660
Views
0
CrossRef citations to date
0
Altmetric
Artificial Intelligence and Machine Learning

Novel immune cross-talk between inflammatory bowel disease and IgA nephropathy

, , , , , & show all
Article: 2337288 | Received 15 Sep 2023, Accepted 27 Mar 2024, Published online: 17 Apr 2024

References

  • Rodrigues JC, Haas M, Reich HN. IgA nephropathy. Clin J Am Soc Nephrol. 2017;12(4):1–31. doi: 10.2215/CJN.07420716.
  • Hassler JR. IgA nephropathy: a brief review. Semin Diagn Pathol. 2020;37(3):143–147. doi: 10.1053/j.semdp.2020.03.001.
  • Gleeson PJ, O’Shaughnessy MM, Barratt J. IgA nephropathy in adults—treatment standard. Nephrol Dial Transplant. 2023;38(11):2464–2473. doi: 10.1093/ndt/gfad146.
  • Floege J, Barratt J. IgA nephropathy: a perspective for 2021. Semin Immunopathol. 2021;43(5):625–626. doi: 10.1007/s00281-021-00890-9.
  • Marion-Letelliera R, Savoyea G, Ghoshc S. IBD: in food We trust. J Crohns Colitis. 2016;10(11):1351–1361. doi: 10.1093/ecco-jcc/jjw106.
  • Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277.
  • Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369(9573):1627–1640. doi: 10.1016/S0140-6736(07)60750-8.
  • Ambruzs JM, Walker PD, Larsen CP. The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin J Am Soc Nephrol. 2014;9(2):265–270. doi: 10.2215/CJN.04660513.
  • Kumar S, Pollok R, Goldsmith D. Renal and urological disorders associated with inflammatory bowel disease. Inflamm Bowel Dis. 2022;29(8):1306–1316. doi: 10.1093/ibd/izac140.
  • Joher N, Gosset C, Guerrot D, et al. Immunoglobulin a nephropathy in association with inflammatory bowel diseases: results from a national study and systematic literature review. Nephrol Dial Transplant. 2022;37(3):531–539. doi: 10.1093/ndt/gfaa378.
  • Hu C, Liao S, Lv L, et al. Intestinal immune imbalance is an alarm in the development of IBD. Mediators Inflamm. 2023;2023:1073984. doi: 10.1155/2023/1073984.
  • Gao H, Zheng S, Yuan X, et al. Causal association between inflammatory bowel disease and 32 site-specific extracolonic cancers: a Mendelian randomization study. BMC Med. 2023;21(1):389. doi: 10.1186/s12916-023-03096-y.
  • Chen C, Yan W, Tao M, et al. NAD + metabolism and immune regulation: new approaches to inflammatory bowel disease therapies. Antioxidants (Basel). 2023;12(6):1230. doi: 10.3390/antiox12061230.
  • Kiryluk K, Li Y, Scolari F, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46(11):1187–1196. doi: 10.1038/ng.3118.
  • Van Staa TP, Travis S, Leufkens HG, et al. 5-Aminosalicylic acids and the risk of renal disease: a large British epidemiologic study. Gastroenterology. 2004;126(7):1733–1739. doi: 10.1053/j.gastro.2004.03.016.
  • Takemura T, Okada M, Yagi K, et al. An adolescent with IgA nephropathy and Crohn disease: pathogenetic implications. Pediatr Nephrol. 2002;17(10):863–866. doi: 10.1007/s00467-002-0943-x.
  • Forshaw MJ, Guirguis O, Hennigan TW. IgA nephropathy in association with Crohn’s disease. Int J Colorectal Dis. 2005;20(5):463–465. doi: 10.1007/s00384-004-0696-z.
  • Ridder RM, Kreth HW, Kiss E, et al. Membranous nephropathy associated with familial chronic ulcerative colitis in a 12-year-old girl. Pediatr Nephrol. 2005;20(9):1349–1351. doi: 10.1007/s00467-005-1986-6.
  • Floege J, Rauen T, Tang SCW. Current treatment of IgA nephropathy. Semin Immunopathol. 2021;43(5):717–728. doi: 10.1007/s00281-021-00888-3.
