2,301
Views
0
CrossRef citations to date
0
Altmetric
Chronic Kidney Disease and Progression

Recent advances in the application of Mendelian randomization to chronic kidney disease

, , , , , , & show all
Article: 2319712 | Received 09 Aug 2023, Accepted 12 Feb 2024, Published online: 04 Mar 2024

References

  • Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):1–11. doi:10.1093/hmg/ddu328.
  • Tin A, Köttgen A. Mendelian randomization analysis as a tool to gain insights into causes of diseases: a primer. J Am Soc Nephrol. 2021;32(10):2400–2407. doi:10.1681/ASN.2020121760.
  • Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;35(11):1880–1906. doi:10.1002/sim.6835.
  • Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377–389. doi:10.1007/s10654-017-0255-x.
  • Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–314. doi:10.1002/gepi.21965.
  • Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–1998. doi:10.1093/ije/dyx102.
  • Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–698. doi:10.1038/s41588-018-0099-7.
  • Morrison J, Knoblauch N, Marcus JH, et al. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat Genet. 2020;52(7):740–747. doi:10.1038/s41588-020-0631-4.
  • Chen L, Burgess S, Luo S, et al. First release of Mendelian randomisation book in Chinese. eGastroenterology. 2023;1(2):e100043. doi:10.1136/egastro-2023-100043.
  • Wuttke M, Li Y, Li M, et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat Genet. 2019;51(6):957–972. doi:10.1038/s41588-019-0407-x.
  • Thomas MC, Cooper ME, Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol. 2016;12(2):73–81. doi:10.1038/nrneph.2015.173.
  • Emanuelsson F, Marott S, Tybjærg-Hansen A, et al. Impact of glucose level on micro- and macrovascular disease in the general population: a Mendelian randomization study. Diabetes Care. 2020;43(4):894–902. doi:10.2337/dc19-1850.
  • Zhao JV, Schooling CM. Sex-specific associations of insulin resistance with chronic kidney disease and kidney function: a bi-directional Mendelian randomization study. Diabetologia. 2020;63(8):1554–1563. doi:10.1007/s00125-020-05163-y.
  • Xu M, Bi Y, Huang Y, et al. Type 2 diabetes, diabetes genetic score and risk of decreased renal function and albuminuria: a Mendelian randomization study. EBioMedicine. 2016;6:162–170. doi:10.1016/j.ebiom.2016.02.032.
  • Park S, Lee S, Kim Y, et al. Mendelian randomization reveals causal effects of kidney function on various biochemical parameters. Commun Biol. 2022;5(1):713. doi:10.1038/s42003-022-03659-4.
  • Kim H, Park S, Kwon SH, et al. Impaired fasting glucose and development of chronic kidney disease in non-diabetic population: a Mendelian randomization study. BMJ Open Diabetes Res Care. 2020;8(1):e001395. doi:10.1136/bmjdrc-2020-001395.
  • Mazidi M, Kirwan R, Davies IG. Genetically determined blood lead is associated with reduced renal function amongst individuals with type 2 diabetes mellitus: insight from Mendelian randomisation. J Mol Med. 2022;100(1):125–134. doi:10.1007/s00109-021-02152-5.
  • Ahmad S, Ärnlöv J, Larsson SC. Genetically predicted circulating copper and risk of chronic kidney disease: a Mendelian randomization study. Nutrients. 2022;14(3):509. doi:10.3390/nu14030509.
  • Zhou A, Morris HA, Hyppönen E. Health effects associated with serum calcium concentrations: evidence from MR-PheWAS analysis in UK biobank. Osteoporos Int. 2019;30(11):2343–2348. doi:10.1007/s00198-019-05118-z.
  • Fu S, Zhang L, Ma F, et al. Effects of selenium on chronic kidney disease: a Mendelian randomization study. Nutrients. 2022;14(21):4458. doi:10.3390/nu14214458.
