1,148
Views
0
CrossRef citations to date
0
Altmetric
Transplantation

Global trends of delayed graft function in kidney transplantation from 2013 to 2023: a bibliometric analysis

ORCID Icon, &
Article: 2316277 | Received 02 Jan 2024, Accepted 03 Feb 2024, Published online: 15 Feb 2024

References

  • Sweet AL, Connelly CR, Dewey EN, et al. The effect of perfusate temperature on delayed graft function in deceased donor renal transplantation. Prog Transplant. 2023; 33(4):1–19. Epub 2023 Nov 14. PMID: 37964564. doi: 10.1177/15269248231212920.
  • Zhao S. Establishment of a prediction model for delayed recovery of renal transplantation function at AIL-2 level. Nanchang university, 2022. doi: 10.27232/d.cnki.gnchu.2022.001085.
  • Li J. Meta-analysis of risk factors for delayed renal function recovery after DD donor kidney transplantation. University of South China, 2021. doi: 10.27234/d.cnki.gnhuu.2021.000971.
  • Mezzolla V, Pontrelli P, Fiorentino M, et al. Emerging biomarkers of delayed graft function in kidney transplantation. Transplant Rev. 2021;35(4):100629. Epub 2021 May 26. PMID: 34118742. doi: 10.1016/j.trre.2021.100629.
  • Yuan S, Jing L, Jiamiao H, et al. Visual analysis of research progress of photodynamic sterilization technology based on citespace. Sci Technol Food Industry. 2024:1–30. doi: 10.13386/j.issn1002-0306.2023010162.
  • Yan F, Zhangkai WANG, Xuewei Y, et al. Bibliometric analysis of antibiotic resistance genes in soil media based on web of science. Ecotoxicol. 2023;18(6):302–313. http://kns.cnki.net/kcms/detail/11.5470.X.20230908.1646.002.html.
  • Summers DM, Watson CJ, Pettigrew GJ, et al. Kidney donation after circulatory death (DCD): state of the art. Kidney Int. 2015;88(2):241–249. Epub 2015 Mar 18. PMID: 25786101. doi: 10.1038/ki.2015.88.
  • Siedlecki A, Irish W, Brennan DC. Delayed graft function in the kidney transplant. Am J Transplant. 2011; 11(11):2279–2296. Epub 2011 Sep 19. PMID: 21929642; PMCID: PMC3280444. doi: 10.1111/j.1600-6143.2011.03754.x.
  • Yarlagadda SG, Coca SG, Formica RN, Jr, et al. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant. 2009;24(3):1039–1047. Epub 2008 Dec 22. PMID: 19103734. doi: 10.1093/ndt/gfn667.
  • Irish WD, Ilsley JN, Schnitzler MA, et al. A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation. Am J Transplant. 2010;10(10):2279–2286. PMID: 20883559. doi: 10.1111/j.1600-6143.2010.03179.x.
  • Man Z, Chunfeng CAI. Visual analysis of research hotspots related to nursing deficiencies based on CiteSpace. J PLA Nurs. 2021;38(08):46–49.
  • Furong C, Xianghua X. Visualization analysis of hot spots and trends of domestic and foreign breathing services based on CiteSpace. Evid-Based Nurs. 2019;9(17):3131–3137.
  • Fang Y, Outmani L, de Joode AAE, et al. Bariatric surgery before and after kidney transplant: a propensity score-matched analysis. Surg Obes Relat Dis. 2023;19(5):501–509. Epub 2022 Nov 21. PMID: 36572583. doi: 10.1016/j.soard.2022.11.010.
  • Debout A, Foucher Y, Trébern-Launay K, et al. Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal transplantation. Kidney Int. 2015;87(2):343–349. Epub 2014 Sep 17. PMID: 25229341. doi: 10.1038/ki.2014.304.
  • Yumeng K, Xiaoxuan L, Pengying Z, et al. Visual analysis of hot spots in houttuynia research based on bibliometrics. Chin Herb Med. 2023;;54(20):6777–6790.
  • Jiang WSH. Looking at the world from Asia: sustainable and healthy development of brain death organ donation from an Asian perspective. J Organ Transplant. 2019;13(06):697–710.
  • Huaman MA, Vilchez V, Mei X, et al. Donor positive blood culture is associated with delayed graft function in kidney transplant recipients: a propensity score analysis of the UNOS database. Clin Transplant. 2016;30(4):415–420. Epub 2016 Feb 24. PMID: 26840885. doi: 10.1111/ctr.12703.
