832
Views
5
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

More about hypervirulent avian influenza: Is the world now better prepared?

&
Pages 78-121 | Received 05 Mar 2007, Published online: 11 Jul 2009

References

  • Christophersen OA, Haug A. Why is the world so poorly prepared for a pandemic of hypervirulent avian influenza?. Microb Ecol Health Dis 2006; 18: 113–23
  • World Health Organization. Influenza research at the human and animal interface. Report of a WHO working group. Geneva, Switzerland, 21–22 September 2006. WHO/EPR/GIP/2006.3. Available online on WHO home site.
  • Benedictow OJ. The Black Death 1346–1353. The complete history. Boydell Press, WoodbridgeUK 2004
  • Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull Hist Med 2002; 76: 105–15
  • Murray CJ, Lopez AD, Chin B, Feehan D, Hill KH. Estimation of potential global pandemic influenza mortality on the basis of vital registry data from the 1918–20 pandemic: a quantitative analysis. Lancet 2006; 368: 2211–18
  • Christophersen OA, Haug A. Possible roles of oxidative stress, local circulatory failure and nutrition factors in the pathogenesis of hypervirulent influenza: implications for therapy and global emergency preparedness. Microb Ecol Health Dis 2005; 17: 189–99
  • Moxnes JE, Christophersen OA. Counter-attacking pandemic H5N1 bird influenza by counter-pandemic. Microb Ecol Health Dis 2006; 18: 4–25
  • Mamelund S-E. Spanish influenza and beyond: the case of Norway. Dr polit. thesis, University of Oslo, 2004.
  • Chowell G, Ammon CE, Hengartner NW, Hyman JM. Estimation of the reproductive number of the Spanish flu epidemic in Geneva, Switzerland. Vaccine 2006; 24: 6747–50
  • Chowell G, Ammon CE, Hengartner NW, Hyman JM. Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: assessing the effects of hypothetical interventions. J Theor Biol 2006; 241: 193–204
  • Chowell G, Nishiura H, Bettencourt LM. Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. J R Soc Interface 2007; 4: 155–66
  • Karaivanova VK, Spiro RG. Sulphation of N-linked oligosaccharides of vesicular stomatitis and influenza virus envelope glycoproteins: host cell specificity, subcellular localization and identification of substituted saccharides. Biochem J 1998; 329: 511–18
  • Spiro MJ, Spiro RG. Sulfation of the N-linked oligosaccharides of influenza virus hemagglutinin: temporal relationships and localization of sulfotransferases. Glycobiology 2000; 10: 1235–42
  • Wallensten A. Influenza A virus in wild bird. Linköping University Medical Dissertations No. 955. Linköping and Kalmar, 2006.
  • Hosoya M, Balzarini J, Shigeta S, De Clercq E. Differential inhibitory effects of sulfated polysaccharides and polymers on the replication of various myxoviruses and retroviruses, depending on the composition of the target amino acid sequences of the viral envelope glycoproteins. Antimicrob Agents Chemother 1991; 35: 2515–20
  • Zhang M, Cheung PC, Ooi VE, Zhang L. Evaluation of sulfated fungal beta-glucans from the sclerotium of Pleurotus tuber-regium as a potential water-soluble anti-viral agent. Carbohydr Res 2004; 339: 2297–301
  • Jefferson T, Rivetti D, Rivetti A, Rudin M, Di Pietrantonj C, Demicheli V. Efficacy and effectiveness of influenza vaccines in elderly people: a systematic review. Lancet 2005; 366: 1165–74
  • Jefferson T, Demicheli V, Rivetti D, Jones M, Di Pietrantonj C, Rivetti A. Antivirals for influenza in healthy adults: systematic review. Lancet 2006;367:303–13. [ Erratum in: Lancet 2006;367:2060.]
  • McKeon T. The modern rise of population. Arnold, London 1976
  • Scrimshaw NS, Taylor CE, Gordon JE. Interactions of nutrition and infection. Monogr Ser World Health Organ. WHO, Geneva 1968
  • Koivistoinen P. Mineral element composition of Finnish foods: N, K, Ca, Mg, P, S, Fe, Cu, Mn, Zn, Mo,Co, Ni, Cr, F, Se, Si, Rb, Al, B, Br, Hg, As, Cd, Pb and ash. Acta Agriculturae Scandinavica. Supplementum 22. Stockholm, 1980.
  • Goldschmidt VM. Geochemistry. Clarendon Press, Oxford 1954
  • Krauskopf KB. Introduction to geochemistry2nd edn. McGraw-Hill Book Company, Singapore 1982
  • Bolt GM, Bruggenwert MGM. Soil chemistry. A. Basic elements. Developments in soil science 5A. Amsterdam: Elsevier Scientific, 1978.
  • Parfitt RL. Anion adsorption by soils and soil materials. Advances in Agronomy 1978; 30: 1–50
  • Schachtschabel P, Blume H-P, Brümmer G, Hartge K-H, Schwertmann U. “Scheffer-Schachtschabel”: Lehrbuch der Bodenkunde15th edn. Spektrum Akademischer Verlag, Heidelberg 2002
  • Låg J, Steinnes E. Soil selenium in relation to precipitation. Ambio 1974; 3: 237–8
  • Låg J, Steinnes E. Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils. Geoderma 1978; 20: 3–14
  • Allen RO, Steinnes E. Contribution from long-range atmospheric transport to the heavy metal pollution of surface soil. Ecological impact of acid precipitation, D Drabløs, A Tolland. Ås, Oslo 1980; 102–3
  • Xu G-I, Jiang Y-F. Selenium and the prevalence of Keshan and Kaschin-Beck diseases in China. Proceedings of the 1st International Symposium on Geochemistry and Health. (Held at the Royal Society, London 16–17 April 1985.), I Thornton. Science Reviews, NorthwoodUK 1985; 192–204
  • Schlesinger WH. Biogeochemistry. An analysis of global change. Academic Press, New York 1997
  • Yan R, Gauthier D, Flamant G, Peraudeau G, Lu J, Zheng C. Fate of selenium in coal combustion: volatilization and speciation in the flue gas. Environmental Science & Technology 2001; 35: 1406–10
  • Walshe FMR. The integration of medicine. Critical studies in neurology, FMR Walshe. E & S Livingstone, Edinburgh 1948
  • Glezen WP. Emerging infections: pandemic influenza. Epidemiol Rev 1996; 18: 64–76
  • Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 2007; 445: 319–23
  • Xu T, Qiao J, Zhao L, Wang G, He G, Li K, et al. Acute respiratory distress syndrome induced by avian influenza A (H5N1) virus in mice. Am J Respir Crit Care Med 2006; 174: 1011–17
  • Hayden FG, Fritz R, Lobo MC, Alvord W, Strober W, Straus SE. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J Clin Invest 1998; 101: 643–9
  • Skoner DP, Gentile DA, Patel A, Doyle WJ. Evidence for cytokine mediation of disease expression in adults experimentally infected with influenza A virus. J Infect Dis 1999; 180: 10–14
  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006; 441: 101–5
  • Matikainen S, Siren J, Tissari J, Veckman V, Pirhonen J, Severa M, et al. Tumor necrosis factor alpha enhances influenza A virus-induced expression of antiviral cytokines by activating RIG-I gene expression. J Virol 2006; 80: 3515–22
  • Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 2006; 314: 994–7
  • Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 2006; 314: 997–1001
