970
Views
0
CrossRef citations to date
0
Altmetric
Acute Kidney Injury

Cardiopulmonary bypass associated acute kidney injury: better understanding and better prevention

, , &
Article: 2331062 | Received 17 Oct 2023, Accepted 11 Mar 2024, Published online: 21 Mar 2024

References

  • Weisse AB. Cardiac surgery: a century of progress. Tex Heart Inst J. 2011;38(5):1–21.
  • Chertow GM, Levy EM, Hammermeister KE, et al. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med. 1998;104(4):343–348. doi:10.1016/s0002-9343(98)00058-8.
  • Zanardo G, Michielon P, Paccagnella A, et al. Acute renal failure in the patient undergoing cardiac operation. Prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg. 1994;107(6):1489–1495. doi:10.1016/S0022-5223(94)70429-5.
  • Patel UD, Garg AX, Krumholz HM, et al. Preoperative serum brain natriuretic peptide and risk of acute kidney injury after cardiac surgery. Circulation. 2012;125(11):1347–1355. doi:10.1161/CIRCULATIONAHA.111.029686.
  • Zappitelli M, Bernier P-L, Saczkowski RS, et al. A small post-operative rise in serum creatinine predicts acute kidney injury in children undergoing cardiac surgery. Kidney Int. 2009;76(8):885–892. doi:10.1038/ki.2009.270.
  • Wright HJ, MacAdam DB. Clinical thinking and practice. Diagnosis and decision in patient care. Postgraduate Medical Journal. 1980;56(651):71–71.
  • Kidher E, Harling L, Ashrafian H, et al. Pulse wave velocity and neutrophil gelatinase-associated lipocalin as predictors of acute kidney injury following aortic valve replacement. J Cardiothorac Surg. 2014;9(1):89. doi:10.1186/1749-8090-9-89.
  • Schley G, Köberle C, Manuilova E, et al. Comparison of plasma and urine biomarker performance in acute kidney injury. PLoS One. 2015;10(12):e0145042. doi:10.1371/journal.pone.0145042.
  • Peco-Antic A, Ivanisevic I, Vulicevic I, et al. Biomarkers of acute kidney injury in pediatric cardiac surgery. Clin Biochem. 2013;46(13-14):1244–1251.
  • Bastin AJ, Ostermann M, Slack AJ, et al. Acute kidney injury after cardiac surgery according to risk/injury/failure/loss/end-stage, acute kidney injury network, and kidney disease: improving global outcomes classifications. J Crit Care. 2013;28(4):389–396. doi:10.1016/j.jcrc.2012.12.008.
  • Birnie K, Verheyden V, Pagano D, et al. Predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit Care. 2014;18(6):606. doi:10.1186/s13054-014-0606-x.
  • Fuhrman DY, Kellum JA. Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury. Curr Opin Anaesthesiol. 2017;30(1):60–65. doi:10.1097/ACO.0000000000000412.
  • Wang Y, Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 2017;13(11):697–711. doi:10.1038/nrneph.2017.119.
  • FTt B, Shaw AD. Clinical trial endpoints in acute kidney injury. Nephron Clin Pract. 2014;127(1–4):89–93.
  • Jo SK, Rosner MH, Okusa MD. Pharmacologic treatment of acute kidney injury: why drugs haven’t worked and what is on the horizon. Clin J Am Soc Nephrol. 2007;2(2):356–365. doi:10.2215/CJN.03280906.
  • Nadim MK, Forni LG, Bihorac A, et al. Cardiac and vascular surgery-associated acute kidney injury: the 20th international consensus conference of the ADQI (acute disease quality initiative) group. J Am Heart Assoc. 2018;7(11):e008834. doi:10.1161/JAHA.118.008834.
  • Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–1561. doi:10.1007/s00134-016-4670-3.
  • Murray PT, Mehta RL, Shaw A, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th acute dialysis quality initiative consensus conference. Kidney Int. 2014;85(3):513–521. doi:10.1038/ki.2013.374.
  • Vijayan A, Faubel S, Askenazi DJ, et al. Clinical use of the urine biomarker [TIMP-2] x [IGFBP7] for acute kidney injury risk assessment. Am J Kidney Dis. 2016;68(1):19–28. doi:10.1053/j.ajkd.2015.12.033.
  • Gibbon JH.Jr. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med. 1954;37(3):171–185; passim.
  • Ascione R, Lloyd CT, Gomes WJ, et al. Beating versus arrested heart revascularization: evaluation of myocardial function in a prospective randomized study. Eur J Cardiothorac Surg. 1999;15(5):685–690. doi:10.1016/s1010-7940(99)00072-x.
  • Ascione R, Lloyd CT, Underwood MJ, et al. On-pump versus off-pump coronary revascularization: evaluation of renal function. Ann Thorac Surg. 1999;68(2):493–498. doi:10.1016/s0003-4975(99)00566-4.
  • Larmann J, Theilmeier G. Inflammatory response to cardiac surgery: cardiopulmonary bypass versus non-cardiopulmonary bypass surgery. Best Pract Res Clin Anaesthesiol. 2004;18(3):425–438. doi:10.1016/j.bpa.2003.12.004.
  • Stallwood MI, Grayson AD, Mills K, et al. Acute renal failure in coronary artery bypass surgery: independent effect of cardiopulmonary bypass. Ann Thorac Surg. 2004;77(3):968–972. doi:10.1016/j.athoracsur.2003.09.063.
  • Sellke FW, DiMaio JM, Caplan LR, et al. Comparing on-pump and off-pump coronary artery bypass grafting: numerous studies but few conclusions: a scientific statement from the American heart association council on cardiovascular surgery and anesthesia in collaboration with the interdisciplinary working group on quality of care and outcomes research. Circulation. 2005;111(21):2858–2864. doi:10.1161/CIRCULATIONAHA.105.165030.
  • Bojan M, Basto Duarte MC, Ermak N, et al. Structural equation modelling exploration of the key pathophysiological processes involved in cardiac surgery-related acute kidney injury in infants. Crit Care. 2016;20(1):171. doi:10.1186/s13054-016-1350-1.
  • Gamoso MG, Phillips-Bute B, Landolfo KP, et al. Off-pump versus on-pump coronary artery bypass surgery and postoperative renal dysfunction. Anesth Analg. 2000;91(5):1080–1084. doi:10.1097/00000539-200011000-00007.
  • Shroyer AL, Grover FL, Hattler B, et al. On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med. 2009;361(19):1827–1837. doi:10.1056/NEJMoa0902905.
  • Straka Z, Widimsky P, Jirasek K, et al. Off-pump versus on-pump coronary surgery: final results from a prospective randomized study PRAGUE-4. Ann Thorac Surg. 2004;77(3):789–793. doi:10.1016/j.athoracsur.2003.08.039.
  • Lamy A, Devereaux PJ, Prabhakaran D, et al. Off-pump or on-pump coronary-artery bypass grafting at 30 days. N Engl J Med. 2012;375(24):2359–2368. doi:10.1056/NEJMoa1601564.
  • Miller BJ, Gibbon JH, Fineberg C. An improved mechanical heart and lung apparatus; its use during open cardiotomy in experimental animals. Med Clin North Am. 1953;1(6):1603–1624. doi:10.1016/s0025-7125(16)34927-6.
  • Glance LG, Dick AW, Osler TM, et al. The relation between surgeon volume and outcome following off-pump vs on-pump coronary artery bypass graft surgery. Chest. 2005;128(2):829–837. doi:10.1378/chest.128.2.829.
  • Sarkar M, Prabhu V. Basics of cardiopulmonary bypass. Indian J Anaesth. 2017;61(9):760–767. doi:10.4103/ija.IJA_379_17.
  • Tomic V, Russwurm S, Möller E, et al. Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting. Circulation. 2005;112(19):2912–2920. doi:10.1161/CIRCULATIONAHA.104.531152.
  • Møller CH, Penninga L, Wetterslev J, et al. Clinical outcomes in randomized trials of off- vs. on-pump coronary artery bypass surgery: systematic review with meta-analyses and trial sequential analyses. Eur Heart J. 2008;29(21):2601–2616. doi:10.1093/eurheartj/ehn335.