  • Zhao JV, Schooling CM. The role of testosterone in chronic kidney disease and kidney function in men and women: a bi-directional Mendelian randomization study in the UK biobank. BMC Med. 2020;18(1):122. doi:10.1186/s12916-020-01594-x.
  • Zhao JV, Schooling CM. Sex-specific associations of sex hormone binding globulin with CKD and kidney function: a univariable and multivariable Mendelian randomization study in the UK biobank. J Am Soc Nephrol. 2021;32(3):686–694. doi:10.1681/ASN.2020050659.
  • Chen L, Lv G. Horizons of human genetics in digestive disease gastroenterology. egastro. 2023;1(2):e100029. doi:10.1136/egastro-2023-100029.
  • Xiong Y, Zhang Y, Zhang F, et al. Genetic evidence supporting the causal role of homocysteine in chronic kidney disease: a Mendelian randomization study. Front Nutr. 2022;9:843534. doi:10.3389/fnut.2022.843534.
  • Staplin N, Herrington WG, Murgia F, et al. Determining the relationship between blood pressure, kidney function, and chronic kidney disease: insights from genetic epidemiology. Hypertension. 2022;79(12):2671–2681. doi:10.1161/HYPERTENSIONAHA.122.19354.
  • Ku E, Lee BJ, Wei J, et al. Hypertension in CKD: core curriculum 2019. Am J Kidney Dis. 2019;74(1):120–131. doi:10.1053/j.ajkd.2018.12.044.
  • Liu HM, Hu Q, Zhang Q, et al. Causal effects of genetically predicted cardiovascular risk factors on chronic kidney disease: a two-sample Mendelian randomization study. Front Genet. 2019;10:415. doi:10.3389/fgene.2019.00415.
  • Zheng J, Zhang Y, Rasheed H, et al. Trans-ethnic Mendelian-randomization study reveals causal relationships between cardiometabolic factors and chronic kidney disease. Int J Epidemiol. 2022;50(6):1995–2010. doi:10.1093/ije/dyab203.
  • Liu M, Li XC, Lu L, et al. Cardiovascular disease and its relationship with chronic kidney disease. Eur Rev Med Pharmacol Sci. 2014;18(19):2918–2926.
  • Geurts S, van der Burgh AC, Bos MM, et al. Disentangling the association between kidney function and atrial fibrillation: a bidirectional Mendelian randomization study. Int J Cardiol. 2022;355:15–22. doi:10.1016/j.ijcard.2022.03.004.
  • Yoshikawa M, Asaba K, Nakayama T. Causal effect of atrial fibrillation/flutter on chronic kidney disease: a bidirectional two-sample Mendelian randomization study. PLOS One. 2021;16(12):e0261020. doi:10.1371/journal.pone.0261020.
  • Gaziano L, Sun L, Arnold M, et al. Mild-to-moderate kidney dysfunction and cardiovascular disease: observational and Mendelian randomization analyses. Circulation. 2022;146(20):1507–1517. doi:10.1161/CIRCULATIONAHA.122.060700.
  • Sarnak MJ, Amann K, Bangalore S, et al. Chronic kidney disease and coronary artery disease: JACC state-of-the-Art review. J Am Coll Cardiol. 2019;74(14):1823–1838. doi:10.1016/j.jacc.2019.08.1017.
  • Park S, Lee S, Kim Y, et al. Causal effects of physical activity or sedentary behaviors on kidney function: an integrated population-scale observational analysis and Mendelian randomization study. Nephrol Dial Transplant. 2022;37(6):1059–1068. doi:10.1093/ndt/gfab153.
  • Park S, Lee S, Kim Y, et al. Causal effects of education on chronic kidney disease: a Mendelian randomization study. Clin Kidney J. 2020;14(8):1932–1938. doi:10.1093/ckj/sfaa240.
  • Park S, Lee S, Kim Y, et al. Short or long sleep duration and CKD: a Mendelian randomization study. J Am Soc Nephrol. 2020;31(12):2937–2947. doi:10.1681/ASN.2020050666.
