2,789
Views
0
CrossRef citations to date
0
Altmetric
Research Article

RGS7 silence protects palmitic acid-induced pancreatic β-cell injury by inactivating the chemokine signaling pathway

, , , &
Article: 2194584 | Received 22 Dec 2022, Accepted 19 Mar 2023, Published online: 31 Mar 2023

References

  • Roglic G. WHO global report on diabetes: a summary. Int J Non-Commun Dis. 2016;1(1):1–10.
  • Donath MY, Ehses JA, Maedler K, et al. Mechanisms of β-Cell death in type 2 diabetes. Diabetes. 2005;54(suppl_2):1–10.
  • Kaviani M, Azarpira N, Karimi MH, et al. The role of microRNAs in islet β-cell development. [Cell Biol Int. 2016;40(12):1248–1255. 2016/12/01;40(12):1248–1255.
  • Zheng Y, Wang Z, Zhou Z. miRNAs: novel regulators of autoimmunity-mediated pancreatic β-cell destruction in type 1 diabetes. Cell Mol Immunol. 2017;14(6):488–496.
  • Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.
  • Tian Y, Peng B, Fu X. New ADCY3 variants dance in obesity etiology. Trends Endocrinol Metab. 2018;29(6):361–363.
  • Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575–584.
  • Saliani N, Montazersaheb S, Montasser Kouhsari S. Micromanaging glucose tolerance and diabetes. Adv Pharm Bull. 2017;7(4):547–556.
  • Salonen J. Did the North Karelia project reduce coronary mortality? Lancet. 1987;330(8553):269.
  • Xu H, Du X, Xu J, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020;18(2):e3000603.
  • Huang X, Charbeneau RA, Fu Y, et al. Resistance to Diet-Induced obesity and improved insulin sensitivity in mice with a regulator of G protein signaling–insensitive G184S Gnai2 allele. Diabetes. 2008;57(1):77–85.
  • Zheng B, De Vries L, Gist Farquhar M. Divergence of RGS proteins: evidence for the existence of six mammalian RGS subfamilies. Trends Biochem Sci. 1999;24(11):411–414.
  • Qutob N, Masuho I, Alon M, et al. RGS7 is recurrently mutated in melanoma and promotes migration and invasion of human cancer cells. Sci Rep. 2018;8(1):653–653.
  • Anderson GR, Posokhova E, Martemyanov KA. The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell Biochem Biophys. 2009;54(1–3):33–46.
  • Huang X, Fu Y, Charbeneau RA, et al. Pleiotropic phenotype of a genomic knock-in of an RGS-insensitive G184S Gnai2 allele. Mol Cell Biol. 2006;26(18):6870–6879.
  • Wang Q, Pronin AN, Levay K, et al. Regulator of G-protein signaling Gβ5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion. FASEB J. 2017;31(11):4734–4744.
  • Basak M, Das K, Mahata T, et al. RGS7-ATF3-Tip60 complex promotes hepatic steatosis and fibrosis by directly inducing TNFα. Antioxid Redox Signal. 2022;38(1–3):137–159.
  • Zhang Y, Higgins CB, Fortune HM, et al. Hepatic arginase 2 (Arg2) is sufficient to convey the therapeutic metabolic effects of fasting [research support, N I H, extramural research support, Non-U S gov’t research support, U S gov’t, Non-P H S]. Nat Commun. 2019;10(1):1587.
  • Aissani B, Wiener HW, Zhang K. Fine mapping of the body fat QTL on human chromosome 1q43. PLoS One. 2016;11(4): e0153794.
  • Aissani B, Perusse L, Lapointe G, et al. A quantitative trait locus for body fat on chromosome 1q43 in french canadians: linkage and association studies. Obesity. 2006;14(9):1605–1615.
  • Robertson RP, Harmon J, Tran POT, et al. β-Cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes. 2004;53(suppl_1):S119–S124.
  • Shimabukuro M, Zhou YT, Levi M, et al. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA. 1998;95(5):2498–2502.
  • Sargsyan E, Cen J, Roomp K, et al. Identification of early biological changes in palmitate-treated isolated human islets. BMC Genomics. 2018;19(1):018–5008.
  • Ruiz de Azua I, Scarselli M, Rosemond E, et al. RGS4 is a negative regulator of insulin release from pancreatic beta-cells in vitro and in vivo. Proc Natl Acad Sci USA. 2010;107(17):7999–8004.
  • Hu L, He F, Huang M, et al. SPARC promotes insulin secretion through down-regulation of RGS4 protein in pancreatic β cells. Sci Rep. 2020;10(1):17581.
  • Sugimoto K, Katsuya T, Kamide K, et al. Promoter polymorphism of RGS2 gene is associated with change of blood pressure in subjects with antihypertensive treatment: the azelnidipine and temocapril in hypertensive patients with type 2 diabetes study. Int J Hypertens. 2010;2010:196307.
  • Vazquez-Jimenez JG, Corpus-Navarro MS, Rodriguez-Chavez JM, et al. The increased expression of regulator of G-Protein signaling 2 (RGS2) inhibits Insulin-Induced akt phosphorylation and is associated with uncontrolled glycemia in patients with type 2 diabetes. Metabolites. 2021;11(2):91.
  • Bastin G, Luu L, Batchuluun B, et al. RGS4-Deficiency alters intracellular calcium and PKA-Mediated control of insulin secretion in Glucose-Stimulated beta islets. Biomedicines. 2021;9(8):1008.
  • Li T, Quan H, Zhang H, et al. Silencing cyclophilin a improves insulin secretion, reduces cell apoptosis, and alleviates inflammation as well as oxidant stress in high glucose-induced pancreatic β-cells via MAPK/NF-kb signaling pathway. Bioengineered. 2020;11(1):1047–1057.