  • Barratt J, Rovin BH, Cattran D, et al. Why target the gut to treat IgA nephropathy? Kidney Int Rep. 2020;5(10):1620–1624. doi: 10.1016/j.ekir.2020.08.009.
  • Coppo R. The gut–renal connection in IgA nephropathy. Semin Nephrol. 2018;38(5):504–512. doi: 10.1016/j.semnephrol.2018.05.020.
  • van Hoeve K, Hoffman I. Renal manifestations in inflammatory bowel disease: a systematic review. J Gastroenterol. 2022;57(9):619–629. doi: 10.1007/s00535-022-01903-6.
  • van Kampen AH, Moerland PD. Taking bioinformatics to systems medicine. Methods Mol Biol. 2016;1386:17–41. doi: 10.1007/978-1-4939-3283-2_2.
  • Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinform. 2013;14(1):7. doi: 10.1186/1471-2105-14-7.
  • Zeng M, Liu J, Yang W, et al. Multiple-microarray analysis for identification of hub genes involved in tubulointerstial injury in diabetic nephropathy. J Cell Physiol. 2019;234(9):16447–16462. doi: 10.1002/jcp.28313.
  • Feys S, Gonçalves SM, Khan M, et al. Lung epithelial and myeloid innate immunity in influenza-associated or COVID-19-associated pulmonary aspergillosis: an observational study. Lancet Respir Med. 2022;10(12):1147–1159. doi: 10.1016/S2213-2600(22)00259-4.
  • Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–457. doi: 10.1038/nmeth.3337.
  • Yan G, An Y, Xu B, et al. Potential impact of ALKBH5 and YTHDF1 on tumor immunity in colon adenocarcinoma. Front Oncol. 2021;11:670490. doi: 10.3389/fonc.2021.670490.
  • Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18(1):220. doi: 10.1186/s13059-017-1349-1.
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9(1):559. doi: 10.1186/1471-2105-9-559.
  • Alhamzawi R, Ali HTM. The Bayesian adaptive lasso regression. Math Biosci. 2018;303:75–82. doi: 10.1016/j.mbs.2018.06.004.
  • Zhong X, Xu L, Li C, et al. RFE-UNet: remote feature exploration with local learning for medical image segmentation. Sensors (Basel). 2023;23(13):6228. doi: 10.3390/s23136228.
  • Zareie B, Poorolajal J, Roshani A, et al. Outbreak detection algorithms based on generalized linear model: a review with new practical examples. BMC Med Res Methodol. 2023;23(1):235. doi: 10.1186/s12874-023-02050-z.
  • Zhou H, Xin Y, Li S. A diabetes prediction model based on Boruta feature selection and ensemble learning. BMC Bioinform. 2023;24(1):224. doi: 10.1186/s12859-023-05300-5.
  • Carlberg C, Molnár F. Transcription Factors, in Mechanisms of Gene Regulation. 2016. p. 57–73.
  • Keenan AB, Torre D, Lachmann A, et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019;47(W1):W212–W224. doi: 10.1093/nar/gkz446.
  • Han H, Shim H, Shin D, et al. TRRUST: a reference database of human transcriptional regulatory interactions. Sci Rep. 2015;5(1):11432. doi: 10.1038/srep11432.
  • Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021;14(4):dmm047662. doi: 10.1242/dmm.047662.
  • Sethupathy P, Corda B, Hatzigeorgiou AG. TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA. 2006;12(2):192–197. doi: 10.1261/rna.2239606.
  • Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–D97. doi: 10.1093/nar/gkt1248.
  • McGrath JC, Lilley E. Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol. 2015;172(13):3189–3193. doi: 10.1111/bph.12955.
  • Dong L, Xie J, Wang Y, et al. Mannose ameliorates experimental colitis by protecting intestinal barrier integrity. Nat Commun. 2022;13(1):4804. doi: 10.1038/s41467-022-32505-8.
  • Ma X, Di Q, Li X, et al. Munronoid I ameliorates DSS-induced mouse colitis by inhibiting NLRP3 inflammasome activation and pyroptosis via modulation of NLRP3. Front Immunol. 2022;13:853194. doi: 10.3389/fimmu.2022.853194.
  • Li Y, Lin H, Shu S, et al. Integrative transcriptome analysis reveals TEKT2 and PIAS2 involvement in diabetic nephropathy. FASEB J. 2022;36(11):e22592. doi: 10.1096/fj.202200740RR.
