705
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Functions of IgM fc receptor (FcµR) related to autoimmunity

, , , , , , & show all
Article: 2323563 | Received 29 Oct 2023, Accepted 20 Feb 2024, Published online: 11 Mar 2024

References

  • Kubagawa H, Oka S, Kubagawa Y, et al. Identity of the elusive IgM Fc receptor (FcμR) in humans. J Exp Med. 2009;206(12):1–9.
  • Shima H, Takatsu H, Fukuda S, et al. Identification of TOSO/FAIM3 as an Fc receptor for IgM. Int Immunol. 2010;22(3):149–156.
  • Honjo K, Kubagawa Y, Jones DM, et al. Altered Ig levels and antibody responses in mice deficient for the Fc receptor for IgM (FcµR). Proc Natl Acad Sci U S A. 2012;109(39):15882–15887.
  • Ouchida R, Mori H, Hase K, et al. Critical role of the IgM Fc receptor in IgM homeostasis, B-cell survival, and humoral immune responses. Proc Natl Acad Sci U S A. 2012;109(40):E2699–E2706.
  • Choi SC, Wang H, Tian L, et al. Mouse IgM Fc receptor, FCMR, promotes B cell development and modulates antigen-driven immune responses. J Immunol. 2013;190(3):987–996.
  • Wang H, Coligan JE, Morse HC. Emerging functions of natural IgM and its Fc receptor FCMR in immune homeostasis. Front Immunol. 2016;7:99.
  • Nguyen TTT, Kläsener K, Zürn C, et al. The IgM receptor FcµR limits tonic BCR signaling by regulating expression of the IgM BCR. Nat Immunol. 2017;18(3):321–333.
  • Yu J, Duong VHH, Westphal K, et al. Surface receptor Toso controls B cell-mediated regulation of T cell immunity. J Clin Invest. 2018;128(5):1820–1836.
  • Kubagawa H, Honjo K, Ohkura N, et al. Functional roles of the IgM Fc receptor in the immune system. Front Immunol. 2019;10:945.
  • Liu J, Wang Y, Xiong E, et al. Role of the IgM Fc receptor in immunity and tolerance. Front Immunol. 2019;10:529.
  • Nguyen XH, Lang PA, Lang KS, et al. Toso regulates the balance between apoptotic and nonapoptotic death receptor signaling by facilitating RIP1 ubiquitination. Blood. 2011;118(3):598–608.
  • Lang KS, Lang PA, Meryk A, et al. Involvement of Toso in activation of monocytes, macrophages, and granulocytes. Proc Natl Acad Sci U S A. 2013;110(7):2593–2598.
  • Rochereau N, Michaud E, Waeckel L, et al. Essential role of TOSO/FAIM3 in intestinal IgM reverse transcytosis. Cell Rep. 2021;37(7):110006.
  • Anania JC, Westin A, Adler J, et al. A novel image analysis approach reveals a role for complement receptors 1 and 2 in follicular dendritic cell organization in germinal centers. Front Immunol. 2021;12:655753.
  • Hopp CS, Sekar P, Diouf A, et al. Plasmodium falciparum-specific IgM B cells dominate in children, expand with malaria, and produce functional IgM. J Exp Med. 2021;218(4):e20200901.
  • Li Y, Shen H, Zhang R, et al. Immunoglobulin M perception by FcµR. Nature. 2023;615(7954):907–912.
  • Chen Q, Menon RP, Masino L, et al. Structural basis for Fc receptor recognition of immunoglobulin M. Nat Struct Mol Biol. 2023;30(7):1033–1039.
  • Engels N, König LM, Heemann C, et al. Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor-intrinsic costimulation to class-switched B cells. Nat Immunol. 2009;10(9):1018–1025.
  • Kubagawa H, Clark C, Skopnik CM, et al. Physiological and pathophysiological roles of IgM Fc receptor (FcµR) isoforms. Int J Mol Sci. 2023;24(6):5728.
  • Mellman I, Warren G. The road taken: past and future foundations of membrane traffic. Cell. 2000;100(1):99–112.
  • Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I- related receptor FcRn. Annu Rev Immunol. 2000;18(1):739–766.
  • Stewart WW, Kerr MA. The binding of monomeric IgA to myeloid FcαR: evidence for receptor re-cycling and determination of its affinity. Adv Exp Med Biol. 1995;371A:655–658.
