958
Views
0
CrossRef citations to date
0
Altmetric
Glomerulonephritis and Immunologic Disorders

Gut microbiota in the association between obesity and kidney function decline: a metagenomics-based study in a rat model

, &
Article: 2328320 | Received 22 Oct 2023, Accepted 04 Mar 2024, Published online: 12 Mar 2024

References

  • Jaacks LM, Vandevijvere S, Pan A, et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7(3):1–8. doi:10.1016/S2213-8587(19)30026-9.
  • D'Agati VD, Chagnac A, de Vries APJ, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016;12(8):453–471. doi:10.1038/nrneph.2016.75.
  • Shi Y, Wang C, Zhou X, et al. Downregulation of PTEN promotes podocyte endocytosis of lipids aggravating obesity-related glomerulopathy. Am J Physiol Renal Physiol. 2020;318(3):F589–F599. doi:10.1152/ajprenal.00392.2019.
  • Kjaergaard AD, Teumer A, Witte DR, et al. Obesity and kidney function: a two-sample Mendelian randomization study. Clin Chem. 2022;68(3):461–472. doi:10.1093/clinchem/hvab249.
  • Nallu A, Sharma S, Ramezani A, et al. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res. 2017;179:24–37. doi:10.1016/j.trsl.2016.04.007.
  • Hu X, Ouyang S, Xie Y, et al. Characterizing the gut microbiota in patients with chronic kidney disease. Postgrad Med. 2020;132(6):495–505. doi:10.1080/00325481.2020.1744335.
  • Sampaio-Maia B, Simões-Silva L, Pestana M, et al. The role of the gut microbiome on chronic kidney disease. Adv Appl Microbiol. 2016;96:65–94.
  • Wang H, Ainiwaer A, Song Y, et al. Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. Microbiome. 2023;11(1):3. doi:10.1186/s40168-022-01443-4.
  • Netto Candido TL, Bressan J, Alfenas RCG. Dysbiosis and metabolic endotoxemia induced by high-fat diet. Nutr Hosp. 2018;35(6):1432–1440. doi:10.20960/nh.1792.
  • Wang X-X, Ye T, Li M, et al. Effects of octreotide on hepatic glycogenesis in rats with high fat diet‑induced obesity. Mol Med Rep. 2017;16(1):109–118. doi:10.3892/mmr.2017.6586.
  • Liu Y, Zong S, Li J. Attenuation effects of bulk and nanosized ZnO on glucose, lipid level, and inflammation profile in obese mice. Appl Biochem Biotechnol. 2020;190(2):475–486. doi:10.1007/s12010-019-03115-w.
  • Cui D, Liu S, Tang M, et al. Phloretin ameliorates hyperuricemia-induced chronic renal dysfunction through inhibiting NLRP3 inflammasome and uric acid reabsorption. Phytomedicine. 2020;66:153111. doi:10.1016/j.phymed.2019.153111.
  • Qi M-Y, He Y-H, Cheng Y, et al. Icariin ameliorates streptozocin-induced diabetic nephropathy through suppressing the TLR4/NF-kappaB signal pathway. Food Funct. 2021;12(3):1241–1251. doi:10.1039/d0fo02335c.
  • Liu B-L, Chen Y-P, Cheng H, et al. The protective effects of curcumin on obesity-related glomerulopathy are associated with inhibition of wnt/beta-Catenin signaling activation in podocytes. Evid Based Complement Alternat Med. 2015;2015:827472–827412.
  • Zhao J, Rui H-L, Yang M, et al. CD36-Mediated lipid accumulation and activation of NLRP3 inflammasome lead to podocyte injury in obesity-related glomerulopathy. Mediators Inflamm. 2019;2019:8247280. doi:10.1155/2019/8247280.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi:10.1093/bioinformatics/btu170.
  • Li D, Liu C-M, Luo R, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–1676. doi:10.1093/bioinformatics/btv033.
  • Li D, Luo R, Liu C-M, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11. doi:10.1016/j.ymeth.2016.02.020.
  • Hyatt D, Chen G-L, Locascio PF, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 2010;11(1):119. doi:10.1186/1471-2105-11-119.
  • Avershina E, Frisli T, Rudi K. De novo semi-alignment of 16S rRNA gene sequences for deep phylogenetic characterization of next generation sequencing data. Microbes Environ. 2013;28(2):211–216. doi:10.1264/jsme2.me12157.
  • Noval Rivas M, Burton OT, Wise P, et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J Allergy Clin Immunol. 2013;131(1):201–212. doi:10.1016/j.jaci.2012.10.026.
  • Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi:10.1186/gb-2011-12-6-r60.
  • Levin BE, Dunn-Meynell AA, Balkan B, et al. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol. 1997;273(2 Pt 2):R725–R730. doi:10.1152/ajpregu.1997.273.2.R725.
  • Farley C, Cook JA, Spar BD, et al. Meal pattern analysis of diet-induced obesity in susceptible and resistant rats. Obes Res. 2003;11(7):845–851. doi:10.1038/oby.2003.116.
  • Gut K. Broad-band difference interferometer as a refractive index sensor. Opt Exp. 2017;25(25):31111–31121. doi:10.1364/OE.25.031111.
  • Szeto HH, Liu S, Soong Y, et al. Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int. 2016;90(5):997–1011. doi:10.1016/j.kint.2016.06.013.
  • Zhang X-L, Chen L, Yang J, et al. Vitamin D alleviates non-alcoholic fatty liver disease via restoring gut microbiota and metabolism. Front Microbiol. 2023;14:1117644. doi:10.3389/fmicb.2023.1117644.
  • Pinart M, Dötsch A, Schlicht K, et al. Gut microbiome composition in obese and non-obese persons: a systematic review and meta-analysis. Nutrients. 2021;14(1):12. doi:10.3390/nu14010012.
  • Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis. 2017;76(9):1614–1622. doi:10.1136/annrheumdis-2016-211064.
  • Azzouz D, Omarbekova A, Heguy A, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis. 2019;78(7):947–956. doi:10.1136/annrheumdis-2018-214856.
  • Henke MT, Kenny DJ, Cassilly CD, et al. Ruminococcus gnavus, a member of the human gut microbiome associated with crohn’s disease, produces an inflammatory polysaccharide. Proc Natl Acad Sci USA. 2019;116(26):12672–12677. doi:10.1073/pnas.1904099116.
  • Jaagura M, Viiard E, Karu-Lavits K, et al. Low-carbohydrate high-fat weight reduction diet induces changes in human gut microbiota. Microbiologyopen. 2021;10(3):e1194. doi:10.1002/mbo3.1194.
  • Ren Y, Wang D, Lu F, et al. Coptidis rhizoma inhibits NLRP3 inflammasome activation and alleviates renal damage in early obesity-related glomerulopathy. Phytomedicine. 2018;49:52–65. doi:10.1016/j.phymed.2018.05.019.
  • Wu Y, Liu Z, Xiang Z, et al. Obesity-related glomerulopathy: insights from gene expression profiles of the glomeruli derived from renal biopsy samples. Endocrinology. 2006;147(1):44–50. doi:10.1210/en.2005-0641.
  • Sun G, Yin Z, Liu N, et al. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity. Biochem Biophys Res Commun. 2017;493(2):964–970. doi:10.1016/j.bbrc.2017.09.108.
  • Bian J, Liebert A, Bicknell B, et al. Faecal microbiota transplantation and chronic kidney disease. Nutrients. 2022;14(12):2528. doi:10.3390/nu14122528.