  • Myers GJ, Voorhees C, Haynes R, et al. Post-arterial filter gaseous microemboli activity of five integral cardiotomy reservoirs during venting: an in vitro study. J Extra Corpor Technol. 2009;41(1):20–27. doi:10.1051/ject/200941020.
  • Guyton AC. The surprising kidney-fluid mechanism for pressure control–its infinite gain. Hypertension. 1990;16(6):725–730. doi:10.1161/01.hyp.16.6.725.
  • Andersson LG, Bratteby LE, Ekroth R, et al. Renal function during cardiopulmonary bypass: influence of pump flow and systemic blood pressure. Eur J Cardiothorac Surg. 1994;8(11):597–602. doi:10.1016/1010-7940(94)90043-4.
  • Lankadeva YR, Cochrane AD, Marino B, et al. Strategies that improve renal medullary oxygenation during experimental cardiopulmonary bypass may mitigate postoperative acute kidney injury. Kidney Int. 2019;95(6):1338–1346. doi:10.1016/j.kint.2019.01.032.
  • Braam B, Joles JA, Danishwar AH, et al. Cardiorenal syndrome–current understanding and future perspectives. Nat Rev Nephrol. 2014;10(1):48–55. doi:10.1038/nrneph.2013.250.
  • Prowle JR, Kirwan CJ, Bellomo R. Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol. 2014;10(1):37–47. doi:10.1038/nrneph.2013.232.
  • Beaubien-Souligny W, Benkreira A, Robillard P, et al. Alterations in portal vein flow and intrarenal venous flow are associated with acute kidney injury after cardiac surgery: a prospective observational cohort study. J Am Heart Assoc. 2018;7(19):e009961.
  • Bateman, R. M., Sharpe, M. D., Jagger, J. E., et al. Central venous pressure after coronary artery bypass surgery: does it predict postoperative mortality or renal failure? Crit Care. 2014;20 (Suppl 2):94–1010. doi:10.1016/j.jcrc.2014.05.027.
  • Yang Y, Ma J, Zhao L. High Central venous pressure is associated with acute kidney injury and mortality in patients underwent cardiopulmonary bypass surgery. J Crit Care. 2018;48:211–215. doi:10.1016/j.jcrc.2018.08.034.
  • Ricksten SE, Bragadottir G, Redfors B. Renal oxygenation in clinical acute kidney injury. Crit Care. 2013;17(2):221. doi:10.1186/cc12530.
  • Sgouralis I, Evans RG, Layton AT. Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat. Math Med Biol. 2017;34(3):313–333. doi:10.1093/imammb/dqw010.
  • Sgouralis I, Evans RG, Gardiner BS, et al. Renal hemodynamics, function, and oxygenation during cardiac surgery performed on cardiopulmonary bypass: a modeling study. Physiol Rep. 2015;3(1):e12260. doi:10.14814/phy2.12260.
  • Darby PJ, Kim N, Hare GM, et al. Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass. Perfusion. 2013;28(6):504–511. doi:10.1177/0267659113490219.
  • Stafford-Smith M, Grocott HP. Renal medullary hypoxia during experimental cardiopulmonary bypass: a pilot study. Perfusion. 2005;20(1):53–58. doi:10.1191/0267659105pf780oa.
  • Redfors B, Bragadottir G, Sellgren J, et al. Acute renal failure is NOT an "acute renal success"–a clinical study on the renal oxygen supply/demand relationship in acute kidney injury. Crit Care Med. 2010;38(8):1695–1701. doi:10.1097/CCM.0b013e3181e61911.
  • Parekh N, Veith U. Renal hemodynamics and oxygen consumption during postischemic acute renal failure in the rat. Kidney Int. 1981;19(2):306–316. doi:10.1038/ki.1981.21.
  • Lannemyr L, Bragadottir G, Krumbholz V, et al. Effects of cardiopulmonary bypass on renal perfusion, filtration, and oxygenation in patients undergoing cardiac surgery. Anesthesiology. 2017;126(2):205–213. doi:10.1097/ALN.0000000000001461.
  • Chenoweth DE, Cooper SW, Hugli TE, et al. Complement activation during cardiopulmonary bypass: evidence for generation of C3a and C5a anaphylatoxins. N Engl J Med. 1981;304(9):497–503. doi:10.1056/NEJM198102263040901.
  • Landis RC, Brown JR, Fitzgerald D, et al. Attenuating the systemic inflammatory response to adult cardiopulmonary bypass: a critical review of the evidence base. J Extra Corpor Technol. 2014;46(3):197–211. doi:10.1051/ject/201446197.
  • Al-Fares A, Pettenuzzo T, Del Sorbo L. Extracorporeal life support and systemic inflammation. Intensive Care Med Exp. 2019;7(Suppl 1):46. doi:10.1186/s40635-019-0249-y.
  • Jongman RM, Zijlstra JG, Kok WF, et al. Off-pump CABG surgery reduces systemic inflammation compared with on-pump surgery but does not change systemic endothelial responses: a prospective randomized study. Shock. 2014;42(2):121–128. doi:10.1097/SHK.0000000000000190.
  • Parolari A, Camera M, Alamanni F, et al. Systemic inflammation after on-pump and off-pump coronary bypass surgery: a one-month follow-up. Ann Thorac Surg. 2007;84(3):823–828. doi:10.1016/j.athoracsur.2007.04.048.
  • Bronicki RA, Hall M. Cardiopulmonary bypass-induced inflammatory response: pathophysiology and treatment. Pediatr Crit Care Med. 2016;17(8 Suppl 1):S272–S278. doi:10.1097/PCC.0000000000000759.
  • Bruins P, Te Velthuis H, Eerenberg-Belmer AJ, et al. Heparin-protamine complexes and C-reactive protein induce activation of the classical complement pathway: studies in patients undergoing cardiac surgery and in vitro. Thromb Haemost. 2000;84(2):237–243.
  • Pągowska-Klimek I, Świerzko AS, Michalski M, et al. Activation of the lectin pathway of complement by cardiopulmonary bypass contributes to the development of systemic inflammatory response syndrome after paediatric cardiac surgery. Clin Exp Immunol. 2016;184(2):257–263. doi:10.1111/cei.12763.
  • Nechemia-Arbely Y, Barkan D, Pizov G, et al. IL-6/IL-6R axis plays a critical role in acute kidney injury. J Am Soc Nephrol. 2008;19(6):1106–1115. doi:10.1681/ASN.2007070744.
  • Andres-Hernando A, Okamura K, Bhargava R, et al. Circulating IL-6 upregulates IL-10 production in splenic CD4(+) T cells and limits acute kidney injury-induced lung inflammation. Kidney Int. 2017;91(5):1057–1069. doi:10.1016/j.kint.2016.12.014.
  • Zhang WR, Garg AX, Coca SG, et al. Plasma IL-6 and IL-10 concentrations predict AKI and long-term mortality in adults after cardiac surgery. J Am Soc Nephrol. 2015;26(12):3123–3132. doi:10.1681/ASN.2014080764.
  • Wilczyński M, Krejca M, Stepinski P, et al. Platelet reactivity expressed as a novel platelet reactivity score is associated with higher inflammatory state after coronary artery bypass grafting. Arch Med Sci. 2023;19(2):392–400. doi:10.5114/aoms.2019.90470.
  • Evora PRB, Bottura C, Arcêncio L, et al. Key points for curbing cardiopulmonary bypass inflammation. Acta Cir Bras. 2016;31 Suppl 1:45–52. doi:10.1590/S0102-86502016001300010.
  • Bierer J, Stanzel R, Henderson M, et al. Novel inflammatory mediator profile observed during pediatric heart surgery with cardiopulmonary bypass and continuous ultrafiltration. J Transl Med. 2023;21(1):439. doi:10.1186/s12967-023-04255-8.
  • Hanbeyoglu O, Aydin S. Subfatin, asprosin, alamandine and maresin-1 inflammation molecules in cardiopulmonary bypass. J Inflamm Res. 2023;16:3469–3477. doi:10.2147/JIR.S422998.
  • Diegeler A, Doll N, Rauch T, et al. Humoral immune response during coronary artery bypass grafting: a comparison of limited approach, "off-pump" technique, and conventional cardiopulmonary bypass. Circulation. 2000;102(19 Suppl 3):III95–100. doi:10.1161/01.cir.102.suppl_3.iii-95.