  • Hashimoto K, Handa H, Umehara K, et al. Germfree mice reared on an “antigen-free” diet. Lab Anim Sci. 1978;28(1):38–45.
  • Haury M, Sundblad A, Grandien A, et al. The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur J Immunol. 1997;27(6):1557–1563.
  • Thurnheer MC, Zuercher AW, Cebra JJ, et al. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J Immunol. 2003;170(9):4564–4571.
  • Kim SJ, Gershov D, Ma X, et al. I-PLA(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J Exp Med. 2002;196(5):655–665.
  • Ehrenstein MR, Notley CA. The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol. 2010;10(11):778–786.
  • Kaetzel CS. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev. 2005;206(1):83–99.
  • Kikuno K, Kang DW, Tahara K, et al. Unusual biochemical features and follicular dendritic cell expression of human Fcα/µ receptor. Eur J Immunol. 2007;37(12):3540–3550.
  • Shimada S, Kawaguchi-Miyashita M, Kushiro A, et al. Generation of polymeric immunoglobulin receptor-deficient mouse with marked reduction of secretory IgA. J Immunol. 1999;163(10):5367–5373.
  • Honda S, Kurita N, Miyamoto A, et al. Enhanced humoral immune responses against T-independent antigens in fcα/µR-deficient mice. Proc Natl Acad Sci U S A. 2009;106(27):11230–11235.
  • Boes M, Prodeus AP, Schmidt T, et al. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J Exp Med. 1998;188(12):2381–2386.
  • Ehrenstein MR, O’Keefe TL, Davies SL, et al. Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc Natl Acad Sci U S A. 1998;95(17):10089–10093.
  • Cohen PL, Eisenberg RA. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu Rev Immunol. 1991;9(1):243–269.
  • Suda T, Nagata S. Why do defects in the Fas-Fas ligand system cause autoimmunity? J Allergy Clin Immunol. 1997;100(6 Pt 2):S97–S101.
  • Izui S, Kelley VE, Masuda K, et al. Induction of various autoantibodies by mutant gene lpr in several strains of mice. J Immunol. 1984;133(6):3010–3014.
  • Honjo H, Kubagawa Y, Suzuki Y, et al. Enhanced autoantibody and Mott cell formation in FcµR-decient autoimmune mice. Int Immunol. 2014;26(12):659–672.
  • Bolland S, Ravetch JV. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity. 2000;13(2):277–285.
  • Yajima K, Nakamura A, Sugahara A, et al. FcγRIIB deficiency with Fas mutation is sufficient for the development of systemic autoimmune disease. Eur J Immunol. 2003;33(4):1020–1029.
  • McGaha TL, Karlsson MC, Ravetch JV. FcγRIIB deficiency leads to autoimmunity and a defective response to apoptosis in mrl-MpJ mice. J Immunol. 2008;180(8):5670–5679.
  • Carlucci F, Cortes-Hernandez J, Fossati-Jimack L, et al. Genetic dissection of spontaneous autoimmunity driven by 129-derived chromosome 1 loci when expressed on C57BL/6 mice. J Immunol. 2007;178(4):2352–2360.
  • Fossati-Jimack L, Cortes-Hernandez J, Norsworthy PJ, et al. Regulation of B cell tolerance by 129-derived chromosome 1 loci in C57BL/6 mice. Arthritis Rheum. 2008;58(7):2131–2141.
  • Boross P, Arandhara VL, Martin-Ramirez J, et al. The inhibiting Fc receptor for IgG, FcγRIIB, is a modifier of autoimmune susceptibility. J Immunol. 2011;187(3):1304–1313.
  • Sato-Hayashizaki A, Ohtsuji M, Lin Q, et al. Presumptive role of 129 strain-derived Sle16 locus in rheumatoid arthritis in a new mouse model with fcγ receptor type IIb-deficient C57BL/6 genetic background. Arthritis Rheum. 2011;63(10):2930–2938.
  • Qian Y, Conway KL, Lu X, et al. Autoreactive MZ and B-1 B-cell activation by faslpr is coincident with an increased frequency of apoptotic lymphocytes and a defect in macrophage clearance. Blood. 2006;108(3):974–982.