  • Garia-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 1998; 252: 324–30
  • Krug RM, Yuan W, Noah DL, Latham AG. Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology 2003; 309: 181–9
  • Li S, Min JY, Krug RM, Sen GC. Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 2006; 349: 13–21
  • Mibayashi M, Martinez-Sobrido L, Loo YM, Cardenas WB, Gale M, Jr, Garcia-Sastre A. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol 2007; 81: 514–24
  • Guo Z, Chen LM, Zeng H, Gomez JA, Plowden J, Fujita T, et al. NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am J Respir Cell Mol Biol 2007; 36: 263–9
  • Opitz B, Rejaibi A, Dauber B, Eckhard J, Vinzing M, Schmeck B, et al. IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol 2007; 9: 930–8
  • Oxford JS, Sefton A, Jackson R, Innes W, Daniels RS, Johnson NP. World War I may have allowed the emergence of “Spanish” influenza. Lancet Infect Dis 2002; 2: 111–14
  • Li PC, Huang HT, Liang JT. Neurophysiological effects of recurrent laryngeal and thoracic vagus nerves on mediating the neurogenic inflammation of the trachea, bronchi, and esophagus of rats. Auton Neurosci 2001; 88: 142–50
  • Groneberg DA, Quarcoo D, Frossard N, Fischer A. Neurogenic mechanisms in bronchial inflammatory diseases. Allergy 2004; 59: 1139–52
  • Bhatia M, Zhi L, Zhang H, Ng SW, Moore PK. Role of substance P in hydrogen sulfide-induced pulmonary inflammation in mice. Am J Physiol Lung Cell Mol Physiol 2006; 291: L896–904
  • Puneet P, Hegde A, Ng SW, Lau HY, Lu J, Moochhala SM, et al. Preprotachykinin-A gene products are key mediators of lung injury in polymicrobial sepsis. J Immunol 2006; 176: 3813–20
  • Sorkin LS, Xiao WH, Wagner R, Myers RR. Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience 1997; 81: 255–62
  • Zhang JM, Li H, Liu B, Brull SJ. Acute topical application of tumor necrosis factor alpha evokes protein kinase A-dependent responses in rat sensory neurons. J Neurophysiol 2002; 88: 1387–92
  • Liu YL, Zhou LJ, Hu NW, Xu JT, Wu CY, Zhang T, et al. Tumor necrosis factor-alpha induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn in rats with nerve injury: the role of NF-kappa B, JNK and p38 MAPK. Neuropharmacology 2007; 52: 708–15
  • Brenn D, Richter F, Schaible HG. Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin-6 in the rat: an inflammatory mechanism of joint pain. Arthritis Rheum 2007; 56: 351–9
  • Coleridge JC, Coleridge HM, Schelegle ES, Green JF. Acute inhalation of ozone stimulates bronchial C-fibers and rapidly adapting receptors in dogs. J Appl Physiol 1993; 74: 2345–52
  • Ruan T, Ho CY, Kou YR. Afferent vagal pathways mediating respiratory reflexes evoked by ROS in the lungs of anesthetized rats. J Appl Physiol 2003; 94: 1987–98
  • Ruan T, Lin YS, Lin KS, Kou YR. Sensory transduction of pulmonary reactive oxygen species by capsaicin-sensitive vagal lung afferent fibres in rats. J Physiol 2005; 565: 563–78
  • Ruan T, Lin YS, Lin KS, Kou YR. Mediator mechanisms involved in TRPV1 and P2X receptor-mediated, ROS-evoked bradypneic reflex in anesthetized rats. J Appl Physiol 2006; 101: 644–54
  • Tsai TL, Chang SY, Ho CY, Kou YR. Neural and hydroxyl radical mechanisms underlying laryngeal airway hyperreactivity induced by laryngeal acid-pepsin insult in anesthetized rats. J Appl Physiol 2006; 101: 328–38
  • Longhurst JC, Dittman LE. Hypoxia, bradykinin, and prostaglandins stimulate ischemically sensitive visceral afferents. Am J Physiol 1987; 253: H556–67
  • Martin HA, Basbaum AI, Kwiat GC, Goetzl EJ, Levine JD. Leukotriene and prostaglandin sensitization of cutaneous high-threshold C- and A-delta mechanonociceptors in the hairy skin of rat hindlimbs. Neuroscience 1987; 22: 651–9
  • Martin HA, Basbaum AI, Goetzl EJ, Levine JD. Leukotriene B4 decreases the mechanical and thermal thresholds of C-fiber nociceptors in the hairy skin of the rat. J Neurophysiol 1988; 60: 438–45
  • Devor M, White DM, Goetzl EJ, Levine JD. Eicosanoids, but not tachykinins, excite C-fiber endings in rat sciatic nerve-end neuromas. Neuroreport 1992; 3: 21–4
  • Karla W, Shams H, Orr JA, Scheid P. Effects of the thromboxane A2 mimetic, U46,619, on pulmonary vagal afferents in the cat. Respir Physiol 1992; 87: 383–96
  • Bergren DR. Prostaglandin involvement in lung C-fiber activation by substance P in guinea pigs. J Appl Physiol 2006; 100: 1918–27
  • McDonald DM. Endothelial gaps and permeability of venules in rat tracheas exposed to inflammatory stimuli. Am J Physiol 1994; 266: L61–83
  • Hirata A, Baluk P, Fujiwara T, McDonald DM. Location of focal silver staining at endothelial gaps in inflamed venules examined by scanning electron microscopy. Am J Physiol 1995; 269: L403–18
  • Thurston G, Baluk P, Hirata A, McDonald DM. Permeability-related changes revealed at endothelial cell borders in inflamed venules by lectin binding. Am J Physiol 1996; 271: H2547–62
  • Widdicombe J. The tracheobronchial vasculature: a possible role in asthma. Microcirculation 1996; 3: 129–41
  • Baluk P, Hirata A, Thurston G, Fujiwara T, Neal CR, Michel CC, et al. Endothelial gaps: time course of formation and closure in inflamed venules of rats. Am J Physiol 1997; 272: L155–70
  • Widdicombe J. Microvascular anatomy of the nose. Allergy 1997; 52(40 Suppl)7–11
  • McDonald DM, Thurston G, Baluk P. Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation 1999; 6: 7–22
  • Levasseur JE, Patterson JL, Jr, Garcia CI, Moskowitz MA, Choi SC, et al. Effect of neonatal capsaicin treatment on neurogenic pulmonary edema from fluid-percussion brain injury in the adult rat. J Neurosurg 1993; 78: 610–18
  • Delaunois A, Gustin P, Ansay M. Modulation of the acetylcholine- and substance P-induced pulmonary edema by calcitonin gene-related peptide in the rabbit. J Pharmacol Exp Ther 1994; 270: 30–6
  • Germonpre PR, Joos GF, Pauwels RA. Characterization of the neurogenic plasma extravasation in the airways. Arch Int Pharmacodyn Ther 1995; 329: 185–203
  • Huang HT, Huang SH, Luor YG. Postvagotomy changes in neurogenic plasma extravasation in rat bronchi. J Auton Nerv Syst 1995; 55: 9–17
  • Grant AD, Akhtar R, Gerard NP, Brain SD. Neurokinin B induces oedema formation in mouse lung via tachykinin receptor-independent mechanisms. J Physiol 2002; 543: 1007–14
  • Goncalves LR, Mariano M. Local haemorrhage induced by Bothrops jararaca venom: relationship to neurogenic inflammation. Mediators Inflamm 2000; 9: 101–7
  • Wassmann S, Stumpf M, Strehlow K, Schmid A, Schieffer B, Bohm M, et al. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res 2004; 94: 534–41
  • Shaw S, Jayatilleke E, Herbert V, Colman N. Cleavage of folates during ethanol metabolism. Role of acetaldehyde/xanthine oxidase-generated superoxide. Biochem J 1989; 257: 277–80