  • Matata BM, Sosnowski AW, Galiñanes M. Off-pump bypass graft operation significantly reduces oxidative stress and inflammation. Ann Thorac Surg. 2000;69(3):785–791. doi:10.1016/s0003-4975(99)01420-4.
  • Biglioli P, Cannata A, Alamanni F, et al. Biological effects of off-pump vs. on-pump coronary artery surgery: focus on inflammation, hemostasis and oxidative stress. Eur J Cardiothorac Surg. 2003;24(2):260–269. doi:10.1016/s1010-7940(03)00295-1.
  • Hoheisel JD. Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet. 2006;7(3):200–210. doi:10.1038/nrg1809.
  • Allen ML, Hoschtitzky JA, Peters MJ, et al. Interleukin-10 and its role in clinical immunoparalysis following pediatric cardiac surgery. Crit Care Med. 2006;34(10):2658–2665. doi:10.1097/01.CCM.0000240243.28129.36.
  • Cornell TT, Sun L, Hall MW, et al. Clinical implications and molecular mechanisms of immunoparalysis after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2012;143(5):1160–1166 e1161. doi:10.1016/j.jtcvs.2011.09.011.
  • Liu CH, Huang ZH, Huang SC, et al. Endocytosis of peroxiredoxin 1 links sterile inflammation to immunoparalysis in pediatric patients following cardiopulmonary bypass. Redox Biol. 2021;46:102086. doi:10.1016/j.redox.2021.102086.
  • Lesouhaitier M, Uhel F, Gregoire M, et al. Monocytic Myeloid-Derived suppressor cell expansion after cardiac surgery with cardiopulmonary bypass induces lymphocyte dysfunction. Shock. 2022;58(6):476–483. doi:10.1097/SHK.0000000000002007.
  • Nguyen M, Stiel L, Guilloteau A, et al. Leukocyte cell population data in patients with cardiac surgery and cardiopulmonary bypass: a potential readily available tool to monitor immunity. Front Immunol. 2022;13:1101937. doi:10.3389/fimmu.2022.1101937.
  • Salomon JD, Qiu H, Feng D, et al. Piglet cardiopulmonary bypass induces intestinal dysbiosis and barrier dysfunction associated with systemic inflammation. Dis Model Mech. 2023;16(5):dmm049742. doi:10.1242/dmm.049742.
  • Kalyanaraman B. Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol. 2013;1(1):244–257. doi:10.1016/j.redox.2013.01.014.
  • Billings F, Ball SK, Roberts LJ, 2nd, et al. Postoperative acute kidney injury is associated with hemoglobinemia and an enhanced oxidative stress response. Free Radic Biol Med. 2011;50(11):1480–1487. doi:10.1016/j.freeradbiomed.2011.02.011.
  • Djordjević A, Kotnik P, Horvat D, et al. Pharmacodynamics of malondialdehyde as indirect oxidative stress marker after arrested-heart cardiopulmonary bypass surgery. Biomed Pharmacother. 2020;132:110877. doi:10.1016/j.biopha.2020.110877.
  • Hill A, Borgs C, Fitzner C, et al. Perioperative vitamin C and E levels in cardiac surgery patients and their clinical significance. Nutrients. 2019;11(9):2157. doi:10.3390/nu11092157.
  • Satriano A, Franchini S, Lapergola G, et al. Glutathione blood concentrations: a biomarker of oxidative damage protection during cardiopulmonary bypass in children. Diagnostics (Basel). 2019;9(3):118. doi:10.3390/diagnostics9030118.
  • Mahmood E, Jeganathan J, Feng R, et al. Decreased PGC-1alpha post-cardiopulmonary bypass leads to impaired oxidative stress in diabetic patients. Ann Thorac Surg. 2019;107(2):467–476. doi:10.1016/j.athoracsur.2018.08.009.
  • Andres AM, Tucker KC, Thomas A, et al. Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass. JCI Insight. 2017;2(4):e89303. doi:10.1172/jci.insight.89303.
  • Haase M, Bellomo R, Haase-Fielitz A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J Am Coll Cardiol. 2010;55(19):2024–2033. doi:10.1016/j.jacc.2009.12.046.
  • Moat NE, Evans TE, Quinlan GJ, et al. Chelatable iron and copper can be released from extracorporeally circulated blood during cardiopulmonary bypass. FEBS Lett. 1993;328(1-2):103–106. doi:10.1016/0014-5793(93)80974-y.
  • Kyaruzi M, Iyigün T, Diker VO, et al. Trace element status and postoperative morbidity after on-pump coronary artery bypass surgery. Biol Trace Elem Res. 2023;201(6):2711–2720. doi:10.1007/s12011-022-03368-3.
  • Kim HB, Shim JK, Ko SH, et al. Effect of iron deficiency without anaemia on days alive and out of hospital in patients undergoing valvular heart surgery. Anaesthesia. 2022;77(5):562–569. doi:10.1111/anae.15681.
  • Olivier RMR, Macke M, Müller JC, et al. Perioperative tracking of intravenous iron in patients undergoing on-pump cardiac surgery: a prospective, single-Center pilot trial. Anesth Analg. 2023;136(3):578–587. doi:10.1213/ANE.0000000000006372.
  • Davidson JA, Robison J, Khailova L, et al. Metabolomic profiling demonstrates evidence for kidney and urine metabolic dysregulation in a piglet model of cardiac surgery-induced acute kidney injury. Am J Physiol Renal Physiol. 2022;323(1):F20–F32. doi:10.1152/ajprenal.00039.2022.
  • Davidson JA, Frank BS, Urban TT, et al. Serum metabolic profile of postoperative acute kidney injury following infant cardiac surgery with cardiopulmonary bypass. Pediatr Nephrol. 2021;36(10):3259–3269. doi:10.1007/s00467-021-05095-8.
  • Sabapathy D, Klawitter J, Silveira L, et al. Activation of kynurenine pathway of tryptophan metabolism after infant cardiac surgery with cardiopulmonary bypass: a prospective cohort study. Metabolomics. 2020;16(9):93. doi:10.1007/s11306-020-01714-x.
  • Torres-Cuevas I, Parra-Llorca A, Sanchez-Illana A, et al. Oxygen and oxidative stress in the perinatal period. Redox Biol. 2017;12:674–681. doi:10.1016/j.redox.2017.03.011.
  • Hadley S, Cañizo Vazquez D, Lopez Abad M, et al. Oxidative stress response in children undergoing cardiac surgery: utility of the clearance of isoprostanes. PLoS One. 2021;16(7):e0250124. doi:10.1371/journal.pone.0250124.
  • Scrascia G, Rotunno C, Simone S, et al. Acute kidney injury in high-risk cardiac surgery patients: roles of inflammation and coagulation. J Cardiovasc Med (Hagerstown). 2017;18(5):359–365. doi:10.2459/JCM.0000000000000343.
  • Burman JF, Chung HI, Lane DA, et al. Role of factor XII in thrombin generation and fibrinolysis during cardiopulmonary bypass. Lancet. 1994;344(8931):1192–1193. doi:10.1016/s0140-6736(94)90509-6.
  • Hunt BJ, Parratt RN, Segal HC, et al. Activation of coagulation and fibrinolysis during cardiothoracic operations. Ann Thorac Surg. 1998;65(3):712–718. doi:10.1016/s0003-4975(97)01345-3.
  • Vallely MP, Bannon PG, Bayfield MS, et al. Quantitative and temporal differences in coagulation, fibrinolysis and platelet activation after on-pump and off-pump coronary artery bypass surgery. Heart Lung Circ. 2009;18(2):123–130. doi:10.1016/j.hlc.2008.08.012.
  • Gielen CLI, Brand A, van Heerde WL, et al. Hemostatic alterations during coronary artery bypass grafting. Thromb Res. 2016;140:140–146. doi:10.1016/j.thromres.2015.12.018.
  • Minami S, Nagafuchi H, Yamada K, et al. Association between Thrombin-Antithrombin complex and acute kidney injury after pediatric cardiopulmonary bypass surgery: a single-Center retrospective observational study. Clin Appl Thromb Hemost. 2023;29:10760296231184465. doi:10.1177/10760296231184465.