  • Clarke SH. Anti-Sm B cell tolerance and tolerance loss in systemic lupus erythematosus. Immunol Res. 2008;41(3):203–216.
  • Kishi Y, Higuchi T, Phoon S, et al. Apoptotic marginal zone deletion of anti-Sm/ribonucleoprotein B cells. Proc Natl Acad Sci U S A. 2012;109(20):7811–7816.
  • Liu J, Zhu H, Qian J, et al. Fcµ receptor promotes the survival and activation of marginal zone B cells and protects mice against bacterial sepsis. Front Immunol. 2018;9:160.
  • Ouchida R, Lu Q, Liu J, et al. FcµR interacts and cooperates with the B cell receptor to promote B cell survival. J Immunol. 2015;194(7):3096–3101.
  • Baker N, Ehrenstein MR. Cutting edge: selection of B lymphocyte subsets is regulated by natural IgM. J Immunol. 2002;169(12):6686–6690.
  • Bangle R. A morphologic and histochemical study of cytoplasmic Russell bodies in cancer cells. Am J Pathol. 1963;43(3):437–448.
  • Alanen A, Pira U, Lassila O, et al. Mott cells are plasma cells defective in immunoglobulin secretion. Eur J Immunol. 1985;15(3):235–242.
  • Bain BJ. Russell bodies and mott cells. Am J Hematol. 2009;84(8):516–516.
  • Shultz LD, Coman DR, Lyons BL, et al. Development of plasmacytoid cells with russell bodies in autoimmune “viable motheaten” mice. Am J Pathol. 1987;127(1):38–50.
  • Maldonado JE, Brown AL, Bayrd ED, et al. Cytoplasmic and intranuclear electron-dense bodies in the myeloma cell. Arch Pathol. 1966;81(6):484–500.
  • Pizzolitto S, Camilot D, DeMaglio G, et al. Russell body gastritis: expanding the spectrum of Helicobacter pylori - related diseases? Pathol Res Pract. 2007;203(6):457–460.
  • Mahmoudi Aliabadi P, Al-Qaisi K, Jani PK, et al. Enhanced mott cell formation linked with IgM Fc receptor (FcµR) deficiency. Eur J Immunol. 2023;53(7):e2250315.
  • Honjo K, Kubagawa Y, Kearney JF, et al. Unique ligand-binding property of the human IgM Fc receptor. J Immunol. 2015;194(4):1975–1982.
  • Khan SN, Cox JV, Nishimoto SK, et al. Intra-Golgi formation of IgM-glycosaminoglycan complexes promotes Ig deposition. J Immunol. 2011;187(6):3198–3207.
  • Kopito RR, Sitia R. Aggresomes and Russell bodies. Symptoms of cellular indigestion? EMBO Rep. 2000;1(3):225–231.
  • Decourt C, Galea HR, Sirac C, et al. Immunologic basis for the rare occurrence of true nonsecretory plasma cell dyscrasias. J Leukoc Biol. 2004;76(3):528–536.
  • Mattioli L, Anelli T, Fagioli C, et al. ER storage diseases: a role for ERGIC-53 in controlling the formation and shape of Russell bodies. J Cell Sci. 2006;119(Pt 12):2532–2541.
  • Corcos D, Osborn MJ, Matheson LS, et al. Immunoglobulin aggregation leading to Russell body formation is prevented by the antibody light chain. Blood. 2010;115(2):282–288.
  • Pao LI, Lam KP, Henderson JM, et al. B cell-specific deletion of protein-tyrosine phosphatase Shp1 promotes B-1a cell development and causes systemic autoimmunity. Immunity. 2007;27(1):35–48.
  • Jiang Y, Hirose S, Hamano Y, et al. Mapping of a gene for the increased susceptibility of B1 cells to Mott cell formation in murine autoimmune disease. J Immunol. 1997;158(2):992–997.
  • Sato S, Steeber DA, Tedder TF. The CD19 signal transduction molecule is a response regulator of B-lymphocyte differentiation. Proc Natl Acad Sci U S A. 1995;92(25):11558–11562.
  • Tsitsikov EN, Gutierrez-Ramos JC, Geha RS. Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc Natl Acad Sci U S A. 1997;94(20):10844–10849.