  • Diplock AT. Vitamin E, selenium, and the membrane-associated drug-metabolizing enzyme system of rat liver. Vitam Horm 1974; 32: 445–61
  • Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochimie 2001; 83: 301–10
  • Divald S, Powell SR. Proteasome mediates removal of proteins oxidized during myocardial ischemia. Free Radic Biol Med 2006; 40: 156–64
  • Tsukamoto S, Yokosawa H. Natural products inhibiting the ubiquitin-proteasome proteolytic pathway, a target for drug development. Curr Med Chem 2006; 13: 745–54
  • Dubois B, Lamy PJ, Chemin K, Lachaux A, Kaiserlian D. Measles virus exploits dendritic cells to suppress CD4+ T-cell proliferation via expression of surface viral glycoproteins independently of T-cell trans-infection. Cell Immunol 2001; 214: 173–83
  • Schneider-Schaulies S, Niewiesk S, Schneider-Schaulies J, ter Meulen V. Measles virus induced immunosuppression: targets and effector mechanisms. Curr Mol Med 2001; 1: 163–81
  • Hoffman SJ, Polack FP, Hauer DA, Griffin DE. Measles virus infection of rhesus macaques affects neutrophil expression of IL-12 and IL-10. Viral Immunol 2003; 16: 369–79
  • Slifka MK, Homann D, Tishon A, Pagarigan R, Oldstone MB. Measles virus infection results in suppression of both innate and adaptive immune responses to secondary bacterial infection. J Clin Invest 2003; 111: 805–10
  • Gredmark S, Söderberg-Naucler C. Human cytomegalovirus inhibits differentiation of monocytes into dendritic cells with the consequence of depressed immunological functions. J Virol 2003; 77: 10943–56
  • Gredmark S, Tilburgs T, Söderberg-Naucler C. Human cytomegalovirus inhibits cytokine-induced macrophage differentiation. J Virol 2004; 78: 10378–89
  • Marie JC, Saltel E, Escola JM, Jurdic P, Wild TF, Horvat B. Cell surface delivery of the measles virus nucleoprotein: a viral strategy to induce immunosuppression. J Virol 2004; 78: 11952–61
  • Hahm B, Trifilo MJ, Zuniga EI, Oldstone MB. Viruses evade the immune system through type I interferon-mediated STAT2-dependent, but STAT1-independent, signaling. Immunity 2005; 22: 247–57
  • Hahm B, Cho JH, Oldstone MB. Measles virus-dendritic cell interaction via SLAM inhibits innate immunity: selective signaling through TLR4 but not other TLRs mediates suppression of IL-12 synthesis. Virology 2007; 358: 251–7
  • Hewlett EL, McKelway RB, Sapiain LA, Hernandez LA, Myers GA. Depression of delayed hypersensitivity responses in patients with pertussis. Dev Biol Stand 1985; 61: 241–7
  • Toossi Z, Young TG, Averill LE, Hamilton BD, Shiratsuchi H, Ellner JJ. Induction of transforming growth factor beta 1 by purified protein derivative of Mycobacterium tuberculosis. Infect Immun 1995; 63: 224–8
  • Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z. Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect Immun 1996; 64: 399–405
  • Geijtenbeek TB, van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 2003; 197: 7–17
  • Gagliardi MC, Teloni R, Giannoni F, Pardini M, Sargentini V, Brunori L, et al. Mycobacterium bovis Bacillus Calmette-Guerin infects DC-SIGN- dendritic cell and causes the inhibition of IL-12 and the enhancement of IL-10 production. J Leukoc Biol 2005; 78: 106–13
  • Pinheiro RO, Pinto EF, Benedito AB, Lopes UG, Rossi-Bergmann B. The T-cell anergy induced by Leishmania amazonensis antigens is related with defective antigen presentation and apoptosis. An Acad Bras Cienc 2004; 76: 519–27
  • Robinson TM, Nelson R, Artis D, Scott P, Boyer JD. Experimental Leishmania major infection suppresses HIV-1 DNA vaccine induced cellular immune response. Cells Tissues Organs 2004; 177: 185–8
  • Soares NM, Ferraz TP, Nascimento EG, Carvalho EM, Pontes-de-Carvalho L. The major circulating immunosuppressive activity in American visceral leishmaniasis patients is associated with a high-molecular weight fraction and is not mediated by IgG, IgG immune complexes or lipoproteins. Microb Pathog 2006; 40: 254–60
  • Reddi AS, Bollineni JS. Selenium-deficient diet induces renal oxidative stress and injury via TGF-beta1 in normal and diabetic rats. Kidney Int 2001; 59: 1342–53
  • Leonarduzzi G, Scavazza A, Biasi F, Chiarpotto E, Camandola S, Vogel S, et al. The lipid peroxidation end product 4-hydroxy-2,3-nonenal up-regulates transforming growth factor beta1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis. FASEB J 1997; 11: 851–7
  • Karp CL, Wysocka M, Wahl LM, Ahearn JM, Cuomo PJ, Sherry B, et al. Mechanism of suppression of cell-mediated immunity by measles virus. Science 1996;273:228–31. [ Erratum in: Science 1997;275:1053.]
  • Murata Y, Shimamura T, Tagami T, Tagatsuki F, Hamuro J. The skewing to Th1 induced by lentinan is directed through the distinctive cytokine production by macrophages with elevated intracellular glutathione content. Int Immunopharmacol 2002; 2: 673–89
  • Dobashi K, Aihara M, Araki T, Shimizu Y, Utsugi M, Iizuka K, et al. Regulation of LPS induced IL-12 production by IFN-gamma and IL-4 through intracellular glutathione status in human alveolar macrophages. Clin Exp Immunol 2001; 124: 290–6
  • Utsugi M, Dobashi K, Koga Y, Shimizu Y, Ishizuka T, Iizuja K, et al. Glutathione redox regulates lipopolysaccharide-induced IL-12 production through p38 mitogen-activated protein kinase activation in human monocytes: role of glutathione redox in IFN-gamma priming of IL-12 production. J Leukoc Biol 2002; 71: 339–47
  • Roy M, Kiremidjan-Schumacher L, Wishe HI, Cohen MW, Stotzky G. Effect of selenium on the expression of high affinity interleukin 2 receptors. Proc Soc Exp Biol Med 1992; 200: 36–43
  • Roy M, Kiremidjan-Schumacher L, Wishe HI, Cohen MW, Stotzky G. Selenium supplementation enhances the expression of interleukin 2 receptor subunits and internalization of interleukin 2. Proc Soc Exp Biol Med 1993; 202: 295–301
  • Kiremidjan-Schumacher L, Roy M, Wishe HI, Cohen MW, Stotzky G. Supplementation with selenium augments the functions of natural killer and lymphokine-activated killer cells. Biol Trace Elem Res 1996; 52: 227–39
  • Kiremidjan-Schumacher L, Roy M. Selenium and immune function. Z Ernahrungswiss 1998; 37(Suppl 1)50–6
  • Ranjan P, Anathy V, Burch PM, Weirather K, Lambeth JD, Heintz NH. Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid Redox Signal 2006; 8: 1447–59
  • Reynaert NL, van der Vliet A, Guala AS, McGovern T, Hristova M, Pantano C, et al. Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci USA 2006; 103: 13086–91
  • Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 2006; 25: 695–705
  • Brach MA, Gruss HJ, Kaisho T, Asano Y, Hirano T, Herrmann F. Ionizing radiation induces expression of interleukin 6 by human fibroblasts involving activation of nuclear factor-kappa B. J Biol Chem 1993; 268: 8466–72
