108
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Millet Polyphenol-Rich Extracts on Human Fecal Bacteria and Dextran Sulfate Sodium-Induced Human Intestinal Epithelial Cell Derangements

, , , , , , & ORCID Icon show all

References

  • Anitha, S., J. Kane-Potaka, T. W. Tsusaka, R. Botha, A. Rajendran, D. I. Givens, D. J. Parasannanavar, K. Subramaniam, K. D. V. Prasad, M. Vetriventhan, et al. 2021. A systematic review and meta-analysis of the potential of millets for managing and reducing the risk of developing diabetes mellitus. Front. Nutr. 8:687428. doi:10.3389/fnut.2021.687428.
  • Attri, S., and G. Goel. 2018. Influence of polyphenol-rich seabuckthorn berries juice on release of polyphenols and colonic microbiota on exposure to simulated human digestion model. Food Res. Int. 111:314–323. doi:10.1016/j.foodres.2018.05.045.
  • Chait, Y. A., A. Gunenc, F. Bendali, and F. Hosseinian. 2020. Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: Bioaccessibility and Bioactivity. LWT 117:108623. doi:10.1016/j.lwt.2019.108623.
  • Chandrasekara, A., and F. Shahidi. 2012. Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J. Funct. Foods 4 (1):226–237. doi:10.1016/j.jff.2011.11.001.
  • Cory, H., S. Passarelli, J. Szeto, M. Tamez, and J. Mattei. 2018. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 5:87. doi:10.3389/fnut.2018.00087.
  • Cummings, J. H. 1981. Short chain fatty acids in the human colon. Gut 22 (9):763–779. doi:10.1136/gut.22.9.763.
  • Ellman, G. L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82 (1):70–77. doi:10.1016/0003-9861(59)90090-6.
  • Gao, B., J. Wang, Y. Wang, Z. Xu, B. Li, X. Meng, X. Sun, and J. Zhu. 2022. Influence of fermentation by lactic acid bacteria and in vitro digestion on the biotransformations of blueberry juice phenolics. Food Control 133:108603. doi:10.1016/j.foodcont.2021.108603.
  • Gasaly, N., P. de Vos, and M. A. Hermoso. 2021. Impact of bacterial metabolites on gut barrier function and host immunity: A focus on bacterial metabolism and its relevance for intestinal inflammation. Front. Immunol. 12:658354. doi:10.3389/fimmu.2021.658354.
  • Gasmi, A., P. K. Mujawdiya, S. Noor, R. Lysiuk, R. Darmohray, S. Piscopo, L. Lenchyk, H. Antonyak, K. Dehtiarova, M. Shanaida, et al. 2022. Polyphenols in metabolic diseases. Molecules 27 (19):6280. doi:10.3390/molecules27196280.
  • Gong, S., J. Zheng, J. Zhang, Y. Wang, Z. Xie, Y. Wang, and J. Han. 2022. Taxifolin ameliorates lipopolysaccharide-induced intestinal epithelial barrier dysfunction via attenuating NF-kappa B/MLCK pathway in a caco-2 cell monolayer model. Food Res Int 158:111502. doi:10.1016/j.foodres.2022.111502.
  • Han, S., W. Van Treuren, C. R. Fischer, B. D. Merrill, B. C. DeFelice, J. M. Sanchez, S. K. Higginbottom, L. Guthrie, L. A. Fall, D. Dodd, et al. 2021. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature 595 (7867):415–420. doi:10.1038/s41586-021-03707-9.
  • Hassan, Z. M., N. A. Sebola, and M. Mabelebele. 2021. The nutritional use of millet grain for food and feed: A review. Agric. Food Secur. 10 (1):16. doi:10.1186/s40066-020-00282-6.
  • Khare, P., R. Maurya, R. Bhatia, P. Mangal, J. Singh, K. Podili, M. Bishnoi, and K. K. Kondepudi. 2020. Polyphenol-rich extracts of finger millet and kodo millet ameliorate high fat diet-induced metabolic alterations. Food Funct. 11 (11):9833–9847. doi:10.1039/D0FO01643H.
  • Kilua, A., R. Nagata, K. H. Han, and M. Fukushima. 2022. Beneficial health effects of polyphenols metabolised by fermentation. Food. Sci. Biotechnol. 31 (8):1027–1040. doi:10.1007/s10068-022-01112-0.
  • Kono, Y. 1978. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch. Biochem. Biophys. 186 (1):189–195. doi:10.1016/0003-9861(78)90479-4.
  • Kumar, A., M. Rani, S. Mani, P. Shah, D. B. Singh, H. Kudapa, and R. K. Varshney. 2021. Nutritional significance and antioxidant-mediated antiaging effects of finger Millet: Molecular insights and prospects. Front Sustain Food Syst. 5:684318. doi:10.3389/fsufs.2021.684318.
  • Lavefve, L., L. R. Howard, and F. Carbonero. 2020. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct. 11 (1):45–65. doi:10.1039/c9fo01634a.
  • Li, R., Z. Wang, K. W. Kong, P. Xiang, X. He, and X. Zhang. 2022. Probiotic fermentation improves the bioactivities and bioaccessibility of polyphenols in Dendrobium officinale under in vitro simulated gastrointestinal digestion and fecal fermentation. Front. Nutr. 9:1005912. doi:10.3389/fnut.2022.1005912.
  • Liu, Y. J., B. Tang, F. C. Wang, L. Tang, Y. Y. Lei, Y. Luo, S. J. Huang, M. Yang, L. Y. Wu, W. Wang, et al. 2020. Parthenolide ameliorates colon inflammation through regulating treg/Th17 balance in a gut microbiota-dependent manner. Theranostics 10 (12):5225–5241. doi:10.7150/thno.43716.
  • Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25 (4):402–408. doi:10.1006/meth.2001.1262.
  • Luck, H. 1965. Catalase. Meth. Enzymol. 885–894. doi:10.1016/B978-0-12-395630-9.50158-4.
  • Ma, G., and Y. Chen. 2020. Polyphenol supplementation benefits human health via gut microbiota: A systematic review via meta-analysis. J. Funct. Foods 66:103829. doi:10.1016/j.jff.2020.103829.
  • Makarewicz, M., I. Drożdż, T. Tarko, and A. Duda-Chodak. 2021. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants 10 (2):188. doi:10.3390/antiox10020188.
  • Merenkova, S., R. Fatkullin, and I. Kalinina. 2022. Effect of fermentation on the biochemical parameters antioxidant capacity and dispersed composition of plant beverages based on barley and hemp seed. Fermentation 8 (8):384. doi:10.3390/fermentation8080384.
  • Murtaza, N., R. K. Baboota, S. Jagtap, D. P. Singh, P. Khare, S. M. Sarma, K. K. Kondepudi, S. Alagesan, T. S. Chandra, and K. K. Bhutani. 2014. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice. Br. J. Nutr. 112 (9):1447–1458. doi:10.1017/S0007114514002396.
  • Parkar, S. G., T. M. Trower, and D. E. Stevenson. 2013. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe 23:12–19. doi:10.1016/j.anaerobe.2013.07.009.
  • Roy, C. C., C. L. Kien, L. Bouthillier, and E. Levy. 2006. Short-chain fatty acids: Ready for prime time? Nutr. Clin. Prac. 21 (4):351–366. doi:10.1177/0115426506021004351.
  • Saharan, P., P. K. Sadh, S. Duhan, and J. S. Duhan. 2020. Bio-enrichment of phenolic, flavonoids content and antioxidant activity of commonly used pulses by solid-state fermentation. J. Food Meas. Charact. 14 (3):1497–1510. doi:10.1007/s11694-020-00399-.
  • Saman, P., K. M. Tuohy, J. A. Vázquez, G. Gibson, and S. S. Pandiella. 2017. In vitro evaluation of prebiotic properties derived from rice bran obtained by debranning technology. Int. J. Food. Sci. Nutr. 68 (4):421–428. doi:10.1080/09637486.2016.1258045.
  • Sarma, S. M., D. P. Singh, P. Singh, P. Khare, P. Mangal, S. Singh, V. Bijalwan, J. Kaur, S. Mantri, R. K. Boparai, et al. 2018. Finger millet arabinoxylan protects mice from high-fat diet-induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis. Int. J. Biol. Macromol. 106:994–1003. doi:10.1016/j.ijbiomac.2017.08.100.
  • Sharma, R., B. Diwan, B. P. Singh, and S. Kulshrestha. 2022. Probiotic fermentation of polyphenols: Potential sources of novel functional foods. Food Prod. Process Nutr. 4 (1):21. doi:10.1186/s43014-022-00101-4.
  • Singh, D. P., P. Khare, V. Bijalwan, R. K. Baboota, J. Singh, K. K. Kondepudi, K. Chopra, and M. Bishnoi. 2017. Coadministration of isomalto-oligosaccharides augments metabolic health benefits of cinnamaldehyde in high fat diet fed mice. BioFactors 43 (6):821–835. doi:10.1002/biof.1381.
  • Singh, V., G. Lee, H. Son, S. Amani, M. Baunthiyal, and J. H. Shin. 2022. Anti-diabetic prospects of dietary bio-actives of millets and the significance of the gut microbiota: A case of finger millet. Front. Nutr. 9:1056445. doi:10.3389/fnut.2022.1056445.
  • Solomon, L., S. Mansor, P. Mallon, E. Donnelly, M. Hoper, M. Loughrey, S. Kirk, and K. Gardiner. 2010. The dextran sulphate sodium (DSS) model of colitis: An overview. Comp. Clin. Pathol. 19 (3):235–239. doi:10.1007/s00580-010-0979-4.
  • Song, X., X. Sun, S. F. Oh, M. Wu, Y. Zhang, W. Zheng, N. Geva-Zatorsky, R. Jupp, D. Mathis, C. Benoist, et al. 2020. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577 (7790):410–415. doi:10.1038/s41586-019-1865-0.
  • Vitaglione, P., A. Napolitano, and V. Fogliano. 2008. Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends. Food Sci. Technol. 19 (9):451–463. doi:10.1016/j.tifs.2008.02.005.
  • Wan, M. L. Y., V. A. Co, and H. El-Nezami. 2021. Dietary polyphenol impact on gut health and microbiota. Crit. Rev. Food. Sci. Nutr. 61 (4):690–711. doi:10.1080/10408398.2020.1744512.
  • Wang, H., Y. Fu, Q. Zhao, D. Hou, X. Yang, S. Bai, X. Diao, Y. Xue, and Q. Shen. 2022. Effect of different processing methods on the millet polyphenols and their anti-diabetic potential. Front. Nutr. 9:780499. doi:10.3389/fnut.2022.780499.
  • Williamson, G. 2017. The role of polyphenols in modern nutrition. Nutr. Bull. 42 (3):226–235. doi:10.1111/nbu.12278.
  • Zhang, L., T. Wu, Y. Zhang, Y. Chen, X. Ge, W. Sui, Q. Zhu, J. Geng, and M. Zhang. 2023. Release of bound polyphenols from wheat bran soluble dietary fiber during simulated gastrointestinal digestion and colonic fermentation in vitro. Food Chem. 402:134111. doi:10.1016/j.foodchem.2022.134111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.