  • Yan Q, Zhao Z, Liu D, et al. Integrated analysis of potential gene crosstalk between non-alcoholic fatty liver disease and diabetic nephropathy. Front Endocrinol (Lausanne). 2022;13:1032814. doi: 10.3389/fendo.2022.1032814.
  • Jahan H, Choudhary MI. Gliclazide alters macrophages polarization state in diabetic atherosclerosis in vitro via blocking AGE-RAGE/TLR4-reactive oxygen species-activated NF-kbeta nexus. Eur J Pharmacol. 2021;894:173874. doi: 10.1016/j.ejphar.2021.173874.
  • Mosharaf MP, Hassan MM, Ahmed FF, et al. Computational prediction of protein ubiquitination sites mapping on Arabidopsis thaliana. Comput Biol Chem. 2020;85:107238. doi: 10.1016/j.compbiolchem.2020.107238.
  • Ryu H, Kim J, Kim D, et al. Cellular and molecular links between autoimmunity and lipid metabolism. Mol Cells. 2019;42(11):747–754. doi: 10.14348/molcells.2019.0196.
  • Nowowiejska J, Baran A, Flisiak I. Lipid alterations and metabolism disturbances in selected inflammatory skin diseases. Int J Mol Sci. 2023;24(8):7053. doi: 10.3390/ijms24087053.
  • Deleu S, Machiels K, Raes J, et al. Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? EBioMedicine. 2021;66:103293. doi: 10.1016/j.ebiom.2021.103293.
  • Wang J, Zhu N, Su X, et al. Gut-microbiota-derived metabolites maintain gut and systemic immune homeostasis. Cells. 2023;12(5):793. doi: 10.3390/cells12050793.
  • Stec A, Sikora M, Maciejewska M, et al. Bacterial metabolites: a link between gut microbiota and dermatological diseases. Int J Mol Sci. 2023;24(4):3494. doi: 10.3390/ijms24043494.
  • Yan D, Ye S, He Y, et al. Fatty acids and lipid mediators in inflammatory bowel disease: from mechanism to treatment. Front Immunol. 2023;14:1286667. doi: 10.3389/fimmu.2023.1286667.
  • Kasubuchi M, Hasegawa S, Hiramatsu T, et al. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7(4):2839–2849. doi: 10.3390/nu7042839.
  • Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc. 2015;74(3):328–336. doi: 10.1017/S0029665114001657.
  • Mohammad S. Role of free fatty acid receptor 2 (FFAR2) in the regulation of metabolic homeostasis. Curr Drug Targets. 2015;16(7):771–775. doi: 10.2174/1389450116666150408103557.
  • Wu W, Sun M, Chen F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2017;10(4):946–956. doi: 10.1038/mi.2016.114.
  • Liao Y, Fan L, Bin P, et al. GABA signaling enforces intestinal germinal center B cell differentiation. Proc Natl Acad Sci U S A. 2022;119(44):e2215921119. doi: 10.1073/pnas.2215921119.
  • Kumari R, Ahuja V, Paul J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World J Gastroenterol. 2013;19(22):3404–3414. doi: 10.3748/wjg.v19.i22.3404.
  • Shin Y, Han S, Kwon J, et al. Roles of short-chain fatty acids in inflammatory bowel disease. Nutrients. 2023;15(20):4466. doi: 10.3390/nu15204466.
  • Tan J, Dong L, Jiang Z, et al. Probiotics ameliorate IgA nephropathy by improving gut dysbiosis and blunting NLRP3 signaling. J Transl Med. 2022;20(1):382. doi: 10.1186/s12967-022-03585-3.
  • Wu H, Tang D, Yun M, et al. Metabolic dysfunctions of intestinal fatty acids and tryptophan reveal immuno-inflammatory response activation in IgA nephropathy. Front Med (Lausanne). 2022;9:811526. doi: 10.3389/fmed.2022.811526.
  • Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–352. doi: 10.1038/nri.2016.42.
  • Kim YJ, Jin J, Kim D-H, et al. SGLT2 inhibitors prevent LPS-induced M1 macrophage polarization and alleviate inflammatory bowel disease by downregulating NHE1 expression. Inflamm Res. 2023;72(10–11):1981–1997. doi: 10.1007/s00011-023-01796-y.