  • Mann J, Oakley F, Johnson PW, Mann DA. CD40 induces interleukin-6 gene transcription in dendritic cells: regulation by TRAF2, AP-1, NF-kappa B, AND CBF1. J Biol Chem 2002; 277: 17125–38
  • Baccam M, Woo SY, Vinson C, Bishop GA. CD40-mediated transcriptional regulation of the IL-6 gene in B lymphocytes: involvement of NF-kappa B, AP-1, and C/EBP. J Immunol 2003; 170: 3099–108
  • Zerbini LF, Wang Y, Cho JY, Libermann TA. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res 2003; 63: 2206–15
  • Scheller J, Ohnesorge N, Rose-John S. Interleukin-6 trans-signalling in chronic inflammation and cancer. Scand J Immunol 2006; 63: 321–9
  • Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 1998; 334: 297–314
  • Barrett DM, Black SM, Todor H, Schmidt-Ullrich RK, Dawson KS, Mikkelsen RB. Inhibition of protein-tyrosine phosphatases by mild oxidative stresses is dependent on S-nitrosylation. J Biol Chem 2005; 280: 14453–61
  • Bogeski I, Bozem M, Sternfeld L, Hofer HW, Schulz I. Inhibition of protein tyrosine phosphatase 1B by reactive oxygen species leads to maintenance of Ca2 +  influx following store depletion in HEK 293 cells. Cell Calcium 2006; 40: 1–10
  • Kanda M, Ihara Y, Murata H, Urata Y, Kono T, Yodoi J, et al. Glutaredoxin modulates platelet-derived growth factor-dependent cell signaling by regulating the redox status of low molecular weight protein-tyrosine phosphatase. J Biol Chem 2006; 281: 28518–28
  • Delgado AV, McManus AT, Chambers JP. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides 2003; 37: 355–61
  • Koon HW, Pothoulakis C. Immunomodulatory properties of substance P: the gastrointestinal system as a model. Ann N Y Acad Sci 2006; 1088: 23–40
  • Sun J, Bhatia M. Effect of neuropeptides (SP and CGRP) on antigen presentation by macrophages. Immunopharmacol Immunotoxicol 2005; 27: 395–404
  • Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H, et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 2004; 363: 587–93
  • Thorson A, Petzold M, Nguyen TK, Ekdahl K. Is exposure to sick or dead poultry associated with flulike illness?: a population-based study from a rural area in Vietnam with outbreaks of highly pathogenic avian influenza. Arch Intern Med 2006; 166: 119–23
  • Levy SB. The antibiotic paradox. How miracle drugs are destroying the miracle. Plenum Press, New York 1992
  • Maestroni GJ, Covacci V, Conti A. Hematopoietic rescue via T-cell-dependent, endogenous granulocyte-macrophage colony-stimulating factor induced by the pineal neurohormone melatonin in tumor-bearing mice. Cancer Res 1994; 54: 2429–32
  • Maestroni GJ. kappa-Opioid receptors in marrow stroma mediate the hematopoietic effects of melatonin-induced opioid cytokines. Ann N Y Acad Sci 1998; 840: 411–19
  • Maestroni GJ, Zammaretti F, Pedrinis E. Hematopoietic effect of melatonin involvement of type 1 kappa-opioid receptor on bone marrow macrophages and interleukin-1. J Pineal Res 1999; 27: 145–53
  • Lissoni P, Tancini G, Barni S, Paolorossi F, Rossini F, Maffe P, et al. The pineal hormone melatonin in hematology and its potential efficacy in the treatment of thrombocytopenia. Recenti Prog Med 1996; 87: 582–5
  • Lissoni P, Tancini G, Barni S, Paolorossi F, Ardizzoia A, Conti A, et al. Treatment of cancer chemotherapy-induced toxicity with the pineal hormone melatonin. Support Care Cancer 1997; 5: 126–9
  • Lissoni P. Is there a role for melatonin in supportive care?. Support Care Cancer 2002; 10: 110–16
  • Mohan PF, Jacobson MS. Inhibition of macrophage superoxide generation by dehydroepiandrosterone. Am J Med Sci 1993; 306: 10–15
  • Padgett DA, Loria RM. In vitro potentiation of lymphocyte activation by dehydroepiandrosterone, androstenediol, and androstenetriol. J Immunol 1994; 153: 1544–52
  • Loria RM. Antiglucocorticoid function of androstenetriol. Psychoneuroendocrinology 1997; 22(Suppl 1)S103–S108
  • Hernandez-Pando R, De La Luz Streber M, Orozco H, Arriaga K, Pavon L, Al-Nakhli SA, et al. The effects of androstenediol and dehydroepiandrosterone on the course and cytokine profile of tuberculosis in BALB/c mice. Immunology 1998; 95: 234–41
  • Loria RM, Padgett DA. Control of the immune response by DHEA and its metabolites. Rinsho Byori 1998; 46: 505–17
  • Padgett DA, Loria RM. Endocrine regulation of murine macrophage function: effects of dehydroepiandrosterone, androstenediol, and androstenetriol. J Neuroimmunol 1998; 84: 61–8
  • Loria RM, Conrad DH, Huff T, Carter H, Ben-Nathan D. Androstenetriol and androstenediol. Protection against lethal radiation and restoration of immunity after radiation injury. Ann N Y Acad Sci 2000; 917: 860–7
  • Whitnall MH, Elliott TB, Harding RA, Inal CE, Landauer MR, Wilhelmsen CL, et al. Androstenediol stimulates myelopoiesis and enhances resistance to infection in gamma-irradiated mice. Int J Immunopharmacol 2000; 22: 1–14
  • Loria RM. Immune up-regulation and tumor apoptosis by androstene steroids. Steroids 2002; 67: 953–66
  • Lembeck F, Amann R. The influence of capsaicin sensitive neurons on stress-induced release of ACTH. Brain Res Bull 1986; 16: 541–3
  • Amann R, Lembeck F. Stress induced ACTH release in capsaicin treated rats. Br J Pharmacol 1987; 90: 727–31
  • Donnerer J, Amann R, Skofitsch G, Lembeck F. Substance P afferents regulate ACTH-corticosterone release. Ann N Y Acad Sci 1991; 632: 296–303
  • Bastianetto S, Ramassamy C, Poirier J, Quirion R. Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage. Brain Res Mol Brain Res 1999; 66: 35–41
  • Kurata K, Takebayashi M, Morinobu S, Yamawaki S. beta-Estradiol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate protect against N-methyl-D-aspartate-induced neurotoxicity in rat hippocampal neurons by different mechanisms. J Pharmacol Exp Ther 2004; 311: 237–45
  • Gao J, Sun HY, Zhu ZR, Ding Z, Zhu L. Antioxidant effects of dehydroepiandrosterone are related to up-regulation of thioredoxin in SH-SY5Y cells. Acta Biochim Biophys Sin (Shanghai) 2005; 37: 119–25
  • Tunez I, Munoz MC, Montilla P. Treatment with dehydroepiandrosterone prevents oxidative stress induced by 3-nitropropionic acid in synaptosomes. Pharmacology 2005; 74: 113–18
  • Marcu AC, Kielar ND, Paccione KE, Barbee RW, Carter H, Ivatury RR, et al. Androstenetriol improves survival in a rodent model of traumatic shock. Resuscitation 2006; 71: 379–86
  • Ben-Nathan D, Lachmi B, Lustig S, Feuerstein G. Protection by dehydroepiandrosterone in mice infected with viral encephalitis. Arch Virol 1991; 120: 263–71
  • Ben-Nathan D, Lustig S, Kobiler D, Danenberg HD, Lupu E, Feuerstein G. Dehydroepiandrosterone protects mice inoculated with West Nile virus and exposed to cold stress. J Med Virol 1992; 38: 159–66
