986
Views
0
CrossRef citations to date
0
Altmetric
Critical Care Nephrology and Continuous Kidney Replacement Therapy

Prediction of successful weaning from renal replacement therapy in critically ill patients based on machine learning

ORCID Icon, , , & ORCID Icon
Article: 2319329 | Received 23 Oct 2023, Accepted 10 Feb 2024, Published online: 28 Feb 2024

References

  • Pakula AM, Skinner RA. Acute kidney injury in the critically ill patient: a current review of the literature. J Intensive Care Med. 2016;31(5):1–11. doi: 10.1177/0885066615575699.
  • Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–184. doi: 10.1159/000339789.
  • Kellum JA, Sileanu FE, Bihorac A, et al. Recovery after acute kidney injury. Am J Respir Crit Care Med. 2017;195(6):784–791. doi: 10.1164/rccm.201604-0799OC.
  • Katulka RJ, Al Saadon A, Sebastianski M, et al. Determining the optimal time for liberation from renal replacement therapy in critically ill patients: a systematic review and meta-analysis (DOnE RRT). Crit Care. 2020;24(1):50. doi: 10.1186/s13054-020-2751-8.
  • Pattharanitima P, Vaid A, Jaladanki SK, et al. Comparison of approaches for prediction of renal replacement therapy-Free survival in patients with acute kidney injury. Blood Purif. 2021;50(4–5):621–627. doi: 10.1159/000513700.
  • Li Y, Deng X, Feng J, et al. Predictors for short-term successful weaning from continuous renal replacement therapy: a systematic review and meta-analysis. Ren Fail. 2023;45(1):2176170.
  • De Corte T, Van Hoecke S, De Waele J. Artificial intelligence in infection management in the ICU. Crit Care. 2022;26(1):79. doi: 10.1186/s13054-022-03916-2.
  • Sanchez-Pinto LN, Luo Y, Churpek MM. Big data and data science in critical care. Chest. 2018;154(5):1239–1248. doi: 10.1016/j.chest.2018.04.037.
  • Kashani KB, Awdishu L, Bagshaw SM, et al. Digital health and acute kidney injury: consensus report of the 27th acute disease quality initiative workgroup. Nat Rev Nephrol. 2023;19(12):807–818. doi: 10.1038/s41581-023-00744-7.
  • Wilson FP, Greenberg JH. Acute kidney injury in real time: prediction, alerts, and clinical decision support. Nephron. 2018;140(2):116–119. doi: 10.1159/000492064.
  • Gottlieb ER, Samuel M, Bonventre JV, et al. Machine learning for acute kidney injury prediction in the intensive care unit. Adv Chronic Kidney Dis. 2022;29(5):431–438. doi: 10.1053/j.ackd.2022.06.005.
  • Flechet M, Falini S, Bonetti C, et al. Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor. Crit Care. 2019;23(1):282. doi: 10.1186/s13054-019-2563-x.
  • Hammouda N, Neyra JA. Can artificial intelligence assist in delivering continuous renal replacement therapy? Adv Chronic Kidney Dis. 2022;29(5):439–449. doi: 10.1053/j.ackd.2022.08.001.
  • Liang Q, Xu Y, Zhou Y, et al. Severe acute kidney injury predicting model based on transcontinental databases: a single-Centre prospective study. BMJ Open. 2022;12(3):e054092. doi: 10.1136/bmjopen-2021-054092.
  • Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31(4):1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287.
  • McMahon BA, Chawla LS. The furosemide stress test: current use and future potential. Ren Fail. 2021;43(1):830–839. doi: 10.1080/0886022X.2021.1906701.
  • Belletti A, Lerose CC, Zangrillo A, et al. Vasoactive-inotropic score: evolution, clinical utility, and pitfalls. J Cardiothorac Vasc Anesth. 2021;35(10):3067–3077. doi: 10.1053/j.jvca.2020.09.117.
  • Vuorre M, Crump MJC. Sharing and organizing research products as R packages. Behav Res Methods. 2021;53(2):792–802. doi: 10.3758/s13428-020-01436-x.
  • Tianqi C, Guestrin C. XGBoost: a scalable tree boosting system. New York (NY): ACM Press; 2016. p. 785–794.
  • Blazek K, van Zwieten A, Saglimbene V, et al. practical guide to multiple imputation of missing data in nephrology. Kidney Int. 2021;99(1):68–74. doi: 10.1016/j.kint.2020.07.035.
  • Patrician PA. Multiple imputation for missing data. Res Nurs Health. 2002;25(1):76–84. doi: 10.1002/nur.10015.
  • Uchino S, Bellomo R Fau- Morimatsu H, Morimatsu H, et al. Discontinuation of continuous renal replacement therapy: a post hoc analysis of a prospective multicenter observational study. Crit Care Med. 2009;37(9):2576–2582. doi: 10.1097/CCM.0b013e3181a38241.
  • Fröhlich S, Donnelly A, Fau- Solymos O, et al. Use of 2-hour creatinine clearance to guide cessation of continuous renal replacement therapy. J Crit Care. 2012;27(6):744.e1–744.e7445. doi: 10.1016/j.jcrc.2012.08.012.
  • Jeon J, Kim DH, Baeg SI, et al. Association between diuretics and successful discontinuation of continuous renal replacement therapy in critically ill patients with acute kidney injury. Crit Care. 2018;22(1):255. doi: 10.1186/s13054-018-2192-9.
  • Itenov TS, Berthelsen RE, Jensen JU, et al. Predicting recovery from acute kidney injury in critically ill patients: development and validation of a prediction model. Crit Care Resusc: J Australas Acad Crit Care Med. 2018;20(1):54–60.
  • Zhao X, Lu Y, Li S, et al. Predicting renal function recovery and short-term reversibility among acute kidney injury patients in the ICU: comparison of machine learning methods and conventional regression. Ren Fail. 2022;44(1):1326–1337. doi: 10.1080/0886022X.2022.2107542.
  • Lu JY, Boparai MS, Shi C, et al. Long-term outcomes of COVID-19 survivors with hospital AKI: association with time to recovery from AKI. Nephrol Dial Transplant. 2023;38(10):2160–2169. doi: 10.1093/ndt/gfad020.
  • Pattharanitima P, Vaid A, Jaladanki SK, et al. Comparison of approaches for prediction of renal replacement therapy-free survival in patients with acute kidney injury. Blood Purif. 2021;50(4-5):621–627. doi: 10.1159/000513700.
  • Kang MW, Kim J, Kim DK, et al. Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy. Crit Care. 2020;24(1):42. doi: 10.1186/s13054-020-2752-7.
  • Chang HAO, Chiang JH, Wang CAOX, et al. Predicting mortality using machine learning algorithms in patients who require renal replacement therapy in the critical care unit. J Clin Med. 2022;11(18):5289. doi: 10.3390/jcm11185289.
  • Hung PS, Lin PR, Hsu HH, et al. Explainable machine learning-based risk prediction model for in-hospital mortality after continuous renal replacement therapy initiation. Diagnostics (Basel). 2022;12(6):1496. doi: 10.3390/diagnostics12061496.
  • Lu JY, Zhu J, Zhu J, et al. Long-short-term memory machine learning of longitudinal clinical data accurately predicts acute kidney injury onset in COVID-19: a two-center study. Int J Infect Dis. 2022;122:802–810. doi: 10.1016/j.ijid.2022.07.034.
  • Johnson AE, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. Sci Data. 2016;3:160035. doi: 10.1038/sdata.2016.35.