8):F689–F696. doi: 10.1152/ajprenal.00502.2015.
  • Gosmanov AR, Wall BM, Gosmanova EO. Diagnosis and treatment of diabetic kidney disease. Am J Med Sci. 2014;347(5):406–413. doi: 10.1097/MAJ.0000000000000185.
  • Chen L, Yang T, Lu DW, et al. Central role of dysregulation of TGF-beta/smad in CKD progression and potential targets of its treatment. Biomed Pharmacother. 2018;101:670–681. doi: 10.1016/j.biopha.2018.02.090.
  • Wang L, Wang HL, Liu TT, et al. TGF-Beta as a master regulator of diabetic nephropathy. Int J Mol Sci. 2021;22(15):1–18.
  • Nomura M, Li E. Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature. 1998;393(6687):786–790. doi: 10.1038/31693.
  • Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-beta/smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76–83. doi: 10.1016/j.cbi.2018.07.008.
  • Heldin CH, Moustakas A. Role of smads in TGFbeta signaling. Cell Tissue Res. 2012;347(1):21–36. doi: 10.1007/s00441-011-1190-x.
  • Yan X, Liao H, Cheng M, et al. Smad7 protein interacts with receptor-regulated smads (R-Smads) to inhibit transforming growth factor-beta (TGF-beta)/smad signaling. J Biol Chem. 2016;291(1):382–392. doi: 10.1074/jbc.M115.694281.
  • Liu S, Zhao J, Tian WS, et al. Estrogen deficiency aggravates fluorine ion-induced renal fibrosis via the TGF-beta1/smad signaling pathway in rats. Toxicol Lett. 2022;362:26–37. doi: 10.1016/j.toxlet.2022.04.005.