  • Loria RM, Padgett DA. Androstenediol regulates systemic resistance against lethal infections in mice. Arch Virol 1992; 127: 103–15
  • Carr DJ. Increased levels of IFN-gamma in the trigeminal ganglion correlate with protection against HSV-1-induced encephalitis following subcutaneous administration with androstenediol. J Neuroimmunol 1998; 89: 160–7
  • Daigle J, Carr DJ. Androstenediol antagonizes herpes simplex virus type 1-induced encephalitis through the augmentation of type I IFN production. J Immunol 1998; 160: 3060–6
  • Padgett DA, Loria RM, Sheridan JF. Endocrine regulation of the immune response to influenza virus infection with a metabolite of DHEA-androstenediol. J Neuroimmunol 1997; 78: 203–11
  • Padgett DA, Sheridan JF. Androstenediol (AED) prevents neuroendocrine-mediated suppression of the immune response to an influenza viral infection. J Neuroimmunol 1999; 98: 121–9
  • Padgett DA, Loria RM, Sheridan JF. Steroid hormone regulation of antiviral immunity. Ann N Y Acad Sci 2000; 917: 935–43
  • Ben-Nathan D, Padgett DA, Loria RM. Androstenediol and dehydroepiandrosterone protect mice against lethal bacterial infections and lipopolysaccharide toxicity. J Med Microbiol 1999; 48: 425–31
  • Padgett DA, MacCallum RC, Loria RM, Sheridan JF. Androstenediol-induced restoration of responsiveness to influenza vaccination in mice. J Gerontol A Biol Sci Med Sci 2000; 55: B418–24
  • Danenberg HD, Alpert G, Lustig S, Ben-Nathan D. Dehydroepiandrosterone protects mice from endotoxin toxicity and reduces tumor necrosis factor production. Antimicrob Agents Chemother 1992; 36: 2275–9
  • Goya RG, Gagnerault MC, De Moraes MC, Savino W, Dardenne M. In vivo effects of growth hormone on thymus function in aging mice. Brain Behav Immun 1992; 6: 341–54
  • Yamada M, Hato F, Kinoshita Y, Tominaga K, Tsuji Y. The indirect participation of growth hormone in the thymocyte proliferation system. Cell Mol Biol (Noisy-le-grand) 1994; 40: 111–21
  • De Mello-Coelho V, Savino W, Postel-Vinay MC, Dardenne M. Role of prolactin and growth hormone on thymus physiology. Dev Immunol 1998; 6: 317–23
  • Vigano A, Saresella M, Trabattoni D, Giacomet V, di Natale B, Merlo M, et al. Growth hormone in T-lymphocyte thymic and postthymic development: a study in HIV-infected children. J Pediatr 2004; 145: 542–8
  • Polgreen L, Steiner M, Dietz CA, Manivel JC, Petryk A. Thymic hyperplasia in a child treated with growth hormone. Growth Horm IGF Res 2007; 17: 41–6
  • Dardenne M, Savino W, Gagnerault MC, Itoh T, Bach JF. Neuroendocrine control of thymic hormonal production. I. Prolactin stimulates in vivo and in vitro the production of thymulin by human and murine thymic epithelial cells. Endocrinology 1989; 125: 3–12
  • Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME. Mushrooms, tumors, and immunity. Proc Soc Exp Biol Med 1999; 221: 281–93
  • Wasser SP, Weis AL. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 1999; 19: 65–96
  • Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 2002; 60: 258–74
  • Pacheco-Sanchez M, Boutin Y, Angers P, Gosselin A, Tweddell RJ. A bioactive (1– > 3)-, (1–4)-beta-D-glucan from Collybia dryophila and other mushrooms. Mycologia 2006; 98: 180–5
  • Wu J, Zhang Y, Wang L, Xie B, Wang H, Deng S. Visualization of single and aggregated hulless oat (Avena nuda L.) (1– > 3),(1– > 4)-beta-D-glucan molecules by atomic force microscopy and confocal scanning laser microscopy. J Agric Food Chem 2006; 54: 925–34
  • Sliva D. Cellular and physiological effects of Ganoderma lucidum (Reishi). Mini Rev Med Chem 2004; 4: 873–9
  • Adachi Y, Ishii T, Ikeda Y, Hoshino A, Tamura H, Aketagawa J, et al. Characterization of beta-glucan recognition site on C-type lectin, dectin 1. Infect Immun 2004; 72: 4159–71
  • Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 2005;22:507–17. [Erratum in: Immunity 2005;22:773–4.]
  • Graham LM, Tsoni SV, Willment JA, Williams DL, Taylor PR, Gordon S, et al. Soluble Dectin-1 as a tool to detect beta-glucans. J Immunol Methods 2006; 314: 164–9
  • Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 2006; 442: 651–6
  • Harada T, Kawaminami H, Miura NN, Adachi Y, Nakajima M, Yadomae T, et al. Mechanism of enhanced hematopoietic response by soluble beta-glucan SCG in cyclophosphamide-treated mice. Microbiol Immunol 2006; 50: 687–700
  • Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol 2003; 171: 417–25
  • Underhill DM. Macrophage recognition of zymosan particles. J Endotoxin Res 2003; 9: 176–80
  • Kaufmann I, Hoelzl A, Schliephake F, Hummel T, Chouker A, Peter K, et al. Polymorphonuclear leukocyte dysfunction syndrome in patients with increasing sepsis severity. Shock 2006; 26: 254–61
  • Ross GD, Vetvicka V, Yan J, Xia Y, Vetvickova J. Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology 1999; 42: 61–74
  • Xia Y, Vetvicka V, Yan J, Hanikyrova M, Mayadas T, Ross GD. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J Immunol 1999; 162: 2281–90
  • Yan J, Vetvicka V, Xia Y, Coxon A, Carroll MC, Mayadas TN, et al. Beta-glucan, a “specific” biologic response modifier that uses antibodies to target tumors for cytotoxic recognition by leukocyte complement receptor type 3 (CD11b/CD18). J Immunol 1999; 163: 3045–52
  • Hong F, Hansen RD, Yan J, Allendorf DJ, Baran JT, Ostroff GR, et al. Beta-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res 2003; 63: 9023–31
  • Yan J, Allendorf DJ, Brandley B. Yeast whole glucan particle (WGP) beta-glucan in conjunction with antitumour monoclonal antibodies to treat cancer. Expert Opin Biol Ther 2005; 5: 691–702
  • Gelderman KA, Lam S, Sier CF, Gorter A. Cross-linking tumor cells with effector cells via CD55 with a bispecific mAb induces beta-glucan-dependent CR3-dependent cellular cytotoxicity. Eur J Immunol 2006; 36: 977–84
  • Lavigne LM, Albina JE, Reichner JS. Beta-glucan is a fungal determinant for adhesion-dependent human neutrophil functions. J Immunol 2006; 177: 8667–75
  • Li B, Allendorf DJ, Hansen R, Marroquin J, Ding C, Cramer DE, et al. Yeast beta-glucan amplifies phagocyte killing of iC3b-opsonized tumor cells via complement receptor 3-Syk-phosphatidylinositol 3-kinase pathway. J Immunol 2006; 177: 1661–9
  • Diez-Fraile A, Meyer E, Paape MJ, Burvenich C. Analysis of selective mobilization of L-selectin and Mac-1 reservoirs in bovine neutrophils and eosinophils. Vet Res 2003; 34: 57–70
  • Morris MR, Doull IJ, Dewitt S, Hallett MB. Reduced iC3b-mediated phagocytotic capacity of pulmonary neutrophils in cystic fibrosis. Clin Exp Immunol 2005; 142: 68–75
  • Egesten A, Blom M, Calafat J, Janssen H, Knol EF. Eosinophil granulocyte interaction with serum-opsonized particles: binding and degranulation are enhanced by tumor necrosis factor alpha. Int Arch Allergy Immunol 1998; 115: 121–8