  • Das S, Reddy MA, Senapati P, et al. Diabetes Mellitus-Induced long noncoding RNA Dnm3os regulates macrophage functions and inflammation via nuclear mechanisms. Arterioscler Thromb Vasc Biol. 2018;38(8):1806–1820.
  • Ebrahimi F, Sahebkar A, Aryaeian N, et al. Effects of saffron supplementation on inflammation and metabolic responses in type 2 diabetic patients: a randomized, double-blind, placebo-controlled trial. Diabetes Metab Syndr Obes. 2019;12:2107–2115.
  • Gonzalez-Moro I, Olazagoitia-Garmendia A, Colli ML, et al. The T1D-associated lncRNA Lnc13 modulates human pancreatic β cell inflammation by allele-specific stabilization of STAT1 mRNA. Proc Natl Acad Sci USA. 2020;117(16):9022–9031.
  • Wang Y, Xie T, Zhang D, et al. GPR120 protects lipotoxicity-induced pancreatic β-cell dysfunction through regulation of PDX1 expression and inhibition of islet inflammation. Clin Sci. 2019;133(1):101–116.
  • Petrovic I, Pejnovic N, Ljujic B, et al. Overexpression of galectin 3 in pancreatic β cells amplifies β-Cell apoptosis and islet inflammation in type-2 diabetes in mice. Front Endocrinol (Lausanne). 2020;11:30.
  • Zhang Y, Aisker G, Dong H, et al. Urolithin a suppresses glucolipotoxicity-induced ER stress and TXNIP/NLRP3/IL-1β inflammation signal in pancreatic β cells by regulating AMPK and autophagy. Phytomedicine. 2021;93:153741.
  • Jiang C, Wang Y, Guo M, et al. PCB118 induces inflammation of islet beta cells via activating ROS-NLRP3 inflammasome signaling. Biomed Res Int. 2021;2021:5522578.
  • Qiu A-W, Cao X, Zhang W-W, et al. IL-17A is involved in diabetic inflammatory pathogenesis by its receptor IL-17RA. Exp Biol Med (Maywood). 2021;246(1):57–65.
  • Oppenheim JJ, Zachariae COC, Mukaida N, et al. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9(1):617–648.
  • Fernandez EJ, Lolis E. Structure, function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol. 2002;42(1):469–499.
  • Lewellis SW, Knaut H. Attractive guidance: how the chemokine SDF1/CXCL12 guides different cells to different locations. Semin Cell Dev Biol. 2012;23(3):333–340.
  • Mayor R, Theveneau E. The neural crest. Development. 2013;140(11):2247–2251.
  • Tang J, Liao Z, Luo L, et al. CX3CL1-induced CD16(+) monocytes extravasation in myeloperoxidase-ANCA-associated vasculitis correlates with renal damage. Front Immunol. 2022;13:929244.
  • Bussmann J, Wolfe SA, Siekmann AF. Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling. Development (Cambridge, England). 2011;138(9):1717–1726.
  • Cha YR, Fujita M, Butler M, et al. Chemokine signaling directs trunk lymphatic network formation along the preexisting blood vasculature. Dev Cell. 2012;22(4):824–836.
  • Pennel KA, Quinn JA, Nixon C, et al. CXCL8 expression is associated with advanced stage, right sidedness, and distinct histological features of colorectal cancer. J Pathol Clin Res. 2022;25(10):290.
  • Cojoc M, Peitzsch C, Trautmann F, et al. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther. 2013;6:1347–1361.
  • Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–348.
  • Chang W, Chang Q, Lu H, et al. MicroRNA-873-5p suppresses cell malignant behaviors of thyroid cancer via targeting CXCL5 and regulating P53 pathway. Hum Vaccin Immunother. 2022;18(5):29.
  • Zhang L, Yu M, Deng J, et al. Chemokine signaling pathway involved in CCL2 expression in patients with rheumatoid arthritis. Yonsei Med J. 2015;56(4):1134–1142.
  • Yi L, Zhou Y, Song J, et al. A novel iridoid glycoside leonuride (ajugol) attenuates airway inflammation and remodeling through inhibiting type-2 high cytokine/chemokine activity in OVA-induced asthmatic mice. Phytomedicine. 2022;105(154345):154345.
  • Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity [review]. Immunity. 2000;12(2):121–127.
  • Stievano L, Piovan E, Amadori A. C and CX3C chemokines: cell sources and physiopathological implications. Crit Rev Immunol. 2004;24(3):205–228.
  • Li Q, Xu A, Chu Y, et al. Rap1A promotes esophageal squamous cell carcinoma metastasis through the AKT signaling pathway. Oncol Rep. 2019;42(5):1815–1824.
  • Sayyah J, Bartakova A, Nogal N, et al. The ras-related protein, Rap1A, mediates thrombin-stimulated, integrin-dependent glioblastoma cell proliferation and tumor growth. J Biol Chem. 2014;289(25):17689–17698.
  • Lu S, Chen L, Tang L. Upregulation of AKT1 and downregulation of AKT3 caused by dysregulation of microRNAs contributes to pathogenesis of hemangioma by promoting proliferation of endothelial cells. J Cell Physiol. 2019;234(11):21342–21351.
  • Wang L, Huang D, Jiang Z, et al. Akt3 is responsible for the survival and proliferation of embryonic stem cells. Biol Open. 2017;6(6):850–861.
  • Chen Q, Sun X, Luo X, et al. PIK3R3 inhibits cell senescence through p53/p21 signaling. Cell Death Dis. 2020;11(9):798.