  • Kestin AS, Valeri CR, Khuri SF, et al. The platelet function defect of cardiopulmonary bypass. Blood. 1993;82(1):107–117. doi:10.1182/blood.V82.1.107.bloodjournal821107.
  • Ascione R, Williams S, Lloyd CT, et al. Reduced postoperative blood loss and transfusion requirement after beating-heart coronary operations: a prospective randomized study. J Thorac Cardiovasc Surg. 2001;121(4):689–696. doi:10.1067/mtc.2001.112823.
  • Fleming GA, Billings F, Klein TM, et al. Angiotensin-converting enzyme inhibition alters the inflammatory and fibrinolytic response to cardiopulmonary bypass in children. Pediatr Crit Care Med. 2011;12(5):532–538. doi:10.1097/PCC.0b013e3181fe3925.
  • Yuan HX, Chen YT, Li YQ, et al. Endothelial extracellular vesicles induce acute lung injury via follistatin-like protein 1. Sci China Life Sci. 2023;67(3):475–487. doi:10.1007/s11427-022-2328-x.
  • Huang CD, Tliba O, Panettieri RA, Jr., et al. Bradykinin induces interleukin-6 production in human airway smooth muscle cells: modulation by Th2 cytokines and dexamethasone. Am J Respir Cell Mol Biol. 2003;28(3):330–338. doi:10.1165/rcmb.2002-0040OC.
  • Rosner MH, Okusa MD. Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol. 2006;1(1):19–32. doi:10.2215/CJN.00240605.
  • Sabik JF, Gillinov AM, Blackstone EH, et al. Does off-pump coronary surgery reduce morbidity and mortality? J Thorac Cardiovasc Surg. 2002;124(4):698–707. doi:10.1067/mtc.2002.121975.
  • El-Sabbagh AM, Toomasian CJ, Toomasian JM, et al. Effect of air exposure and suction on blood cell activation and hemolysis in an in vitro cardiotomy suction model. Asaio J. 2013;59(5):474–479. doi:10.1097/MAT.0b013e31829f0e6e.
  • Pohlmann JR, Toomasian JM, Hampton CE, et al. The relationships between air exposure, negative pressure, and hemolysis. Asaio J. 2009;55(5):469–473. doi:10.1097/MAT.0b013e3181b28a5a.
  • Vermeulen Windsant IC, de Wit NC, Sertorio JT, et al. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front Physiol. 2014;5:340. doi:10.3389/fphys.2014.00340.
  • Deuel JW, Schaer CA, Boretti FS, et al. Hemoglobinuria-related acute kidney injury is driven by intrarenal oxidative reactions triggering a heme toxicity response. Cell Death Dis. 2016;7(1):e2064–e2064. doi:10.1038/cddis.2015.392.
  • McCormack PL. Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs. 2012;72(5):585–617. doi:10.2165/11209070-000000000-00000.
  • Shi J, Zhou C, Pan W, et al. Effect of high- vs low-dose tranexamic acid infusion on need for red blood cell transfusion and adverse events in patients undergoing cardiac surgery: the OPTIMAL randomized clinical trial. JAMA. 2022;328(4):336–347. doi:10.1001/jama.2022.10725.
  • Sutton TA, Fisher CJ, Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 2002;62(5):1539–1549. doi:10.1046/j.1523-1755.2002.00631.x.
  • Bruegger D, Brettner F, Rossberg I, et al. Acute degradation of the endothelial glycocalyx in infants undergoing cardiac surgical procedures. Ann Thorac Surg. 2015;99(3):926–931. doi:10.1016/j.athoracsur.2014.10.013.
  • Bruegger D, Schwartz L, Chappell D, et al. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery. Basic Res Cardiol. 2011;106(6):1111–1121. doi:10.1007/s00395-011-0203-y.
  • Svennevig K, Hoel T, Thiara A, et al. Syndecan-1 plasma levels during coronary artery bypass surgery with and without cardiopulmonary bypass. Perfusion. 2008;23(3):165–171. doi:10.1177/0267659108098215.
  • Dekker NAM, van Leeuwen ALI, van Strien WWJ, et al. Microcirculatory perfusion disturbances following cardiac surgery with cardiopulmonary bypass are associated with in vitro endothelial hyperpermeability and increased angiopoietin-2 levels. Crit Care. 2019;23(1):117. doi:10.1186/s13054-019-2418-5.
  • Koning NJ, de Lange F, van Meurs M, et al. Reduction of vascular leakage by imatinib is associated with preserved microcirculatory perfusion and reduced renal injury markers in a rat model of cardiopulmonary bypass. Br J Anaesth. 2018;120(6):1165–1175. doi:10.1016/j.bja.2017.11.095.
  • Brondén B, Dencker M, Allers M, et al. Differential distribution of lipid microemboli after cardiac surgery. Ann Thorac Surg. 2006;81(2):643–648. doi:10.1016/j.athoracsur.2005.08.006.
  • Lou S, Ji B, Liu J, et al. Generation, detection and prevention of gaseous microemboli during cardiopulmonary bypass procedure. Int J Artif Organs. 2011;34(11):1039–1051. doi:10.5301/ijao.5000010.
  • Taylor RL, Borger MA, Weisel RD, et al. Cerebral microemboli during cardiopulmonary bypass: increased emboli during perfusionist interventions. Ann Thorac Surg. 1999;68(1):89–93. doi:10.1016/s0003-4975(99)00475-0.
  • Groom RC, Quinn RD, Lennon P, et al. Detection and elimination of microemboli related to cardiopulmonary bypass. Circulation. 2009;2(3):191–198.
  • Condello I, Lorusso R, Santarpino G, et al. Clinical evaluation of Micro-Embolic activity with unexpected predisposing factors and performance of horizon AF plus during cardiopulmonary bypass. Membranes (Basel). 2022;12(5):465. doi:10.3390/membranes12050465.
  • Issitt R, James T, Walsh B, et al. Do lipid microemboli induce acute kidney injury during cardiopulmonary bypass? Perfusion. 2017;32(6):466–473. doi:10.1177/0267659117705194.
  • Condello I, Nasso G, Staessens K, et al. Gaseous Micro-Embolic activity and goal-directed perfusion management in a closed system for cardiopulmonary bypass and minimally invasive extracorporeal circulation during coronary artery bypass grafting. Surg Technol Int. 2023;43:sti43/1721. doi:10.52198/23.STI.43.CV1721.
  • Blanco-Morillo J, Salmerón Martínez D, Morillo-Cuadrado DV, et al. Hematic antegrade repriming reduces emboli on cardiopulmonary bypass: a randomized controlled trial. Asaio J. 2022;69(3):324–331. doi:10.1097/MAT.0000000000001776.
  • Haude M. Management of valvular heart disease: ESC/EACTS guidelines 2017. Herz. 2017;42(8):715–720. doi:10.1007/s00059-017-4643-5.
  • Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2022;43(7):561–632. doi:10.1093/eurheartj/ehab395.
  • Rudarakanchana N, Jenkins MP. Hybrid and total endovascular repair of the aortic arch. Br J Surg. 2018;105(4):315–327. doi:10.1002/bjs.10713.
  • Miao L, Song L, Sun SK, et al. Meta-analysis of open surgical repair versus hybrid arch repair for aortic arch aneurysm. Interact Cardiovasc Thorac Surg. 2017;24(1):34–40. doi:10.1093/icvts/ivw305.
  • Zhang L, Yu C, Yang X, et al. Hybrid and frozen elephant trunk for total arch replacement in DeBakey type I dissection. J Thorac Cardiovasc Surg. 2019;158(5):1285–1292. doi:10.1016/j.jtcvs.2019.01.020.
  • De Rango P, Ferrer C, Coscarella C, et al. Contemporary comparison of aortic arch repair by endovascular and open surgical reconstructions. J Vasc Surg. 2015;61(2):339–346. doi:10.1016/j.jvs.2014.09.006.
  • Halkos ME, Puskas JD. Off-pump coronary surgery: where do we stand in 2010? Curr Opin Cardiol. 2010;25(6):583–588. doi:10.1097/HCO.0b013e32833f04b0.