  • Yazdani R, Fekrvand S, Shahkarami S, et al. The hyper IgM syndromes: epidemiology, pathogenesis, clinical manifestations, diagnosis and management. Clin Immunol. 2019;198:19–30.
  • Barbouche MR, Chen Q, Carbone M, et al. Comprehensive review of autoantibodies in patients with hyper-IgM syndrome. Cell Mol Immunol. 2018;15(6):610–617.
  • Chattopadhyay G, Chen Q, Colino J, et al. Intact bacteria inhibit the induction of humoral immune responses to bacterial-derived and heterologous soluble T cell-dependent antigens. J Immunol. 2009;182(4):2011–2019.
  • Posnett DN, Mouradian J, Mangraviti DJ, et al. Mott cells in a patient with a lymphoproliferative disorder. Differentiation of a clone of B lymphocytes into mott cells. Am J Med. 1984;77(1):125–130.
  • Murakami Y, Narayanan S, Su S, et al. Toso, a functional IgM receptor, is regulated by IL-2 in T and NK cells. J Immunol. 2012;189(2):587–597.
  • Kubagawa H, Oka S, Kubagawa Y, et al. The long elusive IgM Fc receptor, FcµR. J Clin Immunol. 2014;34(1):S35–S45.
  • Meryk A, Pangrazzi L, Hagen M, et al. Fcµ receptor as a costimulatory molecule for T cells. Cell Rep. 2019;26(10):2681–2691 e5.
  • Skopnik CM, Al-Qaisi K, Calvert RA, et al. Identification of amino acid residues in human IgM Fc receptor (FcµR) critical for IgM binding. Front Immunol. 2020;11:618327.
  • Kubagawa H, Skopnik CM, Al-Qaisi K, et al. Differences between human and mouse IgM Fc receptor (FcµR). Int J Mol Sci. 2021;22(13):7024.
  • Salmon JE, Millard S, Schachter LA, et al. Fc gamma RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J Clin Invest. 1996;97(5):1348–1354.
  • Wardemann H, Yurasov S, Schaefer A, et al. Predominant autoantibody production by early human B cell precursors. Science. 2003;301(5638):1374–1377.
  • Melchers F. Checkpoints that control B cell development. J Clin Invest. 2015;125(6):2203–2210.
  • Lawton AR, Cooper MD. Modification of B lymphocyte differentiation by anti-immunoglobulins. Contemp Top Immunobiol. 1974;3:193–225.
  • Healy JI, Goodnow CC. Positive versus negative signaling by lymphocyte antigen receptors. Annu Rev Immunol. 1998;16(1):645–670.
  • Nemazee D. Mechanisms of central tolerance for B cells. Nat Rev Immunol. 2017;17(5):281–294.
  • Nemazee D, Weigert M. Revising B cell receptors. J Exp Med. 2000;191(11):1813–1817.
  • Llorian M, Stamataki Z, Hill S, et al. The PI3K p110delta is required for down-regulation of RAG expression in immature B cells. J Immunol. 2007;178(4):1981–1985.
  • Verkoczy L, Duong B, Skog P, et al. Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection. J Immunol. 2007;178(10):6332–6341.
  • Srinivasan L, Sasaki Y, Calado DP, et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell. 2009;139(3):573–586.
  • Cheng S, Hsia CY, Feng B, et al. BCR-mediated apoptosis associated with negative selection of immature B cells is selectively dependent on Pten. Cell Res. 2009;19(2):196–207.
  • Benhamou D, Labi V, Novak R, et al. A c-Myc/miR17-92/Pten axis controls PI3K-mediated positive and negative selection in B cell development and reconstitutes CD19 deficiency. Cell Rep. 2016;16(2):419–431.
  • Gonzalez-Martin A, Adams BD, Lai M, et al. The microRNA miR-148a functions as a critical regulator of B cell tolerance and autoimmunity. Nat Immunol. 2016;17(4):433–440.
  • Walter JE, Rucci F, Patrizi L, et al. Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in rag-dependent immunodeficiency. J Exp Med. 2010;207(7):1541–1554.
  • Alves da Costa T, Peterson JN, Lang J, et al. Central human B cell tolerance manifests with a distinctive cell phenotype and is enforced via CXCR4 signaling in hu-mice. Proc Natl Acad Sci USA. 2021;118(16):e2021570118.
