297
Views
0
CrossRef citations to date
0
Altmetric
Acute Kidney Injury

USP25 attenuates anti-GBM nephritis in mice by negative feedback regulation of Th17 cell differentiation

, , , , &
Article: 2338932 | Received 07 Nov 2023, Accepted 30 Mar 2024, Published online: 14 Apr 2024

References

  • Ponticelli C, Calatroni M, Moroni G. Anti-glomerular basement membrane vasculitis. Autoimmun Rev. 2023;22(1):1. doi: 10.1016/j.autrev.2022.103212.
  • Glassock RJ. Estimating prognosis in anti-glomerular basement membrane disease. J Am Soc Nephrol. 2023;34(3):361–10. doi: 10.1681/asn.0000000000000069.
  • Caillard P, Vigneau C, Halimi J-M, et al. Prognostic value of complement serum C3 level and glomerular C3 deposits in anti-glomerular basement membrane disease. Front Immunol. 2023;14:1190394. doi: 10.3389/fimmu.2023.1190394.
  • Kronbichler A, Bajema I, Geetha D, et al. Novel aspects in the pathophysiology and diagnosis of glomerular diseases. Ann Rheum Dis. 2023;82(5):585–593. doi: 10.1136/ard-2022-222495.
  • Floyd L, Bate S, Hadi Kafagi A, et al. Risk stratification to predict renal survival in anti-glomerular basement membrane disease. J Am Soc Nephrol. 2023;34(3):505–514. doi: 10.1681/asn.2022050581.
  • Soukou S, Huber S, Krebs CF. T cell plasticity in renal autoimmune disease. Cell Tissue Res. 2021;385(2):323–333. doi: 10.1007/s00441-021-03466-z.
  • Yang F, Chen J, Huang XR, et al. Regulatory role and mechanisms of myeloid TLR4 in anti-GBM glomerulonephritis. Cell Mol Life Sci. 2021;78(19–20):6721–6734. doi: 10.1007/s00018-021-03936-1.
  • Li L, Sun X, Wu S, et al. Interleukin-12 exacerbates symptoms in an MRL/MpJ-FASLPR mouse model of systemic lupus erythematosus. Exp Ther Med. 2021;21(6):627. doi: 10.3892/etm.2021.10059.
  • Timoshanko JR, Kitching AR, Holdsworth SR, et al. Interleukin-12 from intrinsic cells is an effector of renal injury in crescentic glomerulonephritis. J Am Soc Nephrol. 2001;12(3):464–471. doi: 10.1681/asn.V123464.
  • Linke A, Tiegs G, Neumann K. Pathogenic T-cell responses in immune-mediated glomerulonephritis. Cells. 2022;11(10):1625. doi: 10.3390/cells11101625.
  • Kitching AR, Holdsworth SR, Tipping PG. IFN-gamma mediates crescent formation and cell-mediated immune injury in murine glomerulonephritis. J Am Soc Nephrol. 1999;10(4):752–759. doi: 10.1681/asn.V104752.
  • Riedel J-H, Paust H-J, Krohn S, et al. IL-17F promotes tissue injury in autoimmune kidney diseases. J Am Soc Nephrol. 2016;27(12):3666–3677. doi: 10.1681/asn.2015101077.
  • Sato S, Zhang XK, Matsuoka N, et al. Transcription factor fli-1 impacts the expression of CXCL13 and regulates immune cell infiltration into the kidney in MRL/lpr mouse. Lupus Sci Med. 2023;10(1):e000870. doi: 10.1136/lupus-2022-000870.
  • Steinmetz OM, Summers SA, Gan P-Y, et al. The Th17-defining transcription factor RORγt promotes glomerulonephritis. J Am Soc Nephrol. 2011;22(3):472–483. doi: 10.1681/asn.2010040435.
  • Riedel JH, Turner JE, Panzer U. T helper cell trafficking in autoimmune kidney diseases. Cell Tissue Res. 2021;385(2):281–292. doi: 10.1007/s00441-020-03403-6.
  • Paquissi FC, Abensur H. The Th17/IL-17 axis and kidney diseases, with focus on lupus nephritis. Front Med. 2021;8:654912. doi: 10.3389/fmed.2021.654912.
  • Tu R, Ma J, Zhang P, et al. The emerging role of deubiquitylating enzymes as therapeutic targets in cancer metabolism. Cancer Cell Int. 2022;22(1):130. doi: 10.1186/s12935-022-02524-y.
  • Liu X, Li H, Zhong B, et al. USP18 inhibits NF-κB and NFAT activation during Th17 differentiation by deubiquitinating the TAK1-TAB1 complex. J Exp Med. 2013;210(8):1575–1590. doi: 10.1084/jem.20122327.