  • Garg AX, Devereaux PJ, Yusuf S, et al. Kidney function after off-pump or on-pump coronary artery bypass graft surgery: a randomized clinical trial. JAMA. 2014;311(21):2191–2198. doi:10.1001/jama.2014.4952.
  • Rocha RV, Yanagawa B, Hussain MA, et al. Off-pump versus on-pump coronary artery bypass grafting in moderate renal failure. J Thorac Cardiovasc Surg. 2020;159(4):1297–1304 e1292. doi:10.1016/j.jtcvs.2019.03.142.
  • Abu-Omar Y, Taghavi FJ, Navaratnarajah M, et al. The impact of off-pump coronary artery bypass surgery on postoperative renal function. Perfusion. 2012;27(2):127–131. doi:10.1177/0267659111429890.
  • Arom KV, Flavin TF, Emery RW, et al. Safety and efficacy of off-pump coronary artery bypass grafting. Ann Thorac Surg. 2000;69(3):704–710. doi:10.1016/s0003-4975(99)01510-6.
  • Shroyer AL, Hattler B, Wagner TH, et al. Five-Year outcomes after on-pump and off-pump coronary-artery bypass. N Engl J Med. 2017;377(7):623–632. doi:10.1056/NEJMoa1614341.
  • Quin JA, Wagner TH, Hattler B, et al. Ten-Year outcomes of off-pump vs on-pump coronary artery bypass grafting in the department of veterans affairs: a randomized clinical trial. JAMA Surg. 2022;157(4):303–310. doi:10.1001/jamasurg.2021.7578.
  • Kunst G, Milojevic M, Boer C, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Br J Anaesth. 2019;123(6):713–757. doi:10.1016/j.bja.2019.09.012.
  • de Somer F, Mulholland JW, Bryan MR, et al. O2 delivery and CO2 production during cardiopulmonary bypass as determinants of acute kidney injury: time for a goal-directed perfusion management? Crit Care. 2011;15(4):R192. doi:10.1186/cc10349.
  • Magruder JT, Crawford TC, Harness HL, et al. A pilot goal-directed perfusion initiative is associated with less acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg. 2017;153(1):118–125 e111. doi:10.1016/j.jtcvs.2016.09.016.
  • Bojan M, Gioia E, Di Corte F, et al. Lower limit of adequate oxygen delivery for the maintenance of aerobic metabolism during cardiopulmonary bypass in neonates. Br J Anaesth. 2020;124(4):395–402. doi:10.1016/j.bja.2019.12.034.
  • Lannemyr L, Bragadottir G, Hjärpe A, et al. Impact of cardiopulmonary bypass flow on renal oxygenation in patients undergoing cardiac operations. Ann Thorac Surg. 2019;107(2):505–511. doi:10.1016/j.athoracsur.2018.08.085.
  • Bennett MJ, Rajakaruna C, Bazerbashi S, et al. Oxygen delivery during cardiopulmonary bypass (and renal outcome) using two systems of extracorporeal circulation: a retrospective review. Interact Cardiovasc Thorac Surg. 2013;16(6):760–764. doi:10.1093/icvts/ivt057.
  • Benedetto U, Luciani R, Goracci M, et al. Miniaturized cardiopulmonary bypass and acute kidney injury in coronary artery bypass graft surgery. Ann Thorac Surg. 2009;88(2):529–535. doi:10.1016/j.athoracsur.2009.03.072.
  • Swaminathan M, Phillips-Bute BG, Conlon PJ, et al. The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary artery bypass surgery. Ann Thorac Surg. 2003;76(3):784–791; discussion 792. doi:10.1016/s0003-4975(03)00558-7.
  • Habib RH, Zacharias A, Schwann TA, et al. Adverse effects of low hematocrit during cardiopulmonary bypass in the adult: should current practice be changed? J Thorac Cardiovasc Surg. 2003;125(6):1438–1450. doi:10.1016/s0022-5223(02)73291-1.
  • Hou X, Yang F, Liu R, et al. Retrograde autologous priming of the cardiopulmonary bypass circuit reduces blood transfusion in small adults: a prospective, randomized trial. Eur J Anaesthesiol. 2009;26(12):1061–1066. doi:10.1097/EJA.0b013e32833244c8.
  • Cormack JE, Forest RJ, Groom RC, et al. Size makes a difference: use of a low-prime cardiopulmonary bypass circuit and autologous priming in small adults. Perfusion. 2000;15(2):129–135. doi:10.1177/026765910001500207.
  • Hofmann B, Kaufmann C, Stiller M, et al. Positive impact of retrograde autologous priming in adult patients undergoing cardiac surgery: a randomized clinical trial. J Cardiothorac Surg. 2018;13(1):50. doi:10.1186/s13019-018-0739-0.
  • Trapp C, Schiller W, Mellert F, et al. Retrograde autologous priming as a safe and easy method to reduce hemodilution and transfusion requirements during cardiac surgery. Thorac Cardiovasc Surg. 2015;63(7):628–634. doi:10.1055/s-0035-1548731.
  • Hensley NB, Gyi R, Zorrilla-Vaca A, et al. Retrograde autologous priming in cardiac surgery: results from a systematic review and meta-analysis. Anesth Analg. 2021;132(1):100–107. doi:10.1213/ANE.0000000000005151.
  • Murphy GJ, Reeves BC, Rogers CA, et al. Increased mortality, postoperative morbidity, and cost after red blood cell transfusion in patients having cardiac surgery. Circulation. 2007;116(22):2544–2552. doi:10.1161/CIRCULATIONAHA.107.698977.
  • Hajjar LA, Vincent JL, Galas FR, et al. Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial. JAMA. 2010;304(14):1559–1567. doi:10.1001/jama.2010.1446.
  • Chen QH, Wang HL, Liu L, et al. Effects of restrictive red blood cell transfusion on the prognoses of adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Crit Care. 2018;22(1):142. doi:10.1186/s13054-018-2062-5.
  • Boonstra PW, Gu YJ, Akkerman C, et al. Heparin coating of an extracorporeal circuit partly improves hemostasis after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1994;107(1):289–292. doi:10.1016/S0022-5223(94)70483-X.
  • Ranucci M, Mazzucco A, Pessotto R, et al. Heparin-coated circuits for high-risk patients: a multicenter, prospective, randomized trial. Ann Thorac Surg. 1999;67(4):994–1000. doi:10.1016/s0003-4975(99)00062-4.
  • Dekker NAM, Veerhoek D, van Leeuwen ALI, et al. Microvascular alterations during cardiac surgery using a heparin or Phosphorylcholine-Coated circuit. J Cardiothorac Vasc Anesth. 2020;34(4):912–919. doi:10.1053/j.jvca.2019.10.012.
  • Murphy GS, Hessel EA, 2nd, Groom RC. Optimal perfusion during cardiopulmonary bypass: an evidence-based approach. Anesth Analg. 2009;108(5):1394–1417. doi:10.1213/ane.0b013e3181875e2e.
  • Ranucci M, Balduini A, Ditta A, et al. A systematic review of biocompatible cardiopulmonary bypass circuits and clinical outcome. Ann Thorac Surg. 2009;87(4):1311–1319. doi:10.1016/j.athoracsur.2008.09.076.
  • Muehrcke DD, McCarthy PM, Kottke-Marchant K, et al. Biocompatibility of heparin-coated extracorporeal bypass circuits: a randomized, masked clinical trial. J Thorac Cardiovasc Surg. 1996;112(2):472–483. doi:10.1016/S0022-5223(96)70275-1.
  • Uriel N, Colombo PC, Cleveland JC, et al. Hemocompatibility-Related outcomes in the MOMENTUM 3 trial at 6 months: a randomized controlled study of a fully magnetically levitated pump in advanced heart failure. Circulation. 2017;135(21):2003–2012. doi:10.1161/CIRCULATIONAHA.117.028303.
  • Saczkowski R, Maklin M, Mesana T, et al. Centrifugal pump and roller pump in adult cardiac surgery: a meta-analysis of randomized controlled trials. Artif Organs. 2012;36(8):668–676. doi:10.1111/j.1525-1594.2012.01497.x.
