1,307
Views
16
CrossRef citations to date
0
Altmetric
EXTENDED ABSTRACT

Carbohydrate metabolism in Fibrobacter succinogenes: What NMR tells us

, &
Pages 94-102 | Received 19 Feb 2008, Published online: 11 Jul 2009

References

  • Hungate RE. Studies on cellulose fermentation. III. The culture and isolation of cellulose-decomposing bacteria from the rumen of cattle. J Bacteriol 1947; 53: 631–45
  • Forsberg CW, Forano E, Chesson A. Microbial adherence to the plant cell wall and enzymatic hydrolysis. Ruminant physiology. Proceedings of the IX International Symposium on Ruminant Physiology, N Casey, et al. CABI Publishing, Cambridge, MA 2000; 79–97
  • Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, et al. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 2003; 27: 663–93
  • Qi M, Nelson KE, Daugherty SC, Nelson WC, Hance IR, Morrison M, et al. Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization. J Bacteriol 2005; 187: 3739–51
  • Miller TL. The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes. Arch Microbiol 1978; 117: 145–52
  • Matheron C, Delort AM, Gaudet G, Forano E. Re-investigation of glucose metabolism in Fibrobacter succinogenes S85 using NMR and enzymatic assays. Evidence of pentose phosphates phosphoketolase and pyruvate-formate-lyase activities. Biochim Biophys Acta 1997; 1355: 50–60
  • Stewart CS, Paniagua C, Dinsdale D, Cheng K-J, Garrow SH. Selective isolation and characteristics of Bacteroides succinogenes from the rumen of a cow. Appl Environ Microbiol 1981; 41: 504–10
  • Grivet JP, Delort AM, Portais JC. NMR and microbiology: from physiology to metabolomics. Biochimie 2003; 85: 823–40
  • Gaudet G, Forano E, Dauphin G, Delort AM. Futile cycling of glycogen in Fibrobacter succinogenes as shown by in situ1H-NMR and 13C-NMR investigation. Eur J Biochem 1992; 207: 155–62
  • Wells JE, Russell JB. The endogenous metabolism of Fibrobacter succinogenes and its relationship to cellobiose transport, viability and cellulose digestion. Appl Microbiol Biotechnol 1994; 41: 471–6
  • Matheron C, Delort A-M, Gaudet G, Forano E, Liptaj T. 13C and 1H NMR study of glycogen futile cycling in strains of the genus Fibrobacter. Appl Environ Microbiol 1998; 64: 74–81
  • Portais JC, Delort AM. Carbohydrate cycling in microorganisms: what can 13C-NMR tell us?. FEMS Microbiol Rev 2002; 26: 375–402
  • Matheron C, Delort A-M, Gaudet G, Forano E. Simultaneous but differential metabolism of glucose and cellobiose in Fibrobacter succinogenes S85 cells studied by in vivo13C-NMR. Can J Microbiol 1996; 42: 1091–9
  • Matheron C, Delort A-M, Gaudet G, Forano E. In vivo13C NMR study of glucose and cellobiose metabolism by four strains of the genus Fibrobacter. Biodegradation 1998; 9: 451–61
  • Matulova M, Delort AM, Nouaille R, Gaudet G, Forano E. Concurrent maltodextrin and cellodextrin synthesis by Fibrobacter succinogenes S85 as identified by 2D NMR spectroscopy. Eur J Biochem 2001; 268: 3907–15
  • Cato EP, Moore WE, Bryant MP. Designation of neotype strains for Bacteroides amylophilus (Hamlin and Hungate 1956) and Bacteroides succinogenes (Hungate 1950). Int J Syst Bacteriol 1978; 28: 491–5
  • Nouaille R, Matulova M, Delort A-M, Forano E. Oligosaccharide synthesis in Fibrobacter succinogenes S85 and its modulation by the substrate. FEBS J 2005; 272: 2416–27
  • Nouaille R, Matulova M, Delort A-M, Forano E. Production of maltodextrin-1-phosphate by Fibrobacter succinogenes S85. FEBS Lett 2004; 576: 226–30
  • Van der Zee JR, Postma PW, Hellingwerf KJ. Quantitative conversion of glucose into glucose-6-phosphate by intact Escherichia coli cells. Biotechnol Appl Biochem 1996; 24: 225–30
  • Decker K, Gerhardt F, Boos W. The role of the trehalose system in regulating the maltose regulon of Escherichia coli. Mol Microbiol 1999; 32: 777–88
  • Niehues B, Jossek R, Kramer U, Koch A, Jarling M, Schröder W, et al. Isolation and characterization of maltokinase (ATP:maltose 1-phosphotransferase) from Actinoplanes missouriensis. Arch Microbiol 2003; 180: 233–9
  • Decker K, Peist R, Reild J, Krossmann M, Brand B, Boos W. Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose-1-phosphate independently of enzymes of the maltose system. J Bacteriol 1993; 175: 5655–65
  • Dippel R, Boos W. The maltodextrin system of Escherichia coli: glycogen-derived endogenous induction and osmoregulation. J Bacteriol 2005; 187: 8332–9
  • Boos W, Shuman H. Maltose/maltodextrin system of Escherichia coli: transport, metabolism and regulation. Microbiol Mol Biol Rev 1998; 62: 204–29
  • Dauvillée D, Kinderf IS, Li Z, Koshar-Hashemi B, Samuel MS, Rampling L, et al. Role of the E. coli glgX gene in glycogen metabolism. J Bacteriol 2005; 187: 1465–73
  • Wolin MJ. Interactions between the bacterial species of the rumen. Digestion and metabolism in the ruminant, IW MacDonald, ACI Warner. University of New England Publishing Unit, ArmidaleAustralia 1974; 146
  • Nouaille, R. Etude du métabolisme de Fibrobacter succinogenes S85 par RMN: synthèse d'oligosides et dégradation de fibres végétales. Thèse de Docteur de l'Université Blaise Pascal de Clermont-Ferrand, France, Ecole Doctorale des Sciences Fondamentales, 2004:1502.
  • Wells JE, Russell JB, Shi Y, Weimer PJ. Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of non-adherent bacteria. Appl Environ Microbiol 1995; 61: 1757–62
  • Pavlostathis SG, Miller TL, Wolin MJ. Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus. Appl Environ Microbiol 1988; 54: 2655–9
  • Matulova M, Nouaille R, Capek P, Pean M, Forano E, Delort A-M. Degradation of wheat straw by Fibrobacter succinogenes S85: a liquid and solid state NMR study. Appl Environ Microbiol 2005; 71: 1247–53
  • Desvaux M, Guedon E, Petitdemange H. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl Environ Microbiol 2000; 66: 2461–70
  • Weimer PJ, Lopez-Guisa JM, French AD. Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro. Appl Environ Microbiol 1990; 56: 2421–9
  • Scheifinger CC, Wolin MJ. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl Microbiol 1973; 26: 789–95
  • Kudo H, Cheng KJ, Costerton JW. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can J Microbiol 1987; 33: 244–8
  • Bibollet X, Bosc N, Matulova M, Delort A-M, Gaudet G, Forano E. 13C and 1H NMR study of cellulose metabolism by Fibrobacter succinogenes S85. J Biotechnol 2000; 77: 37–47