  • Kowalski K, Marschollek J, Nowakowska-Kotas M, et al. The impact of clinical education on knowledge and attitudes towards brain death among polish medical students - a cross-sectional study. BMC Med Educ. 2023;23(1):669. PMID: 37710211; PMCID: PMC10503106. doi: 10.1186/s12909-023-04637-y.
  • Li MT, Ramakrishnan A, Yu M, et al. Effects of delayed graft function on transplant outcomes: a meta-analysis. Transplant Direct. 2023;9(2):e1433. PMID: 36700066; PMCID: PMC9835896. doi: 10.1097/TXD.0000000000001433.
  • Müller AK, Breuer E, Hübel K, et al. Long-term outcomes of transplant kidneys donated after circulatory death. Nephrol Dial Transplant. 2022;37(6):1181–1187. PMID: 34919732. doi: 10.1093/ndt/gfab358.
  • Bell R, Farid S, Pandanaboyana S, et al. The evolution of donation after circulatory death renal transplantation: a decade of experience. Nephrol Dial Transplant. 2019;34(10):1788–1798. PMID: 29955846. doi: 10.1093/ndt/gfy160.
  • Molina M, Guerrero-Ramos F, Fernández-Ruiz M, et al. Kidney transplant from uncontrolled donation after circulatory death donors maintained by nECMO has long-term outcomes comparable to standard criteria donation after brain death. Am J Transplant. 2019;19(2):434–447. Epub 2018 Aug 16. PMID: 29947163. doi: 10.1111/ajt.14991.
  • de Kok MJ, McGuinness D, Shiels PG, et al. The neglectable impact of delayed graft function on long-term graft survival in kidneys donated after circulatory death associates with superior organ resilience. Ann Surg. 2019;270(5):877–883. PMID: 31567503. doi: 10.1097/SLA.0000000000003515.
  • Saat TC, Susa D, Roest HP, et al. A comparison of inflammatory, cytoprotective and injury gene expression profiles in kidneys from brain death and cardiac death donors. Transplantation. 2014;98(1):15–21. PMID: 24901651. doi: 10.1097/TP.0000000000000136.
  • Granata S, Votrico V, Spadaccino F, et al. Oxidative stress and ischemia/reperfusion injury in kidney transplantation: focus on ferroptosis, mitophagy and new antioxidants. Antioxidants. 2022;11(4):769. doi: 10.3390/antiox11040769.
  • Jie X, Wang L, Yang Y, et al. Research progress of autophagy in renal ischemia-reperfusion injury. Medical Review. 2019;27(04):658–663.
  • Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med. 2019;135:182–197. doi: 10.1016/j.freeradbiomed.2019.02.031.
  • Akalay S, Hosgood SA. How to best protect kidneys for transplantation-mechanistic target. J Clin Med. 2023;12(5):1787. PMID: 36902572; PMCID: PMC10003664. doi: 10.3390/jcm12051787.
  • Mazilescu LI, Urbanellis P, Kim SJ, et al. Normothermic ex vivo kidney perfusion for human kidney transplantation: first North American results. Transplantation. 2022;106(9):1852–1859. doi: 10.1097/TP.0000000000004098.
  • Guo Z, Luo T, Mo R, et al. Ischemia-free organ transplantation - a review. Curr Opin Organ Transplant. 2022;27(4):300–304. Epub 2022 Jul 5. PMID: 36354255. doi: 10.1097/MOT.0000000000000998.
  • Schopp I, Reissberg E, Lüer B, et al. Controlled rewarming after hypothermia: adding a new principle to renal preservation. Clin Transl Sci. 2015;8(5):475–478. Epub 2015 Jun 5. PMID: 26053383; PMCID: PMC4744687. doi: 10.1111/cts.12295.
  • Ponticelli C, Reggiani F, Moroni G. Delayed graft function in kidney transplant: risk factors, consequences and prevention strategies. J Pers Med. 2022; 12(10):1557. PMID: 36294695; PMCID: PMC9605016. doi: 10.3390/jpm12101557.
  • Tong F, Zhou X. The Nrf2/HO-1 pathway mediates the antagonist effect of L-Arginine on renal ischemia/reperfusion injury in rats. Kidney Blood Press Res. 2017;42(3):519–529. Epub 2017 Aug 30. PMID: 28854440. doi: 10.1159/000480362.
  • Corsello T, Komaravelli N, Casola A. Role of hydrogen sulfide in NRF2- and sirtuin-dependent maintenance of cellular redox balance. Antioxidants. 2018; 7(10):129. PMID: 30274149; PMCID: PMC6210431. doi: 10.3390/antiox7100129.