  • Andersen KS, Nygreen EL, Grong K, et al. Comparison of the centrifugal and roller pump in elective coronary artery bypass surgery–a prospective, randomized study with special emphasis upon platelet activation. Scand Cardiovasc J. 2003;37(6):356–362. doi:10.1080/14017430310015523.
  • Babin-Ebell J, Misoph M, Mullges W, et al. Reduced release of tissue factor by application of a centrifugal pump during cardiopulmonary bypass. Heart Vessels. 1998;13(3):147–151. doi:10.1007/BF01747832.
  • Mlejnsky F, Klein AA, Lindner J, et al. A randomised controlled trial of roller versus centrifugal cardiopulmonary bypass pumps in patients undergoing pulmonary endarterectomy. Perfusion. 2015;30(7):520–528. doi:10.1177/0267659114553283.
  • Haines N, Wang S, Undar A, et al. Clinical outcomes of pulsatile and non-pulsatile mode of perfusion. J Extra Corpor Technol. 2009;41(1):P26–29.
  • Rider AR, Schreiner RS, Undar A. Pulsatile perfusion during cardiopulmonary bypass procedures in neonates, infants, and small children. Asaio J. 2007;53(6):706–709. doi:10.1097/MAT.0b013e318158e3f9.
  • Nam MJ, Lim CH, Kim HJ, et al. A meta-analysis of renal function after adult cardiac surgery with pulsatile perfusion. Artif Organs. 2015;39(9):788–794. doi:10.1111/aor.12452.
  • Sezai A, Shiono M, Nakata K, et al. Effects of pulsatile CPB on interleukin-8 and endothelin-1 levels. Artif Organs. 2005;29(9):708–713. doi:10.1111/j.1525-1594.2005.29112.x.
  • Ulus AT, Güray T, Ürpermez E, et al. Biocompatibility of the oxygenator on pulsatile flow by electron microscope. Braz J Cardiovasc Surg. 2023;38(1):62–70. doi:10.21470/1678-9741-2021-0519.
  • Tan Z, Besser M, Anderson S, et al. Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: Extent of hemolysis and clinical significance. Asaio J. 2020;66(9):1025–1030. doi:10.1097/MAT.0000000000001154.
  • Raper RF, Cameron G, Walker D, et al. Type B lactic acidosis following cardiopulmonary bypass. Crit Care Med. 1997;25(1):46–51. doi:10.1097/00003246-199701000-00011.
  • Greenwood JC, Jang DH, Spelde AE, et al. Low microcirculatory perfused vessel density and high heterogeneity are associated with increased intensity and duration of lactic acidosis after cardiac surgery with cardiopulmonary bypass. Shock. 2021;56(2):245–254. doi:10.1097/SHK.0000000000001713.
  • Nichol AD, Egi M, Pettila V, et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-Centre study. Crit Care. 2010;14(1):R25. doi:10.1186/cc8888.
  • Stephan H, Weyland A, Kazmaier S, et al. Acid-base management during hypothermic cardiopulmonary bypass does not affect cerebral metabolism but does affect blood flow and neurological outcome. Br J Anaesth. 1992;69(1):51–57. doi:10.1093/bja/69.1.51.
  • Patel RL, Turtle MR, Chambers DJ, et al. Alpha-stat acid-base regulation during cardiopulmonary bypass improves neuropsychologic outcome in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1996;111(6):1267–1279. doi:10.1016/s0022-5223(96)70230-1.
  • Abdul Aziz KA, Meduoye A. Is pH-stat or alpha-stat the best technique to follow in patients undergoing deep hypothermic circulatory arrest? Interact Cardiovasc Thorac Surg. 2010;10(2):271–282. doi:10.1510/icvts.2009.214130.
  • Nagy ZL, Collins M, Sharpe T, et al. Effect of two different bypass techniques on the serum troponin-T levels in newborns and children: does pH-stat provide better protection? Circulation. 2003;108(5):577–582. doi:10.1161/01.CIR.0000081779.88132.74.
  • Cecconi M, Rhodes A. Goal-directed therapy: time to move on? Anesth Analg. 2014;119(3):516–518. doi:10.1213/ANE.0000000000000367.
  • Goepfert MS, Richter HP, Zu Eulenburg C, et al. Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology. 2013;119(4):824–836. doi:10.1097/ALN.0b013e31829bd770.
  • Li P, Qu LP, Qi D, et al. Significance of perioperative goal-directed hemodynamic approach in preventing postoperative complications in patients after cardiac surgery: a meta-analysis and systematic review. Ann Med. 2017;49(4):343–351. doi:10.1080/07853890.2016.1271956.
  • Özdemir İ, Öztürk T, Amanvermez D, et al. The effects of perioperative goal-directed therapy on acute kidney injury after cardiac surgery in the early period. Turk Gogus Kalp Damar Cerrahisi Derg. 2023;31(4):467–478. doi:10.5606/tgkdc.dergisi.2023.24987.
  • Przyklenk K, Bauer B, Ovize M, et al. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87(3):893–899. doi:10.1161/01.cir.87.3.893.
  • Wever KE, Warlé MC, Wagener FA, et al. Remote ischaemic preconditioning by brief hind limb ischaemia protects against renal ischaemia-reperfusion injury: the role of adenosine. Nephrol Dial Transplant. 2011;26(10):3108–3117. doi:10.1093/ndt/gfr103.
  • Haji Mohd Yasin NA, Herbison P, Saxena P, et al. The role of remote ischemic preconditioning in organ protection after cardiac surgery: a meta-analysis. J Surg Res. 2014;186(1):207–216. doi:10.1016/j.jss.2013.09.006.
  • Li L, Li G, Yu C, et al. The role of remote ischemic preconditioning on postoperative kidney injury in patients undergoing cardiac and vascular interventions: a meta-analysis. J Cardiothorac Surg. 2013;8(1):43. doi:10.1186/1749-8090-8-43.
  • Pedersen KR, Ravn HB, Povlsen JV, et al. Failure of remote ischemic preconditioning to reduce the risk of postoperative acute kidney injury in children undergoing operation for complex congenital heart disease: a randomized single-center study. J Thorac Cardiovasc Surg. 2012;143(3):576–583. doi:10.1016/j.jtcvs.2011.08.044.
  • Law YM, Hsu C, Hingorani SR, et al. Randomized controlled trial of remote ischemic preconditioning in children having cardiac surgery. J Cardiothorac Surg. 2024;19(1):5. doi:10.1186/s13019-023-02450-8.
  • Hu J, Liu S, Jia P, et al. Protection of remote ischemic preconditioning against acute kidney injury: a systematic review and meta-analysis. Crit Care. 2016;20(1):111. doi:10.1186/s13054-016-1272-y.
  • Schenning KJ, Anderson S, Alkayed NJ, et al. Hyperglycemia abolishes the protective effect of ischemic preconditioning in glomerular endothelial cells in vitro. Physiol Rep. 2015;3(3):e12346. doi:10.14814/phy2.12346.
  • Rivo J, Raphael J, Drenger B, et al. Flumazenil mimics whereas midazolam abolishes ischemic preconditioning in a rabbit heart model of ischemia-reperfusion. Anesthesiology. 2006;105(1):65–71. doi:10.1097/00000542-200607000-00014.
  • Du Y, Qiu R, Chen L, et al. Identification of serum exosomal metabolomic and proteomic profiles for remote ischemic preconditioning. J Transl Med. 2023;21(1):241. doi:10.1186/s12967-023-04070-1.
  • Pan T, Jia P, Chen N, et al. Delayed remote ischemic preconditioning ConfersRenoprotection against septic acute kidney injury via exosomal miR-21. Theranostics. 2019;9(2):405–423. doi:10.7150/thno.29832.
  • De Rosa S, Antonelli M, Ronco C. Hypothermia and kidney: a focus on ischaemia-reperfusion injury. Nephrol Dial Transplant. 2017;32(2):241–247.
  • Broman M, Källskog O. The effects of hypothermia on renal function and haemodynamics in the rat. Acta Physiol Scand. 1995;153(2):179–184. doi:10.1111/j.1748-1716.1995.tb09849.x.
  • Stukov Y, Bleiweis MS, Wilson L, et al. Cardiopulmonary bypass perfusion temperature does not influence perioperative renal function. Ann Thorac Surg. 1995;60(1):2676591241226464–2676591241226164. doi:10.1016/S0003-4975(95)00328-2.