  • Wang Y, Liu J, Akatsu C, et al. LAPTM5 mediates immature B cell apoptosis and B cell tolerance by regulating the WWP2-PTEN-AKT pathway. Proc Natl Acad Sci U S A. 2022;119(36):e2205629119.
  • Ferri DM, Nassar C, Manion KP, et al. Elevated levels of interferon-α act directly on B cells to breach multiple tolerance mechanisms promoting autoantibody production. Arthritis Rheumatol. 2023;75(9):1542–1555.
  • Jani PK, Kubagawa H, Melchers F. A rheostat sets B-cell receptor repertoire selection to distinguish self from non-self. Curr Opin Immunol. 2020;67:42–49.
  • Lowenstein EJ, Daly RJ, Batzer AG, et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 1992;70(3):431–442.
  • Jang IK, Zhang J, Chiang YJ, et al. Grb2 functions at the top of the T-cell antigen receptor-induced tyrosine kinase Cascade to control thymic selection. Proc Natl Acad Sci U S A. 2010;107(23):10620–10625.
  • Yuan J, Nguyen CK, Liu X, et al. Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science. 2012;335(6073):1195–1200.
  • Copley MR, Babovic S, Benz C, et al. The Lin28b-let-7-Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat Cell Biol. 2013;15(8):916–925.
  • Zhou Y, Li YS, Bandi SR, et al. Lin28b promotes fetal B lymphopoiesis through the transcription factor Arid3a. J Exp Med. 2015;212(4):569–580.
  • Xu X, Deobagkar-Lele M, Bull KR, et al. An ontogenetic switch drives the positive and negative selection of B cells. Proc Natl Acad Sci U S A. 2020;117(7):3718–3727.
  • Rickert RC, Rajewsky K, Roes J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature. 1995;376(6538):352–355.
  • Ahearn JM, Fischer MB, Croix D, et al. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity. 1996;4(3):251–262.
  • Khan WN, Alt FW, Gerstein RM, et al. Defective B cell development and function in btk-deficient mice. Immunity. 1995;3(3):283–299.
  • Fruman DA, Satterthwaite AB, Witte ON. Xid-like phenotypes: a B cell signalosome takes shape. Immunity. 2000;13(1):1–3.
  • Suzuki H, Terauchi Y, Fujiwara M, et al. Xid-like immunodeficiency in mice with disruption of the p85alpha subunit of phosphoinositide 3-kinase. Science. 1999;283(5400):390–392.
  • Tarakhovsky A, Turner M, Schaal S, et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature. 1995;374(6521):467–470.
  • Zhang R, Alt FW, Davidson L, et al. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the Vav proto-oncogene. Nature. 1995;374(6521):470–473.
  • Wang D, Feng J, Wen R, et al. Phospholipase Cγ2 is essential in the functions of B cell and several Fc receptors. Immunity. 2000;13(1):25–35.
  • O’Keefe TL, Williams GT, Davies SL, et al. Hyperresponsive B cells in CD22-deficient mice. Science. 1996;274(5288):798–801.
  • Nakamura A, Kobayashi E, Takai T. Exacerbated graft-versus-host disease in pirb−/− mice. Nat Immunol. 2004;5(6):623–629.
  • Inaoki M, Sato S, Weintraub BC, et al. CD19-regulated signaling thresholds control peripheral tolerance and autoantibody production in B lymphocytes. J Exp Med. 1997;186(11):1923–1931.
  • Shinohara H, Kurosaki T. Negative role of TAK1 in marginal zone B-cell development incidental to NF-κB noncanonical pathway activation. Immunol Cell Biol. 2016;94(9):821–829.
  • Li S, Liu J, Min Q, et al. Kelch-like protein 14 promotes B-1a but suppresses B-1b cell development. Int Immunol. 2018;30(7):311–318.
  • Berland R, Wortis HH. Normal B-1a cell development requires B cell-intrinsic NFATc1 activity. Proc Natl Acad Sci U S A. 2003;100(23):13459–13464.
  • Masle-Farquhar E, Peters TJ, Miosge LA, et al. Uncontrolled CD21low age-associated and B1 B cell accumulation caused by failure of an EGR2/3 tolerance checkpoint. Cell Rep. 2022;38(3):110259.