430
Views
0
CrossRef citations to date
0
Altmetric
Clinical Study

Hemodiafiltration with endogenous reinfusion for uremic toxin removal in patients undergoing maintenance hemodialysis: a pilot study

, , , , , , , & show all
Article: 2338929 | Received 22 Dec 2023, Accepted 30 Mar 2024, Published online: 18 Apr 2024

References

  • 2022 USRDS annual data report; 2022. http://usrds-adr.niddk.nih.gov/2022/end-stage-renal-disease/1-incidence-prevalence-patient-characteristics-and-treatment-modalities.
  • Kim S, Oh KH, Chin HJ, et al. Effective removal of leptin via hemodiafiltration with on-line endogenous reinfusion therapy. Clin Nephrol. 2009;72(6):1–9. doi: 10.5414/cnp72442.
  • Chen X, Shen B, Cao X, et al. Acute effect of one session of hemodiafiltration with endogenous reinfusion on uremic toxins and inflammatory mediators. Int J Artif Organs. 2020;43(7):437–443. doi: 10.1177/0391398819899102.
  • Donati G, Angeletti A, Cappuccilli M, et al. Efficacy of supra-HFR in removing FGF23 and cytokines: a single session analysis. In Vivo. 2022;36(4):1769–1776. doi: 10.21873/invivo.12890.
  • Lim YJ, Sidor NA, Tonial NC, et al. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins. 2021;13(2):142. doi: 10.3390/toxins13020142.
  • Murgia S, Quattrocchio G, Forneris G, et al. Management of acute kidney injury in frail patients with biopsy-proven cast nephropathy: a combined approach with chemotherapy plus supra-hemodiafiltration with post-adsorption endogenous reinfusion. J Nephrol. 2022;35(4):1243–1249. doi: 10.1007/s40620-021-01226-4.
  • Lou Wratten M, Ghezzi PM. Hemodiafiltration with endogenous reinfusion. Contrib Nephrol. 2007;158:94–102. doi: 10.1159/000107239.
  • Molina P, Goicoechea M, Huarte E, et al. Hemodiafiltration with endogenous reinfusion of the regenerated ultrafiltrate (HFR): towards a convective, diffusive, and adsorptive dialysis. Nefrologia. 2023;43(6):688–702. doi: 10.1016/j.nefroe.2023.12.003.
  • National Kidney Foundation. KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis. 2015;66(5):884–930. doi: 10.1053/j.ajkd.2015.07.015.
  • Bonner A, Wellard S, Caltabiano M. The impact of fatigue on daily activity in people with chronic kidney disease. J Clin Nurs. 2010;19(21–22):3006–3015. doi: 10.1111/j.1365-2702.2010.03381.x.
  • Blankestijn PJ, Vernooij RWM, Hockham C, et al. Effect of hemodiafiltration or hemodialysis on mortality in kidney failure. N Engl J Med. 2023;389(8):700–709. doi: 10.1056/NEJMoa2304820.
  • Fujii H, Goto S, Fukagawa M. Role of uremic toxins for kidney, cardiovascular, and bone dysfunction. Toxins. 2018;10(5):202. doi: 10.3390/toxins10050202.
  • Yamamoto S. Molecular mechanisms underlying uremic toxin-related systemic disorders in chronic kidney disease: focused on β2-microglobulin-related amyloidosis and indoxyl sulfate-induced atherosclerosis-Oshima award address 2016. Clin Exp Nephrol. 2019;23(2):151–157. doi: 10.1007/s10157-018-1588-9.
  • Liabeuf S, Cheddani L, Massy ZA. Uremic toxins and clinical outcomes: the impact of kidney transplantation. Toxins. 2018;10(6):229. doi: 10.3390/toxins10060229.
  • Wolley M, Jardine M, Hutchison CA. Exploring the clinical relevance of providing increased removal of large middle molecules. Clin J Am Soc Nephrol. 2018;13(5):805–814. doi: 10.2215/CJN.10110917.
  • Yamamoto S, Kazama JJ, Wakamatsu T, et al. Removal of uremic toxins by renal replacement therapies: a review of current progress and future perspectives. Ren Replace Ther. 2016;2(1):43. doi: 10.1186/s41100-016-0056-9.
  • Leong SC, Sirich TL. Indoxyl sulfate-review of toxicity and therapeutic strategies. Toxins. 2016;8(12):358. doi: 10.3390/toxins8120358.