  • Balagopal A, MacFarlane AS, Mohapatra N, Soni S, Gunn JS, Schlesinger LS. Characterization of the receptor-ligand pathways important for entry and survival of Francisella tularensis in human macrophages. Infect Immun 2006; 74: 5114–25
  • Jimenez Mdel P, Restrepo A, Radzioch D, Cano LE, Garcia LF. Importance of complement 3 and mannose receptors in phagocytosis of Paracoccidioides brasiliensis conidia by Nramp1 congenic macrophages lines. FEMS Immunol Med Microbiol 2006; 47: 56–66
  • Makranz C, Cohen G, Reichert F, Kodama T, Rotshenker S. cAMP cascade (PKA, Epac, adenylyl cyclase, Gi, and phosphodiesterases) regulates myelin phagocytosis mediated by complement receptor-3 and scavenger receptor-AI/II in microglia and macrophages. Glia 2006; 53: 441–8
  • Pan W, Ogunremi O, Wei G, Shi M, Tabel H. CR3 (CD11b/CD18) is the major macrophage receptor for IgM antibody-mediated phagocytosis of African trypanosomes: diverse effect on subsequent synthesis of tumor necrosis factor alpha and nitric oxide. Microbes Infect 2006; 8: 1209–18
  • Bajtay Z, Csomor E, Sandor N, Erdei A. Expression and role of Fc- and complement-receptors on human dendritic cells. Immunol Lett 2006; 104: 46–52
  • Skoberne M, Somersan S, Almodovar W, Truong T, Petrova K, Henson PM, et al. The apoptotic-cell receptor CR3, but not alphaVbeta5, is a regulator of human dendritic-cell immunostimulatory function. Blood 2006; 108: 947–55
  • Bouhlal H, Chomont N, Requena M, Nasreddine N, Saidi H, Legoff J, et al. Opsonization of HIV with complement enhances infection of dendritic cells and viral transfer to CD4 T cells in a CR3 and DC-SIGN-dependent manner. J Immunol 2007; 178: 1086–95
  • Boackle RJ, Nguyen QL, Leite RS, Yang X, Vesely J. Complement-coated antibody-transfer (CCAT); serum IgA1 antibodies intercept and transport C4 and C3 fragments and preserve IgG1 deployment (PGD). Mol Immunol 2006; 43: 236–45
  • Reid DM, Montoya M, Taylor PR, Borrow P, Gordon S, Brown GD, et al. Expression of the beta-glucan receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J Leukoc Biol 2004; 76: 86–94
  • Willment JA, Marshall AS, Reid DM, Williams DL, Wong SY, Gordon S, et al. The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol 2005; 35: 1539–47
  • Kennedy AD, Willment JA, Dorward DW, Williams DL, Brown GD, Deleo FR. Dectin-1 promotes fungicidal activity of human neutrophils. Eur J Immunol 2007; 37: 467–78
  • Ozment-Skelton TR, Goldman MP, Gordon S, Brown GD, Williams DL. Prolonged reduction of leukocyte membrane-associated Dectin-1 levels following beta-glucan administration. J Pharmacol Exp Ther 2006; 318: 540–6
  • Goodridge HS, Simmons RM, Underhill DM. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol 2007; 178: 3107–15
  • Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 2005;22:507–17. [Erratum in: Immunity 2005;22:773–4.]
  • Takada Y, Mukhopadhyay A, Kundu GC, Mahabaleshwar GH, Singh S, Aggarwal BB. Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem 2003; 278: 24233–41
  • Tohyama Y, Takano T, Yamamura H. B cell responses to oxidative stress. Curr Pharm Des 2004; 10: 835–9
  • Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL, Oswald-Richter K, et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest 2006; 116: 916–28
  • Breivik T, Opstad PK, Engstad R, Gundersen G, Gjermo P, Preus H. Soluble beta-1,3/1,6-glucan from yeast inhibits experimental periodontal disease in Wistar rats. J Clin Periodontol 2005; 32: 347–52
  • Soltys J, Quinn MT. Modulation of endotoxin- and enterotoxin-induced cytokine release by in vivo treatment with beta-(1,6)-branched beta-(1,3)-glucan. Infect Immun 1999; 67: 244–52
  • Fan H, Williams DL, Breuel KF, Zingarelli B, Teti G, Tempel GE, et al. Gi proteins regulate lipopolysaccharide and Staphylococcus aureus induced cytokine production but not (1– > 3)-beta-D-glucan induced cytokine suppression. Front Biosci 2006; 11: 2264–74
  • Luhm J, Langenkamp U, Hensel J, Frohn C, Brand JM, Hennig H, et al. Beta-(1– > 3)-D-glucan modulates DNA binding of nuclear factors kappaB, AT and IL-6 leading to an anti-inflammatory shift of the IL-1beta/IL-1 receptor antagonist ratio. BMC Immunol 2006; 7: 5
  • Irinoda K, Masihi KN, Chihara G, Kaneko Y, Katori T. Stimulation of microbicidal host defense mechanisms against aerosol influenza virus infection by lentinan. Int J Immunopharmacol 1992; 14: 971–7
  • Markova N, Kussovski V, Drandarska I, Nikolaeva S, Georgieva N, Radoucheva T. Protective activity of lentinan in experimental tuberculosis. Int Immunopharmacol 2003; 3: 1557–62
  • Markova N, Michailova L, Kussovski V, Jourdanova M, Radoucheva T. Intranasal application of lentinan enhances bactericidal activity of rat alveolar macrophages against Mycobacterium tuberculosis. Pharmazie 2005; 60: 42–8
  • Raa J. The use of immunostimulatory substances in fish and shellfish farming. Rev Fish Sci 1996; 4: 229–88
  • Figueras A, Santarem MM, Novoa B. Influence of the sequence of administration of beta-glucans and a Vibrio damsela vaccine on the immune response of turbot (Scophthalmus maximus L.). Vet Immunol Immunopathol 1998; 64: 59–68
  • Sahoo PK, Mukherjee SC. The effect of dietary immunomodulation upon Edwardsiella tarda vaccination in healthy and immunocompromised Indian major carp (Labeo rohita). Fish Shellfish Immunol 2002; 12: 1–16
  • Kumari J, Sahoo PK. Dietary immunostimulants influence specific immune response and resistance of healthy and immunocompromised Asian catfish Clarias batrachus to Aeromonas hydrophila infection. Dis Aquat Organ 2006; 70: 63–70
  • Raa J, Berstad AKH, Bakke H, Haneberg B, Haugen IL, Holst J, et al. Novel, non-antigenic, mucosal adjuvant formulation which modulates the effects of substances, including vaccine antigens, in contact with mucosal body surfaces. Biotec Pharmacon ASA. US 09/11,582[WO 0162293]. 23-2-2000. USA. 23-2-2000. International patent published 30 August 2003. International Publication Number WO 01/62283 A2.
  • Holbrook TW, Cook JA, Parker BW. Glucan-enhanced immunogenicity of killed erythrocyte stages of Plasmodium berghei. Infect Immun 1981; 32: 542–6
  • Maheshwari R, Siddiqui MU. Immunoprotection by beta-1,3 glucan antigen combination in Plasmodium berghei infection in mice. Indian J Med Res 1989; 89: 396–403
  • Maheshwari R, Choudari BP. Potentiation of immune response against malaria in immunocompromised mice through glucan as an immunoadjuvant. Indian J Exp Biol 1990; 28: 901–5
  • Markevich NA, Maslennikova II, Pokrovskaia EE, Osipova MV, Ispolatova AV. [The mechanisms of the formation of heterologous resistance in peroral immunization with a complex anti-influenza preparation.] Vestn Ross Akad Med Nauk 1996;(1):51–4 ( in Russian).
