993
Views
1
CrossRef citations to date
0
Altmetric
Research Article

DNA polymerase ζ suppresses the radiosensitivity of glioma cells by regulating the PI3K/AKT/mTOR pathway

, , , &
Article: 2234101 | Received 24 Feb 2023, Accepted 03 Jul 2023, Published online: 13 Jul 2023

References

  • Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1–8. doi:10.1093/neuonc/noab106
  • Lin J, Bytnar JA, Theeler BJ, et al. Survival among patients with glioma in the US military health system: a comparison with patients in the surveillance, epidemiology, and end results program. Cancer. 2020;126(13):3053–3060. doi:10.1002/cncr.32884
  • Wang TJC, Mehta MP. Low-grade glioma radiotherapy treatment and trials. Neurosurg Clin N Am. 2019;30(1):111–118. doi:10.1016/j.nec.2018.08.008
  • Mudassar F, Shen H, O'Neill G, et al. Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. J Exp Clin Cancer Res. 2020;39(1):208. doi:10.1186/s13046-020-01724-6
  • Xu S, Tang L, Li X, et al. Immunotherapy for glioma: current management and future application. Cancer Lett. 2020;476:1–12. doi:10.1016/j.canlet.2020.02.002
  • Wang Y, Liu ZG, Yuan H, et al. The reciprocity between radiotherapy and cancer immunotherapy. Clin Cancer Res. 2019;25(6):1709–1717. doi:10.1158/1078-0432.CCR-18-2581
  • Daubon T, Hemadou A, Romero Garmendia I, et al. Glioblastoma immune landscape and the potential of new immunotherapies. Front Immunol. 2020;11:585616. doi:10.3389/fimmu.2020.585616
  • Martin SK, Wood RD. DNA polymerase ζ in DNA replication and repair. Nucleic Acids Res. 2019;47(16):8348–8361. doi:10.1093/nar/gkz705
  • Ben Yamin B, Ahmed-Seghir S, Tomida J, et al. DNA polymerase zeta contributes to heterochromatin replication to prevent genome instability. EMBO J. 2021;40(21):e104543. doi:10.15252/embj.2020104543
  • Zan H, Komori A, Li Z, et al. The translesion DNA polymerase zeta plays a major role in Ig and bcl-6 somatic hypermutation. Immunity. 2001;14(5):643–653. doi:10.1016/S1074-7613(01)00142-X
  • Lange SS, Tomida J, Boulware KS, et al. The polymerase activity of mammalian DNA pol ζ is specifically required for cell and embryonic viability. PLoS Genet. 2016;12(1):e1005759. doi:10.1371/journal.pgen.1005759
  • Shilkin ES, Boldinova EO, Stolyarenko AD, et al. Translesion DNA synthesis and carcinogenesis. Biochemistry. 2020;85(4):425–435. doi:10.1134/S0006297920040033
  • Roos WP, Tsaalbi-Shtylik A, Tsaryk R, et al. The translesion polymerase Rev3L in the tolerance of alkylating anticancer drugs. Mol Pharmacol. 2009;76(4):927–934. doi:10.1124/mol.109.058131
  • Yang J, Ding W, Wang X, et al. Knockdown of DNA polymerase ζ relieved the chemoresistance of glioma via inhibiting the PI3K/AKT signaling pathway. Bioengineered. 2021;12(1):3924–3933. doi:10.1080/21655979.2021.1944027
  • Chen X, Ji R, Liu J, et al. Roles of DNA polymerase ζ in the radiotherapy sensitivity and oxidative stress of lung cancer cells. Cancer Chemother Pharmacol. 2022;89(3):313–321. doi:10.1007/s00280-021-04360-9
  • Sharma S, Canman CE. REV1 and DNA polymerase zeta in DNA interstrand crosslink repair. Environ Mol Mutagen. 2012;53(9):725–740. doi:10.1002/em.21736
  • Zan H, Shima N, Xu Z, et al. The translesion DNA polymerase theta plays a dominant role in immunoglobulin gene somatic hypermutation. EMBO J. 2005;24(21):3757–3769. doi:10.1038/sj.emboj.7600833
  • Nicolay NH, Helleday T, Sharma RA. Biological relevance of DNA polymerase β and translesion synthesis polymerases to cancer and its treatment. Curr Mol Pharmacol. 2012;5(1):54–67. doi:10.2174/1874467211205010054
  • Mohni KN, Thompson PS, Luzwick JW, et al. A synthetic lethal screen identifies DNA repair pathways that sensitize cancer cells to combined ATR inhibition and cisplatin treatments. PLOS One. 2015;10(5):e0125482. doi:10.1371/journal.pone.0125482
  • Wang W, Sheng W, Yu C, et al. REV3L modulates cisplatin sensitivity of non-small cell lung cancer H1299 cells. Oncol Rep. 2015;34(3):1460–1468. doi:10.3892/or.2015.4121
  • Lin X, Trang J, Okuda T, et al. DNA polymerase zeta accounts for the reduced cytotoxicity and enhanced mutagenicity of cisplatin in human colon carcinoma cells that have lost DNA mismatch repair. Clin Cancer Res. 2006;12(2):563–568. doi:10.1158/1078-0432.CCR-05-1380
  • Shi TY, Yang L, Yang G, et al. DNA polymerase ζ as a potential biomarker of chemoradiation resistance and poor prognosis for cervical cancer. Med Oncol. 2013;30(2):500. doi:10.1007/s12032-013-0500-4
  • Cao W, Gu Y, Meineck M, et al. The combination of chemotherapy and radiotherapy towards more efficient drug delivery. Chem Asian J. 2014;9(1):48–57. doi:10.1002/asia.201301294
  • Polivka JJr., Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–175. doi:10.1016/j.pharmthera.2013.12.004
  • Shahcheraghi SH, Tchokonte-Nana V, Lotfi M, et al. Wnt/beta-catenin and PI3K/Akt/mTOR signaling pathways in glioblastoma: two main targets for drug design: a review. Curr Pharm Des. 2020;26(15):1729–1741. doi:10.2174/1381612826666200131100630
  • Alzahrani AS. PI3K/akt/mTOR inhibitors in cancer: at the bench and bedside. Semin Cancer Biol. 2019;59:125–132. doi:10.1016/j.semcancer.2019.07.009
  • Akbarzadeh M, Mihanfar A, Akbarzadeh S, et al. Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer. Life Sci. 2021;285:119984. doi:10.1016/j.lfs.2021.119984
  • Bamodu OA, Chang HL, Ong JR, et al. Elevated PDK1 expression drives PI3K/AKT/mTOR signaling promotes radiation-resistant and dedifferentiated phenotype of hepatocellular carcinoma. Cells. 2020;9(3):746. doi:10.3390/cells9030746
  • Liu Y, Shen Y, Sun T, et al. Mechanisms regulating radiosensitivity of glioma stem cells. Neoplasma. 2017;64(5):655–665. doi:10.4149/neo_2017_502