  • Han L, Yang J, Wang X, et al. The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor γt (RORγt) in Th17 cells. J Biol Chem. 2014;289(37):25546–25555. doi: 10.1074/jbc.M114.565291.
  • Lee JY, An EK, Hwang J, et al. Ubiquitin activating enzyme UBA6 regulates Th1 and Tc1 cell differentiation. Cells. 2021;11(1):105. doi: 10.3390/cells11010105.
  • Gao H, Yin J, Ji C, et al. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res. 2023;42(1):225. doi: 10.1186/s13046-023-02805-y.
  • Zhou L, Qin B, Yassine DM, et al. Structure and function of the highly homologous deubiquitinases ubiquitin specific peptidase 25 and 28: insights into their pathophysiological and therapeutic roles. Biochem Pharmacol. 2023;213:115624. doi: 10.1016/j.bcp.2023.115624.
  • Zhu W, Zheng D, Wang D, et al. Emerging roles of ubiquitin-specific protease 25 in diseases. Front Cell Dev Biol. 2021;9:698751. doi: 10.3389/fcell.2021.698751.
  • Zheng Q, Song B, Li G, et al. USP25 inhibition ameliorates Alzheimer’s pathology through the regulation of APP processing and Aβ generation. J Clin Invest. 2022;132(5):e152170. doi: 10.1172/jci152170.
  • Zheng Q, Li G, Wang S, et al. Trisomy 21-induced dysregulation of microglial homeostasis in Alzheimer’s brains is mediated by USP25. Sci Adv. 2021;7(1):eabe1340. doi: 10.1126/sciadv.abe1340.
  • Tang B, Luo H, Xie S, et al. Deubiquitination of TNKS1 regulates wnt/β-Catenin to affect the expression of USP25 to promote the progression of glioma. Dis Markers. 2022;2022:9087190–9087198. doi: 10.1155/2022/9087190.
  • Wen J, Bai H, Chen N, et al. USP25 promotes endotoxin tolerance via suppressing K48-linked ubiquitination and degradation of TRAF3 in kupffer cells. Mol Immunol. 2019;106:53–62. doi: 10.1016/j.molimm.2018.12.017.
  • Clague MJ, Urbé S, Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol. 2019;20(6):338–352. doi: 10.1038/s41580-019-0099-1.
  • Zhong B, Liu X, Wang X, et al. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nat Immunol. 2012;13(11):1110–1117. doi: 10.1038/ni.2427.
  • Zhang Q, Luan H, Wang L, et al. Galectin-9 ameliorates anti-GBM glomerulonephritis by inhibiting Th1 and Th17 immune responses in mice. Am J Physiol Renal Physiol. 2014;306(8):F822–832. doi: 10.1152/ajprenal.00294.2013.
  • Ciechanover A. The unravelling of the ubiquitin system. Nat Rev Mol Cell Biol. 2015;16(5):322–324. doi: 10.1038/nrm3982.
  • Zhong B, Liu X, Wang X, et al. Ubiquitin-specific protease 25 regulates TLR4-dependent innate immune responses through deubiquitination of the adaptor protein TRAF3. Sci Signal. 2013;6(275):ra35. doi: 10.1126/scisignal.2003708.
  • Lin D, Zhang M, Zhang M-X, et al. Induction of USP25 by viral infection promotes innate antiviral responses by mediating the stabilization of TRAF3 and TRAF6. Proc Natl Acad Sci USA. 2015;112(36):11324–11329. doi: 10.1073/pnas.1509968112.
  • Chang SH, Park H, Dong C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J Biol Chem. 2006;281(47):35603–35607. doi: 10.1074/jbc.C600256200.
  • Ren Y, Zhao Y, Lin D, et al. The type I interferon-IRF7 axis mediates transcriptional expression of Usp25 gene. J Biol Chem. 2016;291(25):13206–13215. doi: 10.1074/jbc.M116.718080.
  • Valero R, Marfany G, González-Angulo O, et al. USP25, a novel gene encoding a deubiquitinating enzyme, is located in the gene-poor region 21q11.2. Genomics. 1999;62(3):395–405. doi: 10.1006/geno.1999.6025.
  • Schmidt T, Paust H-J, Krebs CF, et al. Function of the Th17/interleukin-17A immune response in murine lupus nephritis. Arthritis Rheumatol. 2015;67(2):475–487. doi: 10.1002/art.38955.