  • Xia Y, Zhang L, Ocansey DKW, et al. Role of glycolysis in inflammatory bowel disease and its associated colorectal cancer. Front Endocrinol (Lausanne). 2023;14:1242991. doi: 10.3389/fendo.2023.
  • Wu L, Jin Y, Zhao X, et al. Tumor aerobic glycolysis confers immune evasion through modulating sensitivity to T cell-mediated bystander killing via TNF-α. Cell Metab. 2023;35(9):1580–1596.e9. doi: 10.1016/j.cmet.2023.07.001.
  • Artyomov MN, Sergushichev A, Schilling JD. Integrating immunometabolism and macrophage diversity. Semin Immunol. 2016;28(5):417–424. doi: 10.1016/j.smim.2016.10.004.
  • Vassiliou E, Farias-Pereira R. Impact of lipid metabolism on macrophage polarization: implications for inflammation and tumor immunity. Int J Mol Sci. 2023;24(15):12032. doi: 10.3390/ijms241512032.
  • Dharmasiri S, Garrido-Martin EM, Harris RJ, et al. Human intestinal macrophages are involved in the pathology of both ulcerative colitis and Crohn disease. Inflamm Bowel Dis. 2021;27(10):1641–1652. doi: 10.1093/ibd/izab029.
  • Yang M, Liu JW, Zhang YT, et al. The role of renal macrophage, AIM, and TGF-β1 expression in renal fibrosis progression in IgAN patients. Front Immunol. 2021;12:646650. doi: 10.3389/fimmu.2021.646650.
  • Hu W, Lin J, Lian X, et al. M2a and M2b macrophages predominate in kidney tissues and M2 subpopulations were associated with the severity of disease of IgAN patients. Clin Immunol. 2019;205:8–15. doi: 10.1016/j.clim.2019.05.005.
  • Santaniemi W, Åström P, Glumoff V, et al. Inflammation and neutrophil oxidative burst in a family with NFKB1 p.R157X LOF and sterile necrotizing fasciitis. J Clin Immunol. 2023;43(5):1007–1018. doi: 10.1007/s10875-023-01461-3.
  • Nagaishi K, Mizue Y, Chikenji T, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep. 2016;6(1):34842. doi: 10.1038/srep34842.
  • Han YM, Koh J, Kim JW, et al. NF-kappa B activation correlates with disease phenotype in Crohn’s disease. PLoS One. 2017;12(7):e0182071. doi: 10.1371/journal.pone.0182071.
  • Burri E, Beglinger C. The use of fecal calprotectin as a biomarker in gastrointestinal disease. Expert Rev Gastroenterol Hepatol. 2014;8(2):197–210. doi: 10.1586/17474124.2014.869476.
  • Glassner K, Malaty HM, Abraham BP. Epidemiology and risk factors of nonalcoholic fatty liver disease among patients with inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(6):998–1003. doi: 10.1097/MIB.0000000000001085.
  • Federici S, Kviatcovsky D, Valdés-Mas R, et al. Microbiome–phage interactions in inflammatory bowel disease. Clin Microbiol Infect. 2023;29(6):682–688. doi: 10.1016/j.cmi.2022.08.027.
  • Karaky M, Boucher G, Mola S, et al. Prostaglandins and calprotectin are genetically and functionally linked to the inflammatory bowel diseases. PLoS Genet. 2022;18(9):e1010189. doi: 10.1371/journal.pgen.1010189.
  • Neale TJ, ROger BM, Macaulay H, et al. Tumor necrosis factor-A is expressed by glomerular visceral epithelial cells in human membranous nephropathy. Am J Pathol. 1995;146(6):1444–1454.
  • Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-1d3. Annu Rev Cell Biol. 1994;10(1):405–455. doi: 10.1146/annurev.cb.10.110194.002201.
  • Brähler S, Ising C, Hagmann H, et al. Intrinsic proinflammatory signaling in podocytes contributes to podocyte damage and prolonged proteinuria. Am J Physiol Renal Physiol. 2012;303(10):F1473–F1485. doi: 10.1152/ajprenal.00031.2012.