  • Lin T-Y, Chou H-H, Huang H-L, et al. Indoxyl sulfate and incident peripheral artery disease in hemodialysis patients. Toxins. 2020;12(11):696. doi: 10.3390/toxins12110696.
  • Bammens B, Evenepoel P, Keuleers H, et al. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients. Kidney Int. 2006;69(6):1081–1087. doi: 10.1038/sj.ki.5000115.
  • Spence JD, Urquhart BL. Cerebrovascular disease, cardiovascular disease, and chronic kidney disease: interplays and influences. Curr Neurol Neurosci Rep. 2022;22(11):757–766. doi: 10.1007/s11910-022-01230-6.
  • Bourguignon C, Chenine L, Bargnoux AS, et al. Hemodiafiltration improves free light chain removal and normalizesκ/λratio in hemodialysis patients. J Nephrol. 2016;29(2):251–257. doi: 10.1007/s40620-015-0207-z.
  • Esparvarinha M, Nickho H, Mohammadi H, et al. The role of free kappa and lambda light chains in the pathogenesis and treatment of inflammatory diseases. Biomed Pharmacother. 2017;91:632–644. doi: 10.1016/j.biopha.2017.04.121.
  • Libby P. Targeting inflammatory pathways in cardiovascular disease: the inflammasome, interleukin-1, interleukin-6 and beyond. Cells. 2021;10(4):951. doi: 10.3390/cells10040951.
  • Chen Z, Wang Y. Interleukin-6 levels can be used to estimate cardiovascular and all-cause mortality risk in dialysis patients: a meta-analysis and a systematic review. Immun Inflamm Dis. 2023;11(4):e818.
  • Castillo-Rodríguez E, Pizarro-Sánchez S, Sanz AB, et al. Inflammatory cytokines as uremic toxins: “Ni son todos los que estan, ni estan todos los que son”. Toxins. 2017;9(4):114. doi: 10.3390/toxins9040114.
  • Vega A, Sanchez-Niño MD, Ortiz A, et al. The new marker YKL-40, a molecule related to inflammation, is associated with cardiovascular events in stable haemodialysis patients. Clin Kidney J. 2019;13(2):172–178. doi: 10.1093/ckj/sfz056.
  • Zeng D, Zha A, Lei Y, et al. Correlation of serum FGF23 and chronic kidney disease-mineral and bone abnormality markers with cardiac structure changes in maintenance hemodialysis patients. Evid Based Complement Alternat Med. 2023;2023:6243771–6243777. doi: 10.1155/2023/6243771.
  • Ketteler M, Block GA, Evenepoel P, et al. Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int. 2017;92(1):26–36. doi: 10.1016/j.kint.2017.04.006.
  • El-Sayed H, Abdelmohsen W, Abdelmegied S, et al. High-Flux dialyzer 2.6 m2 is promising for free light chains removal in high-flux hemodialysis and in hemodiafiltration. EJI. 2022;29(4):106–114. doi: 10.55133/eji.290410.
  • Argyropoulos CP, Chen SS, Ng Y-H, et al. Rediscovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front Med. 2017;4:73. doi: 10.3389/fmed.2017.00073.
  • Cordeiro ISF, Cordeiro L, Wagner CS, et al. High-flux versus high retention-onset membranes: in vivo small and middle molecules kinetics in convective dialysis modalities. Blood Purif. 2020;49(1–2):8–15. doi: 10.1159/000502082.
  • Teta D. Adipokines as uremic toxins. J Ren Nutr. 2012;22(1):81–85. doi: 10.1053/j.jrn.2011.10.029.
  • Daugirdas JT. Kt/V (and especially its modifications) remains a useful measure of hemodialysis dose. Kidney Int. 2015;88(3):466–473. doi: 10.1038/ki.2015.204.
  • Mehrotra R, Davison SN, Farrington K, et al. Managing the symptom burden associated with maintenance dialysis: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2023;104(3):441–454. doi: 10.1016/j.kint.2023.05.019.
  • van Sandwijk MS, Al Arashi D, van de Hare FM, et al. Fatigue, anxiety, depression and quality of life in kidney transplant recipients, haemodialysis patients, patients with a haematological malignancy and healthy controls. Nephrol Dial Transplant. 2019;34(5):833–838. doi: 10.1093/ndt/gfy103.