  • Susantitaphong P, Alfayez M, Cohen-Bucay A, et al. Therapeutic hypothermia and prevention of acute kidney injury: a meta-analysis of randomized controlled trials. Resuscitation. 2012;83(2):159–167. doi:10.1016/j.resuscitation.2011.09.023.
  • Newland RF, Baker RA, Mazzone AL, et al. Rewarming temperature during cardiopulmonary bypass and acute kidney injury: a multicenter analysis. Ann Thorac Surg. 2016;101(5):1655–1662. doi:10.1016/j.athoracsur.2016.01.086.
  • Hendriks KDW, Castela Forte JN, Kok WF, et al. Mild hypothermia during cardiopulmonary bypass assisted CABG is associated with improved short- and long-term survival, a 18-year cohort study. PLoS One. 2022;17(8):e0273370. doi:10.1371/journal.pone.0273370.
  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–383. doi:10.1083/jcb.201211138.
  • Chen Y, Zhang C, Du Y, et al. Exosomal transfer of microRNA-590-3p between renal tubular epithelial cells after renal ischemia-reperfusion injury regulates autophagy by targeting TRAF6. Chin Med J (Engl). 2022;135(20):2467–2477. doi:10.1097/CM9.0000000000002377.
  • Donadee C, Raat NJ, Kanias T, et al. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation. 2011;124(4):465–476. doi:10.1161/CIRCULATIONAHA.110.008698.
  • Pat B, Oh JY, Masjoan Juncos JX, et al. Red blood cell exosome hemoglobin content increases after cardiopulmonary bypass and mediates acute kidney injury in an animal model. J Thorac Cardiovasc Surg. 2022;164(6):e289–e308. doi:10.1016/j.jtcvs.2020.11.102.
  • Dekker NAM, Veerhoek D, Koning NJ, et al. Postoperative microcirculatory perfusion and endothelial glycocalyx shedding following cardiac surgery with cardiopulmonary bypass. Anaesthesia. 2019;74(5):609–618. doi:10.1111/anae.14577.
  • Ferraris VA. Commentary: red cell damage after cardiopulmonary bypass: the dark side of exosomes. J Thorac Cardiovasc Surg. 2022;164(6):e309–e310. doi:10.1016/j.jtcvs.2020.11.138.
  • Mathur VS, Swan SK, Lambrecht LJ, et al. The effects of fenoldopam, a selective dopamine receptor agonist, on systemic and renal hemodynamics in normotensive subjects. Crit Care Med. 1999;27(9):1832–1837. doi:10.1097/00003246-199909000-00021.
  • Lee CJ, Gardiner BS, Smith DW. A cardiovascular model for renal perfusion during cardiopulmonary bypass surgery. Comput Biol Med. 2020;119:103676. doi:10.1016/j.compbiomed.2020.103676.
  • Kone BC, Baylis C. Biosynthesis and homeostatic roles of nitric oxide in the normal kidney. Am J Physiol. 1997;272(5 Pt 2):F561–578. doi:10.1152/ajprenal.1997.272.5.F561.
  • Legrand M, Mik EG, Johannes T, et al. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med. 2008;14(7-8):502–516. doi:10.2119/2008-00006.Legrand.
  • Gunnett CA, Lund DD, McDowell AK, et al. Mechanisms of inducible nitric oxide synthase-mediated vascular dysfunction. Arterioscler Thromb Vasc Biol. 2005;25(8):1617–1622. doi:10.1161/01.ATV.0000172626.00296.ba.
  • Chatterjee PK, Patel NS, Kvale EO, et al. Inhibition of inducible nitric oxide synthase reduces renal ischemia/reperfusion injury. Kidney Int. 2002;61(3):862–871. doi:10.1046/j.1523-1755.2002.00234.x.
  • Koivisto A, Pittner J, Froelich M, et al. Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide. Kidney Int. 1999;55(6):2368–2375. doi:10.1046/j.1523-1755.1999.00474.x.
  • Kim-Campbell N, Gretchen C, Callaway C, et al. Cell-Free plasma hemoglobin and male gender are risk factors for acute kidney injury in low risk children undergoing cardiopulmonary bypass. Crit Care Med. 2017;45(11):e1123–e1130. doi:10.1097/CCM.0000000000002703.
  • Ahmad A, Dempsey SK, Daneva Z, et al. Role of nitric oxide in the cardiovascular and renal systems. Int J Mol Sci. 2018;19(9):2605. doi:10.3390/ijms19092605.
  • Lei C, Berra L, Rezoagli E, et al. Nitric oxide decreases acute kidney injury and stage 3 chronic kidney disease after cardiac surgery. Am J Respir Crit Care Med. 2018;198(10):1279–1287. doi:10.1164/rccm.201710-2150OC.
  • Kamenshchikov NO, Anfinogenova YJ, Kozlov BN, et al. Nitric oxide delivery during cardiopulmonary bypass reduces acute kidney injury: a randomized trial. J Thorac Cardiovasc Surg. 2022;163(4):1393–1403 e1399. doi:10.1016/j.jtcvs.2020.03.182.
  • Greenberg JW, Hogue S, Raees MA, et al. Exogenous nitric oxide delivery protects against cardiopulmonary bypass-associated acute kidney injury: histologic and serologic evidence from an ovine model. J Thorac Cardiovasc Surg. 2023;166(5):e164–e173. doi:10.1016/j.jtcvs.2023.03.030.
  • Vuong TA, Rana MS, Moore B, et al. Association between exogenous nitric oxide given during cardiopulmonary bypass and the incidence of postoperative kidney injury in children. J Cardiothorac Vasc Anesth. 2022;36(8 Pt A):2352–2357. doi:10.1053/j.jvca.2021.10.007.
  • Ruan SY, Huang TM, Wu HY, et al. Inhaled nitric oxide therapy and risk of renal dysfunction: a systematic review and meta-analysis of randomized trials. Crit Care. 2015;19(1):137. doi:10.1186/s13054-015-0880-2.
  • Hübner M, Tomasi R, Effinger D, et al. Myeloid-Derived suppressor cells mediate immunosuppression after cardiopulmonary bypass. Crit Care Med. 2019;47(8):e700–e709. doi:10.1097/CCM.0000000000003820.
  • Jung M, Sola A, Hughes J, et al. Infusion of IL-10-expressing cells protects against renal ischemia through induction of lipocalin-2. Kidney Int. 2012;81(10):969–982. doi:10.1038/ki.2011.446.
  • Tang TT, Wang B, Wu M, et al. Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. Sci Adv. 2020;6(33):eaaz0748. doi:10.1126/sciadv.aaz0748.
  • Beer L, Szerafin T, Mitterbauer A, et al. Low tidal volume ventilation during cardiopulmonary bypass reduces postoperative chemokine serum concentrations. Thorac Cardiovasc Surg. 2014;62(8):677–682. doi:10.1055/s-0034-1387824.
  • Scott JP, Tanem JM, Tomita-Mitchell A, et al. Elevated nuclear and mitochondrial cell-free deoxyribonucleic acid measurements are associated with death after infant cardiac surgery. J Thorac Cardiovasc Surg. 2022;164(2):367–375. doi:10.1016/j.jtcvs.2021.10.066.
  • Devlin PJ, Kaushal S. Commentary: come on maybe lyse my fire? Cell-free DNA: a potential novel therapeutic target for postcardiopulmonary bypass inflammation. J Thorac Cardiovasc Surg. 2022;164(2):376–377. doi:10.1016/j.jtcvs.2021.11.015.
  • Poli EC, Alberio L, Bauer-Doerries A, et al. Cytokine clearance with CytoSorb(R) during cardiac surgery: a pilot randomized controlled trial. Crit Care. 2019;23(1):108. doi:10.1186/s13054-019-2399-4.
  • Bernardi MH, Rinoesl H, Dragosits K, et al. Effect of hemoadsorption during cardiopulmonary bypass surgery - a blinded, randomized, controlled pilot study using a novel adsorbent. Crit Care. 2016;20(1):96. doi:10.1186/s13054-016-1270-0.
  • Pan T, Jiang CY, Zhang H, et al. The low-dose colchicine in patients after non-CABG cardiac surgery: a randomized controlled trial. Crit Care. 2023;27(1):49. doi:10.1186/s13054-023-04341-9.