  • Ara Y, Saito T, Takagi T, Hagiwara E, Miyagi Y, Sugiyama M, et al. Zymosan enhances the immune response to DNA vaccine for human immunodeficiency virus type-1 through the activation of complement system. Immunology 2001; 103: 98–105
  • Cremel M, Hamzeh-Cognasse H, Genin C, Delezay O. Female genital tract immunization: evaluation of candidate immunoadjuvants on epithelial cell secretion of CCL20 and dendritic/Langerhans cell maturation. Vaccine 2006; 24: 5744–54
  • Lehne G, Haneberg B, Gaustad P, Johansen PW, Preus H, Abrahamsen TG. Oral administration of a new soluble branched beta-1,3-D-glucan is well tolerated and can lead to increased salivary concentrations of immunoglobulin A in healthy volunteers. Clin Exp Immunol 2006; 143: 65–9
  • Mazanec MB, Coudret CL, Fletcher DR. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J Virol 1995; 69: 1339–43
  • Mazanec MB, Kaetzel CS, Lamm ME, Fletcher D, Peterra J, Nedrud JG. Intracellular neutralization of Sendai and influenza viruses by IgA monoclonal antibodies. Adv Exp Med Biol 1995; 371A: 651–4
  • Feng N, Lawton JA, Gilbert J, Kuklin N, Vo P, Prasad BV, et al. Inhibition of rotavirus replication by a non-neutralizing, rotavirus VP6-specific IgA mAb. J Clin Invest 2002; 109: 1203–13
  • Corthesy B, Benureau Y, Perrier C, Fourgeux C, Parez N, Greenberg H, et al. Rotavirus anti-VP6 secretory immunoglobulin A contributes to protection via intracellular neutralization but not via immune exclusion. J Virol 2006; 80: 10692–9
  • Wright A, Yan H, Lamm ME, Huang YT. Immunoglobulin A antibodies against internal HIV-1 proteins neutralize HIV-1 replication inside epithelial cells. Virology 2006; 356: 165–70
  • Tenovuo J, Moldoveanu Z, Mestecky J, Pruitt KM, Rahemtulla BM. Interaction of specific and innate factors of immunity: IgA enhances the antimicrobial effect of the lactoperoxidase system against Streptococcus mutans. J Immunol 1982; 128: 726–31
  • Klebanoff SJ, Coombs RW. Viricidal effect of Lactobacillus acidophilus on human immunodeficiency virus type 1: possible role in heterosexual transmission. J Exp Med 1991; 174: 289–92
  • Klebanoff SJ, Coombs RW. Viricidal effect of polymorphonuclear leukocytes on human immunodeficiency virus-1. Role of the myeloperoxidase system. J Clin Invest 1992; 89: 2014–17
  • Chase MJ, Klebanoff SJ. Viricidal effect of stimulated human mononuclear phagocytes on human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 1992; 89: 5582–5
  • Chochola J, Yamaguchi Y, Moguilevsky N, Bollen A, Strosberg AD, Stanislawski M. Virucidal effect of myeloperoxidase on human immunodeficiency virus type 1-infected T cells. Antimicrob Agents Chemother 1994; 38: 969–72
  • Klebanoff SJ, Coombs RW. Virucidal effect of stimulated eosinophils on human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 1996; 12: 25–9
  • Furtmüller PG, Jantschko W, Regelsberger G, Jakopitsch C, Arnhold J, Obinger C. Reaction of lactoperoxidase compound I with halides and thiocyanate. Biochemistry 2002; 41: 11895–900
  • Laursen AL, Obel NS, Holmskov U, Jensenius JC, Aliouat el M, Andersen PL. Activation of the respiratory burst by Pneumocystis carinii. Efficiency of different antibody isotypes, complement, lung surfactant protein D, and mannan-binding lectin. APMIS 2003; 111: 405–15
  • Lang ML, Kerr MA. Characterization of FcalphaR-triggered Ca2 +  signals: role in neutrophil NADPH oxidase activation. Biochem Biophys Res Commun 2000; 276: 749–55
  • van der Pol W, Vidarsson G, Vile HA, van de Winkel JG, Rodriguez ME. Pneumococcal capsular polysaccharide-specific IgA triggers efficient neutrophil effector functions via FcalphaRI (CD89). J Infect Dis 2000; 182: 1139–45
  • Rodriguez ME, Hellwig SM, Hozbor DF, Leusen J, van der Pol WL, van de Winkel JG. Fc receptor-mediated immunity against Bordetella pertussis. J Immunol 2001; 167: 6545–51
  • Shibuya A, Honda S. Molecular and functional characteristics of the Fcalpha/muR, a novel Fc receptor for IgM and IgA. Springer Semin Immunopathol 2006; 28: 377–82
  • ten Hove W, Houben LA, Raajmakers JA, Koenderman L, Bracke M. Rapid selective priming of FcalphaR on eosinophils by corticosteroids. J Immunol 2006; 177: 6108–14
  • Desheva JA, Lu XH, Rekstin AR, Rudenko LG, Swayne DE, Cox NJ, et al. Characterization of an influenza A H5N2 reassortant as a candidate for live-attenuated and inactivated vaccines against highly pathogenic H5N1 viruses with pandemic potential. Vaccine 2006; 24: 6859–66
  • Ferko B, Kittel C, Romanova J, Sereinig S, Katinger H, Egorov A. Live attenuated influenza virus expressing human interleukin-2 reveals increased immunogenic potential in young and aged hosts. J Virol 2006; 80: 11621–7
  • Halperin SA, Smith B, Clarke K, Treanor J, Mabrouk T, Germain M. Phase I, randomized, controlled trial to study the reactogenicity and immunogenicity of a nasal, inactivated trivalent influenza virus vaccine in healthy adults. Hum Vaccin 2005; 1: 37–42
  • Samdal HH, Bakke H, Oftung F, Holst J, Haugen IL, Korsvold GE, et al. A non-living nasal influenza vaccine can induce major humoral and cellular immune responses in humans without the need for adjuvants. Hum Vaccin 2005; 1: 85–90
  • Bakke H, Haneberg B. [The development of mucosal vaccines.] Tidsskr Nor Laegeforen. 2006;126:2818–21 ( in Norwegian).