  • Zhang L, Wang XZ, Li YS, et al. Icariin ameliorates IgA nephropathy by inhibition of nuclear factor kappa b/Nlrp3 pathway. FEBS Open Bio. 2017;7(1):54–63. doi: 10.1002/2211-5463.12161.
  • Bai L, Li J, Li H, et al. Renoprotective effects of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via suppressing NF-kappaB signaling and NLRP3 inflammasome activation by exosomes in rats. Biochem Pharmacol. 2019;169:113619. doi: 10.1016/j.bcp.2019.08.021.
  • Zhang WT, Gong YM, Zhang CY, et al. A novel cuprotosis-related gene FDX1 signature for overall survival prediction in clear cell renal cell carcinoma patients. Biomed Res Int. 2022;2022:9196540. doi: 10.1155/2022/9196540.
  • Chen G, Zhang J, Teng W, et al. FDX1 inhibits thyroid cancer malignant progression by inducing cuprotosis. Heliyon. 2023;9(8):e18655. doi: 10.1016/j.heliyon.2023.
  • Hu J, Xue S, Xu Z, et al. Identification of core cuprotosis-correlated biomarkers in abdominal aortic aneurysm immune microenvironment based on bioinformatics. Front Immunol. 2023;14:1138126. doi: 10.3389/fimmu.2023.1138126.
  • Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–1261. doi: 10.1126/science.abf0529.
  • Zhu W, Chen Z, Fu M, et al. Cuprotosis clusters predict prognosis and immunotherapy response in low-grade glioma. Apoptosis. 2023;29(1–2):169–190. doi: 10.1007/s10495-023-01880-y.
  • Wang Z, Dong H, Yang L, et al. The role of FDX1 in granulosa cell of polycystic ovary syndrome (PCOS). BMC Endocr Disord. 2021;21(1):119. doi: 10.1186/s12902-021-00775-w.
  • Wang L, Cao Y, Guo W, et al. High expression of cuproptosis-related gene FDX1 in relation to good prognosis and immune cells infiltration in colon adenocarcinoma (COAD). J Cancer Res Clin Oncol. 2022;149(1):15–24. doi: 10.1007/s00432-022-04382-7.
  • Xiao J, Liu Z, Wang J, et al. Identification of cuprotosis-mediated subtypes, the development of a prognosis model, and influence immune microenvironment in hepatocellular carcinoma. Front Oncol. 2022;12:941211. doi: 10.3389/fonc.2022.941211.
  • Niu D, Ren Y, Xie L, et al. Association between CCDC132, FDX1 and TNFSF13 gene polymorphisms and the risk of IgA nephropathy. Nephrology (Carlton). 2015;20(12):908–915. doi: 10.1111/nep.12611.
  • Niu D, Gao Y, Xie L, et al. Genetic polymorphisms in TNFSF13 and FDX1 are associated with IgA nephropathy in the Han Chinese population. Hum Immunol. 2015;76(11):831–835. doi: 10.1016/j.humimm.2015.09.044.
  • Oikonomou K, Kapsoritakis A, Eleftheriadis T, et al. Renal manifestations and complications of inflammatory bowel disease. Inflamm Bowel Dis. 2011;17(4):1034–1045. doi: 10.1002/ibd.21468.
  • Shi D, Zhong Z, Wang M, et al. Identification of susceptibility locus shared by IgA nephropathy and inflammatory bowel disease in a Chinese Han population. J Hum Genet. 2020;65(3):241–249. doi: 10.1038/s10038-019-0699-9.
  • Qing J, Li C, Hu X, et al. Differentiation of T helper 17 cells may mediate the abnormal humoral immunity in IgA nephropathy and inflammatory bowel disease based on shared genetic effects. Front Immunol. 2022;13:916934. doi: 10.3389/fimmu.2022.916934.
  • Lian X, Wang Y, Wang S, et al. Does inflammatory bowel disease promote kidney diseases: a Mendelian randomization study with populations of European ancestry. BMC Med Genomics. 2023;16(1):225. doi: 10.1186/s12920-023-01644-2.
  • Akiyama M, Shimomura K, Yoshimoto H, et al. Crohn’s disease may promote inflammation in IgA nephropathy: a case-control study of patients undergoing kidney biopsy. Virchows Arch. 2022;481(4):553–563. doi: 10.1007/s00428-022-03373-w.