  • Hu J, Deng F, Zhao B, et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via toll-like receptor 2 signaling. Microbiome. 2022;10(1):38. doi:10.1186/s40168-022-01227-w.
  • Koyner JL, Sher Ali R, Murray PT. Antioxidants. Do they have a place in the prevention or therapy of acute kidney injury? Nephron Exp Nephrol. 2008;109(4):e109-117–e117. doi:10.1159/000142935.
  • Roberts LJ, 2nd, Oates JA, Linton MF, et al. The relationship between dose of vitamin E and suppression of oxidative stress in humans. Free Radic Biol Med. 2007;43(10):1388–1393. doi:10.1016/j.freeradbiomed.2007.06.019.
  • Tanaka K, Kanamori Y, Sato T, et al. Administration of haptoglobin during cardiopulmonary bypass surgery. ASAIO Trans. 1991;37(3):M482–483.
  • Boretti FS, Buehler PW, D’Agnillo F, et al. Sequestration of extracellular hemoglobin within a haptoglobin complex decreases its hypertensive and oxidative effects in dogs and Guinea pigs. J Clin Invest. 2009;119(8):2271–2280. doi:10.1172/JCI39115.
  • Vallelian F, Pimenova T, Pereira CP, et al. The reaction of hydrogen peroxide with hemoglobin induces extensive alpha-globin crosslinking and impairs the interaction of hemoglobin with endogenous scavenger pathways. Free Radic Biol Med. 2008;45(8):1150–1158. doi:10.1016/j.freeradbiomed.2008.07.013.
  • Boutaud O, Moore KP, Reeder BJ, et al. Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc Natl Acad Sci U S A. 2010;107(6):2699–2704. doi:10.1073/pnas.0910174107.
  • Laffey JG, Boylan JF, Cheng DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97(1):215–252. doi:10.1097/00000542-200207000-00030.
  • McGuinness SP, Parke RL, Drummond K, et al. A multicenter, randomized, controlled phase IIb trial of avoidance of hyperoxemia during cardiopulmonary bypass. Anesthesiology. 2016;125(3):465–473. doi:10.1097/ALN.0000000000001226.
  • Haase M, Haase-Fielitz A, Bellomo R, et al. Sodium bicarbonate to prevent increases in serum creatinine after cardiac surgery: a pilot double-blind, randomized controlled trial. Crit Care Med. 2009;37(1):39–47. doi:10.1097/CCM.0b013e318193216f.
  • Hougardy JM, De Backer D. Sodium bicarbonate to prevent cardiac surgery-associated kidney injury: the end of a dream? Crit Care. 2012;16(6):186. doi:10.1186/cc11837.
  • Haase M, Haase-Fielitz A, Plass M, et al. Prophylactic perioperative sodium bicarbonate to prevent acute kidney injury following open heart surgery: a multicenter double-blinded randomized controlled trial. PLoS Med. 2013;10(4):e1001426. doi:10.1371/journal.pmed.1001426.
  • Heringlake M, Heinze H, Schubert M, et al. A perioperative infusion of sodium bicarbonate does not improve renal function in cardiac surgery patients: a prospective observational cohort study. Crit Care. 2012;16(4):R156. doi:10.1186/cc11476.
  • Sukumaran V, Tsuchimochi H, Fujii Y, et al. Ghrelin pre-treatment attenuates local oxidative stress and end organ damage during cardiopulmonary bypass in anesthetized rats. Front Physiol. 2018;9:196. doi:10.3389/fphys.2018.00196.
  • Shi J, Wu G, Zou X, et al. Enteral baicalin, a flavone glycoside, reduces indicators of cardiac surgery-associated acute kidney injury in rats. Cardiorenal Med. 2019;9(1):31–40. doi:10.1159/000492159.
  • El-Sisi AE, Sokar SS, Abu-Risha SE, et al. Combination of tadalafil and diltiazem attenuates renal ischemia reperfusion-induced acute renal failure in rats. Biomed Pharmacother. 2016;84:861–869. doi:10.1016/j.biopha.2016.10.009.
  • Rassaf T, Weber C, Bernhagen J. Macrophage migration inhibitory factor in myocardial ischaemia/reperfusion injury. Cardiovasc Res. 2014;102(2):321–328. doi:10.1093/cvr/cvu071.
  • Stoppe C, Averdunk L, Goetzenich A, et al. The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery. Sci Transl Med. 2018;10(441):eaan4886. doi:10.1126/scitranslmed.aan4886.
  • Amani H, Habibey R, Hajmiresmail SJ, et al. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J Mater Chem B. 2017;5(48):9452–9476. doi:10.1039/c7tb01689a.
  • Walski T, Drohomirecka A, Bujok J, et al. Low-Level light therapy protects red blood cells against oxidative stress and hemolysis during extracorporeal circulation. Front Physiol. 2018;9:647. doi:10.3389/fphys.2018.00647.
  • Koratala A, Kazory A. Renal functional reserve and pregnancy outcomes. Kidney Int. 2017;92(3):768. doi:10.1016/j.kint.2017.04.038.
  • Ronco C, Bellomo R, Kellum J. Understanding renal functional reserve. Intensive Care Med. 2017;43(6):917–920. doi:10.1007/s00134-017-4691-6.
  • Husain-Syed F, Ferrari F, Sharma A, et al. Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation. Ann Thorac Surg. 2018;105(4):1094–1101. doi:10.1016/j.athoracsur.2017.12.034.
  • Husain-Syed F, Ferrari F, Sharma A, et al. Persistent decrease of renal functional reserve in patients after cardiac surgery-associated acute kidney injury despite clinical recovery. Nephrol Dial Transplant. 2019;34(2):308–317. doi:10.1093/ndt/gfy227.
  • Husain-Syed F, Emlet DR, Wilhelm J, et al. Effects of preoperative high-oral protein loading on short- and long-term renal outcomes following cardiac surgery: a cohort study. J Transl Med. 2022;20(1):204. doi:10.1186/s12967-022-03410-x.
  • Pu H, Doig GS, Heighes PT, et al. Intravenous amino acid therapy for kidney protection in cardiac surgery patients: a pilot randomized controlled trial. J Thorac Cardiovasc Surg. 2019;157(6):2356–2366. doi:10.1016/j.jtcvs.2018.11.097.
  • Zhao Y, Pu M, Wang Y, et al. Application of nanotechnology in acute kidney injury: from diagnosis to therapeutic implications. J Control Release. 2021;336:233–251. doi:10.1016/j.jconrel.2021.06.026.
  • Yu H, Lin T, Chen W, et al. Size and temporal-dependent efficacy of oltipraz-loaded PLGA nanoparticles for treatment of acute kidney injury and fibrosis. Biomaterials. 2019;219:119368. doi:10.1016/j.biomaterials.2019.119368.
  • Williams RM, Shah J, Tian HS, et al. Selective nanoparticle targeting of the renal tubules. Hypertension. 2018;71(1):87–94. doi:10.1161/HYPERTENSIONAHA.117.09843.
  • Han SJ, Williams RM, D’Agati V, et al. Selective nanoparticle-mediated targeting of renal tubular toll-like receptor 9 attenuates ischemic acute kidney injury. Kidney Int. 2020;98(1):76–87. doi:10.1016/j.kint.2020.01.036.
  • Yu H, Jin F, Liu D, et al. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics. 2020;10(5):2342–2357. doi:10.7150/thno.40395.
  • Ni D, Jiang D, Kutyreff CJ, et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat Commun. 2018;9(1):5421. doi:10.1038/s41467-018-07890-8.
  • Koh LB, Rodriguez I, Venkatraman SS. A novel nanostructured poly(lactic-co-glycolic-acid)-multi-walled carbon nanotube composite for blood-contacting applications: thrombogenicity studies. Acta Biomater. 2009;5(9):3411–3422. doi:10.1016/j.actbio.2009.06.003.
  • Gaffney AM, Santos-Martinez MJ, Satti A, et al. Blood biocompatibility of surface-bound multi-walled carbon nanotubes. Nanomedicine. 2015;11(1):39–46. doi:10.1016/j.nano.2014.07.005.