444
Views
0
CrossRef citations to date
0
Altmetric
Acute Kidney Injury

Determinants and impact of calcium oxalate crystal deposition on renal outcomes in acute kidney injury patients

, , , , &
Article: 2334396 | Received 11 Oct 2023, Accepted 19 Mar 2024, Published online: 03 Apr 2024

References

  • Fanger H, Esparza A. Crystals of calcium oxalate in kidneys in uremia. Am J Clin Pathol. 1964;41(6):1–12. doi: 10.1093/ajcp/41.6.597.
  • Zhou J, Yu X, Su T, et al. Critically ill, tubular injury, delayed early recovery: characteristics of acute kidney disease with renal oxalosis. Ren Fail. 2021;43(1):425–432. doi: 10.1080/0886022X.2021.1885443.
  • Buysschaert B, Aydin S, Morelle J, et al. Etiologies, clinical features, and outcome of oxalate nephropathy. Kidney Int Rep. 2020;5(9):1503–1509. doi: 10.1016/j.ekir.2020.06.021.
  • Demoulin N, Aydin S, Gillion V, et al. Pathophysiology and management of hyperoxaluria and oxalate nephropathy: a review. Am J Kidney Dis. 2022;79(5):717–727. doi: 10.1053/j.ajkd.2021.07.018.
  • Rosenstock JL, Joab TMJ, DeVita MV, et al. Oxalate nephropathy: a review. Clin Kidney J. 2021;15(2):194–204. doi: 10.1093/ckj/sfab145.
  • Reddy S, Bolen E, Abdelmalek M, et al. Clinical outcomes and histological patterns in oxalate nephropathy due to enteric and nonenteric risk factors. Am J Nephrol. 2021;52(12):961–968. doi: 10.1159/000520286.
  • Schepers MSJ, Van Ballegooijen ES, Bangma CH, et al. Oxalate is toxic to renal tubular cells only at supraphysiologic concentrations. Kidney Int. 2005;68(4):1660–1669. doi: 10.1111/j.1523-1755.2005.00576.x.
  • Jiang H, Pokhrel G, Chen Y, et al. High expression of SLC26A6 in the kidney may contribute to renal calcification via an SLC26A6-dependent mechanism. PeerJ. 2018;6:e5192. doi: 10.7717/peerj.5192.
  • Sun XY, Gan QZ, Ouyang JM. Calcium oxalate toxicity in renal epithelial cells: the mediation of crystal size on cell death mode. Cell Death Discov. 2015;1(1):15055. doi: 10.1038/cddiscovery.2015.55.
  • Mankan AK, Kubarenko A, Hornung V. Immunology in clinic review series; focus on autoinflammatory diseases: inflammasomes: mechanisms of activation. Clin Exp Immunol. 2012;167(3):369–381. doi: 10.1111/j.1365-2249.2011.04534.x.
  • Mulay SR, Evan A, Anders HJ. Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Nephrol Dial Transplant. 2014;29(3):507–514. doi: 10.1093/ndt/gft248.
  • Mulay SR, Kulkarni OP, Rupanagudi KV, et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J Clin Invest. 2013;123(1):236–246. doi: 10.1172/JCI63679.
  • Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–84. doi: 10.1159/000339789.
  • Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
  • Roufosse C, Simmonds N, Clahsen-van Groningen M, et al. A 2018 reference guide to the banff classification of renal allograft pathology. Transplantation. 2018;102(11):1795–1814. doi: 10.1097/TP.0000000000002366.
  • Jia Y, Poor SMM, Dufault B, et al. Chronic kidney damage pathology score for systematic assessment of the non-neoplastic kidney tissue and prediction of post-operative renal function outcomes. Hum Pathol. 2022;124:76–84. doi: 10.1016/j.humpath.2022.03.003.
  • Tiselius H-G, Lindbäck B, Fornander A-M, et al. Studies on the role of calcium phosphate in the process of calcium oxalate crystal formation. Urol Res. 2009;37(4):181–192. doi: 10.1007/s00240-009-0191-7.
  • Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):102. doi: 10.1038/s41467-019-13668-3.
  • Costello LC, Franklin RB. Plasma citrate homeostasis: how it is regulated; and its physiological and clinical implications. An important, but neglected, relationship in medicine. HSOA J Hum Endocrinol. 2016;1(005):28286881.
  • Aruga S, Wehrli S, Kaissling B, et al. A: chronic metabolic acidosis increases NaDC-1 mRNA and protein abundance in rat kidney. Kidney Int. 2000;58(1):206–215. doi: 10.1046/j.1523-1755.2000.00155.x.
  • Rudman D, Dedonis JL, Fountain MT, et al. Hypocitraturia in patients with gastrointestinal malabsorption. N Engl J Med. 1980;303(12):657–661. doi: 10.1056/NEJM198009183031201.
  • Tseng YS, Wu WB, Chen Y, et al. Small intestine resection increases oxalate and citrate transporter expression and calcium oxalate crystal formation in rat hyperoxaluric kidneys. Clin Sci (Lond). 2020;134(19):2565–2580. doi: 10.1042/CS20200973.
  • Melnick JZ, Preisig PA, Haynes S, et al. Converting enzyme inhibition causes hypocitraturia independent of acidosis or hypokalemia. Kidney Int. 1998;54(5):1670–1674. doi: 10.1046/j.1523-1755.1998.00150.x.
  • Geibel J, Giebisch G, Boron WF. Angiotensin II stimulates both Na(+)-H + exchange and Na+/HCO3- cotransport in the rabbit proximal tubule. Proc Natl Acad Sci USA. 1990;87(20):7917–7920. doi: 10.1073/pnas.87.20.7917.
  • Ohana E, Shcheynikov N, Moe OW, et al. SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. J Am Soc Nephrol. 2013;24(10):1617–1626. doi: 10.1681/ASN.2013010080.
  • Hess B, Jordi S, Zipperle L, et al. Citrate determines calcium oxalate crystallization kinetics and crystal morphology—studies in the presence of tamm–horsfall protein of a healthy subject and a severely recurrent calcium stone former. Nephrol Dial Transplant. 2000;15(3):366–374. doi: 10.1093/ndt/15.3.366.
  • Chutipongtanate S, Chaiyarit S, Thongboonkerd V. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. Eur J Pharmacol. 2012;689(1–3):219–225. doi: 10.1016/j.ejphar.2012.06.012.
  • He Y, Chen X, Yu Z, et al. Sodium dicarboxylate cotransporter-1 expression in renal tissues and its role in rat experimental nephrolithiasis. J Nephrol. 2004;17(1):34–42.
  • Markowitz GS, Perazella MA. Acute phosphate nephropathy. Kidney Int. 2009;76(10):1027–1034. doi: 10.1038/ki.2009.308.
  • Sindić A, Chang MH, Mount DB, et al. Renal physiology of SLC26 anion exchangers. Curr Opin Nephrol Hypertens. 2007;16(5):484–490. doi: 10.1097/MNH.0b013e3282e7d7d0.
  • Huang HS, Ma MC. High sodium-induced oxidative stress and poor anticrystallization defense aggravate calcium oxalate crystal formation in rat hyperoxaluric kidneys. PLoS One. 2015;10(8):e0134764. doi: 10.1371/journal.pone.0134764.