  • Wyss JC, Kumar R, Mikulic J, et al. Differential effects of the mitochondria-active tetrapeptide SS-31 (D-Arg-dimethylTyr-Lys-Phe-NH2) and its peptidase-targeted prodrugs in experimental acute kidney injury. Front Pharmacol. 2019;10:1209. PMID: 31780923; PMCID: PMC6857474. doi: 10.3389/fphar.2019.01209.
  • Bentata Y. Tacrolimus: 20 years of use in adult kidney transplantation. What we should know about its nephrotoxicity. Artif Organs. 2020;44(2):140–152. Epub 2019 Sep 4. PMID: 31386765. doi: 10.1111/aor.13551.
  • Zhu W, Xue L, Peng H, et al. Tacrolimus population pharmacokinetic models according to CYP3A5/CYP3A4/POR genotypes in Chinese Han renal transplant patients. Pharmacogenomics. 2018;19(13):1013–1025. Epub 2018 Jul 24. PMID: 30040022. doi: 10.2217/pgs-2017-0139.
  • Parajuli S, Muth B, Bloom M, et al. A randomized controlled trial of envarsus versus immediate release tacrolimus in kidney transplant recipients with delayed graft function. Transplant Proc. 2023;55(7):1568–1574. Epub 2023 Jul 1. PMID: 37394382. doi: 10.1016/j.transproceed.2023.05.025.
  • Agence de la biomédecine. Le rapport médical et scientifique de l’Agence de la biomédecine 2017 [online]. 2017 Cited the 30 June 2022]. Available on: https://www.agence-biomedecine.fr/annexes/bilan2017/donnees/organes/06-rein/synthese.htm.
  • Lim JH, Lee GY, Jeon Y, et al. Elderly kidney transplant recipients have favorable outcomes but increased infection-related mortality. Kidney Res Clin Pract. 2022;41(3):372–383. Epub 2022 Feb 23. PMID: 35286795; PMCID: PMC9184840. doi: 10.23876/j.krcp.21.207.
  • Artiles A, Domínguez A, Subiela JD,., et al. Kidney transplant outcomes in elderly population: a systematic review and meta-analysis. Eur Urol Open Sci. 2023;51:13–25. PMID: 37006961; PMCID: PMC10064232. doi: 10.1016/j.euros.2023.02.011.
  • Mesnard B, Territo A, Campi R,., et al. Kidney transplantation from elderly donors (> 70 years): a systematic review. World J Urol. 2023;41(3):695–707. Epub 2023 Mar 13. PMID: 36907943 doi: 10.1007/s00345-023-04311-4.
  • Kampaktsis PN, Tzani A, Doulamis IP, et al. State-of-the-art machine learning algorithms for the prediction of outcomes after contemporary heart transplantation: results from the UNOS database. Clin Transplant. 2021;35(8):e14388. Epub 2021 Jun 29. PMID: 34155697. doi: 10.1111/ctr.14388.
  • Hosseini MP, Hosseini A, Ahi K. A review on machine learning for EEG signal processing in bioengineering. IEEE Rev Biomed Eng. 2021;14:204–218. Epub 2021 Jan 22. PMID: 32011262. doi: 10.1109/RBME.2020.2969915.
  • Ben Ali W, Pesaranghader A, Avram R, et al. Implementing machine learning in interventional cardiology: the benefits are worth the trouble. Front Cardiovasc Med. 2021; 8:711401. PMID: 34957230; PMCID: PMC8692711. doi: 10.3389/fcvm.2021.711401.
  • Konieczny A, Stojanowski J, Rydzyńska K, et al. Artificial intelligence-a tool for risk assessment of delayed-graft function in kidney transplant. J Clin Med. 2021;10(22):5244. PMID: 34830526; PMCID: PMC8618905. doi: 10.3390/jcm10225244.
  • Jadlowiec CC, Thongprayoon C, Leeaphorn N, et al. Use of machine learning consensus clustering to identify distinct subtypes of kidney transplant recipients with DGF and associated outcomes. Transpl Int. 2022;35:10810. PMID: 36568137; PMCID: PMC9773391. doi: 10.3389/ti.2022.10810.
  • Eckardt JN, Bornhäuser M, Wendt K, et al. Semi-supervised learning in cancer diagnostics. Front Oncol. 2022;12:960984. PMID: 35912249; PMCID: PMC9329803. doi: 10.3389/fonc.2022.960984.
  • Gupta R, Srivastava D, Sahu M, et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021;25(3):1315–1360. Epub 2021 Apr 12. PMID: 33844136; PMCID: PMC8040371. doi: 10.1007/s11030-021-10217-3.