  • Park S, Lee S, Kim Y, et al. Causal effects of positive affect, life satisfaction, depressive symptoms, and neuroticism on kidney function: a Mendelian randomization study. J Am Soc Nephrol. 2021;32(6):1484–1496. doi:10.1681/ASN.2020071086.
  • Mazidi M, Kengne AP, Siervo M, et al. Association of dietary intakes and genetically determined serum concentrations of Mono and poly unsaturated fatty acids on chronic kidney disease: insights from dietary analysis and Mendelian randomization. Nutrients. 2022;14(6):1231. doi:10.3390/nu14061231.
  • Park S, Lee S, Kim Y, et al. Causal effects of relative fat, protein, and carbohydrate intake on chronic kidney disease: a Mendelian randomization study. Am J Clin Nutr. 2021;113(4):1023–1031. doi:10.1093/ajcn/nqaa379.
  • Kennedy OJ, Pirastu N, Poole R, et al. Coffee consumption and kidney function: a Mendelian randomization study. Am J Kidney Dis. 2020;75(5):753–761. doi:10.1053/j.ajkd.2019.08.025.
  • Zhang Y, Xiong Y, Shen S, et al. Causal association between tea consumption and kidney function: a Mendelian randomization study. Front Nutr. 2022;9:801591. doi:10.3389/fnut.2022.801591.
  • Mazidi M, Mikhailidis DP, Dehghan A, et al. The association between coffee and caffeine consumption and renal function: insight from individual-level data, Mendelian randomization, and meta-analysis. Arch Med Sci. 2022; 18(4):900–911. doi:10.5114/aoms/144905.
  • Park S, Lee S, Kim Y, et al. Causal effect of alcohol use on the risk of end-stage kidney disease and related comorbidities: a Mendelian randomization study. Kidney Res Clin Pract. 2021;40(2):282–293. doi:10.23876/j.krcp.20.186.
  • Park S, Lee S, Kim Y, et al. Observational or genetically predicted higher vegetable intake and kidney function impairment: an integrated population-scale cross-sectional analysis and Mendelian randomization study. J Nutr. 2021;151(5):1167–1174. doi:10.1093/jn/nxaa452.
  • Ye C, Kong L, Zhao Z, et al. Causal associations of obesity with chronic kidney disease and arterial stiffness: a Mendelian randomization study. J Clin Endocrinol Metab. 2022;107(2):e825–e835. doi:10.1210/clinem/dgab633.
  • Lanktree MB, Thériault S, Walsh M, et al. HDL cholesterol, LDL cholesterol, and triglycerides as risk factors for CKD: a Mendelian randomization study. Am J Kidney Dis. 2018;71(2):166–172. doi:10.1053/j.ajkd.2017.06.011.
  • Wu R, Luo P, Luo M, et al. Genetically predicted adiponectin causally reduces the risk of chronic kidney disease, a bilateral and multivariable Mendelian randomization study. Front Genet. 2022;13:920510. doi:10.3389/fgene.2022.920510.
  • Yu X, Yuan Z, Lu H, et al. Relationship between birth weight and chronic kidney disease: evidence from systematic review and two-sample Mendelian randomization analysis. Hum Mol Genet. 2020;29(13):2261–2274. doi:10.1093/hmg/ddaa074.
  • Zhu P, Herrington WG, Haynes R, et al. Conventional and genetic evidence on the association between adiposity and CKD. J Am Soc Nephrol. 2021;32(1):127–137. doi:10.1681/ASN.2020050679.
  • Henry A, Gordillo-Marañón M, Finan C, et al. Therapeutic targets for heart failure identified using proteomics and mendelian randomization. Circulation. 2022;145(16):1205–1217. doi:10.1161/CIRCULATIONAHA.121.056663.
  • Matías-García PR, Wilson R, Guo Q, et al. Plasma proteomics of renal function: a transethnic meta-analysis and Mendelian randomization study. J Am Soc Nephrol. 2021;32(7):1747–1763. doi:10.1681/ASN.2020071070.