  • Huxtable RJ. Physiological actions of taurine. Physiol Rev 1992; 72: 101–63
  • Seabra V, Stachlewitz RF, Thurman RG. Taurine blunts LPS-induced increases in intracellular calcium and TNF-alpha production by Kupffer cells. J Leukoc Biol 1998; 64: 615–21
  • Wheeler MD, Thurman RG. Production of superoxide and TNF-alpha from alveolar macrophages is blunted by glycine. Am J Physiol 1999; 277: L952–9
  • Wheeler MD, Ikejema K, Enomoto N, Stacklewitz RF, Seabra V, Zhong Z, et al. Glycine: a new anti-inflammatory immunonutrient. Cell Mol Life Sci 1999; 56: 843–56
  • Kim SK, Kim YC. Attenuation of bacterial lipopolysaccharide-induced hepatotoxicity by betaine or taurine in rats. Food Chem Toxicol 2002; 40: 545–9
  • Wheeler MD, Stachlewitz RF, Yamashina S, Ikejima K, Morrow AL, Thurman RG. Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production. FASEB J 2000; 14: 476–84
  • Ray NJ, Jones AJ, Keen P. GABAB receptor modulation of the release of substance P from capsaicin-sensitive neurones in the rat trachea in vitro. Br J Pharmacol 1991; 102: 801–4
  • Chapman RW, Hey JA, Rizzo CA, Bolser DC. GABAB receptors in the lung. Trends Pharmacol Sci 1993; 14: 26–9
  • Minocha A, Galligan JJ. Excitatory and inhibitory responses mediated by GABAA and GABAB receptors in guinea pig distal colon. Eur J Pharmacol 1993; 230: 187–93
  • Ozdem SS, Sadan G, Usta C, Tasatargil A. Effect of experimental diabetes on GABA-mediated inhibition of neurally induced contractions in rat isolated trachea. Clin Exp Pharmacol Physiol 2000; 27: 299–305
  • Gentilini G, Franchi-Micheli S, Mugnai S, Bindi D, Zilletti L. GABA-mediated inhibition of the anaphylactic response in the guinea-pig trachea. Br J Pharmacol 1995; 115: 389–94
  • Ruiz de Valderas RM, Serrano MI, Serrano JS, Fernandez A. Effect of homotaurine in experimental analgesia tests. Gen Pharmacol 1991; 22: 717–21
  • Serrano I, Ruiz RM, Serrano JS, Fernandez A. GABAergic and cholinergic mediation in the antinociceptive action of homotaurine. Gen Pharmacol 1992; 23: 421–6
  • Silva MA, Cunha GM, Viana GS, Rao VS. Taurine modulates chemical nociception in mice. Braz J Med Biol Res 1993; 26: 1319–24
  • Serrano MI, Serrano JS, Guerrero MR, Fernandez A. Role of GABAA and GABAB receptors and peripheral cholinergic mechanisms in the antinociceptive action of taurine. Gen Pharmacol 1994; 25: 1123–9
  • Serrano MI, Serrano JS, Fernandez A, Asadi I, Serrano-Martino MC. GABAB receptors and opioid mechanisms involved in homotaurine-induced analgesia. Gen Pharmacol 1998; 30: 411–15
  • Cortijo J, Blesa S, Martinez-Losa M, Mata M, Seda E, Santangelo F, et al. Effects of taurine on pulmonary responses to antigen in sensitized Brown-Norway rats. Eur J Pharmacol 2001; 431: 111–17
  • Covarrubias J. Taurine and the lung: pharmacological intervention by aerosol route. Adv Exp Med Biol 1994; 359: 413–17
  • Kontny E, Szczepanska K, Kowalczewski J, Kurowska M, Janicka I, Marcinkiewicz J, et al. The mechanism of taurine chloramine inhibition of cytokine (interleukin-6, interleukin-8) production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum 2000; 43: 2169–77
  • Barua M, Liu Y, Quinn MR. Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: decreased NF-kappaB activation and IkappaB kinase activity. J Immunol 2001; 167: 2275–81
  • Liu Y, Quinn MR. Chemokine production by rat alveolar macrophages is inhibited by taurine chloramine. Immunol Lett 2002; 80: 27–32
  • Quinn MR, Barua M, Liu Y, Serban V. Taurine chloramine inhibits production of inflammatory mediators and iNOS gene expression in alveolar macrophages; a tale of two pathways: part I, NF-kappaB signaling. Adv Exp Med Biol 2003; 526: 341–8
  • Schuller-Levis GB, Park E. Taurine: new implications for an old amino acid. FEMS Microbiol Lett 2003; 226: 195–202
  • Mainnemare A, Megarbane B, Soueidan A, Daniel A, Chapple IL. Hypochlorous acid and taurine-N-monochloramine in periodontal diseases. J Dent Res 2004; 83: 823–31
  • Kanayama A, Inoue J, Sugita-Konishi Y, Shimizu M, Miyamoto Y. Oxidation of Ikappa Balpha at methionine 45 is one cause of taurine chloramine-induced inhibition of NF-kappa B activation. J Biol Chem 2002; 277: 24049–56
  • Liu Y, Barua M, Serban V, Quinn MR. Production of inflammatory mediators by activated C6 cells is attenuated by taurine chloramine inhibition of NF-kappaB activation. Adv Exp Med Biol 2003; 526: 365–72
  • Kim JW, Kim C. Inhibition of LPS-induced NO production by taurine chloramine in macrophages is mediated though Ras-ERK-NF-kappaB. Biochem Pharmacol 2005; 70: 1352–60
  • Ogino T, Hosako M, Hiramatsu K, Omori M, Ozaki M, Okada S. Oxidative modification of IkappaB by monochloramine inhibits tumor necrosis factor alpha-induced NF-kappaB activation. Biochim Biophys Acta 2005; 1746: 135–42
  • Maturo J, Kulakowski EC. Taurine binding to the purified insulin receptor. Biochem Pharmacol 1988; 37: 3755–60
  • Kulakowski EC, Maturo J. Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol 1984; 33: 2835–8
  • Maturo J 3rd, Kulakowski EC. Insulin-like activity of taurine. Adv Exp Med Biol 1987; 217: 217–26
  • Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoshuzaki K, et al. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum 2003; 48: 1521–9
  • Honemann D, Chatterjee M, Savino R, Bommert K, Burger R, Gramatzki M, et al. The IL-6 receptor antagonist SANT-7 overcomes bone marrow stromal cell-mediated drug resistance of multiple myeloma cells. Int J Cancer 2001; 93: 674–80
  • Tassone P, Neri P, Burger R, Savino R, Shammas M, Catley L, et al. Combination therapy with interleukin-6 receptor superantagonist Sant7 and dexamethasone induces antitumor effects in a novel SCID-hu in vivo model of human multiple myeloma. Clin Cancer Res 2005; 11: 4251–8
  • Michalk DV, Hoffmann B, Minor T. Taurine reduces renal ischemia/reperfusion injury in the rat. Adv Exp Med Biol 2003; 526: 49–56
  • Wang JX, Li Y, Zhang LK, Zhao J, Pang YZ, Tang CS, et al. Taurine inhibits ischemia/reperfusion-induced compartment syndrome in rabbits. Acta Pharmacol Sin 2005; 26: 821–7
  • Hanna J, Chahine R, Aftimos G, Nader M, Mounayar A, Esseily F, et al. Protective effect of taurine against free radicals damage in the rat myocardium. Exp Toxicol Pathol 2004; 56: 189–94
  • Poltronieri R, Cevese A, Sharbati A. Protective effect of selenium in cardiac ischemia and reperfusion. Cardioscience 1992; 3: 155–60
  • Venardos K, Harrison G, Headrick J, Perkins A. Effects of dietary selenium on glutathione peroxidase and thioredoxin reductase activity and recovery from cardiac ischemia-reperfusion. J Trace Elem Med Biol 2004; 18: 81–8
  • Lymbury R, Venardos K, Perkins AV. Effect of sodium selenite-enriched reperfusion solutions on rat cardiac ischemia reperfusion injury. Biol Trace Elem Res 2006; 114: 197–206
  • Ostadalova I, Vobecky M, Chvojkova Z, Mikova D, Hampl V, Wilhelm J, et al. Selenium protects the immature rat heart against ischemia/reperfusion injury. Mol Cell Biochem 2006 Dec 23 [Epub ahead of print].
  • Blaustein A, Deneke SM, Stolz RI, Baxter D, Healey N, Fanburg BL. Myocardial glutathione depletion impairs recovery after short periods of ischemia. Circulation 1989; 80: 1449–57
  • Mizui T, Kinouchi H, Chan PH. Depletion of brain glutathione by buthionine sulfoximine enhances cerebral ischemic injury in rats. Am J Physiol 1992; 262: H313–7
  • Pei Z, Cheung RT. Pretreatment with melatonin exerts anti-inflammatory effects against ischemia/reperfusion injury in a rat middle cerebral artery occlusion stroke model. J Pineal Res 2004; 37: 85–91
  • Kilic U, Kilic E, Reiter RJ, Bassetti CL, Hermann DM. Signal transduction pathways involved in melatonin-induced neuroprotection after focal cerebral ischemia in mice. J Pineal Res 2005; 38: 67–71
  • Reiter RJ, Tan DX, Leon J, Kilic U, Kilic E. When melatonin gets on your nerves: its beneficial actions in experimental models of stroke. Exp Biol Med (Maywood) 2005; 230: 104–17
  • Aviado DM, Drimal J, Watanabe T, Lish PM. Cardiac effects of sodium selenite. Cardiology 1975; 60: 113–20