959
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Animal models of neuropsychiatric systemic lupus erythematosus: deciphering the complexity and guiding therapeutic development

, &
Article: 2330387 | Received 07 Feb 2024, Accepted 10 Mar 2024, Published online: 31 Mar 2024

References

  • Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2(1):1.
  • Lisnevskaia L, Murphy G, Isenberg D. Systemic lupus erythematosus. Lancet. 2014;384(9957):1878–18.
  • Putterman C, Caricchio R, Davidson A, et al. Systemic lupus ­erythematosus. Clin Dev Immunol. 2012;2012:437282–437282.
  • Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol. 2023;19(8):491–508.
  • Aringer M, Costenbader K, Daikh D, et al. 2019 European league against rheumatism/American college of rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 2019;71(9):1400–1412.
  • Hackam DG. Translating animal research into clinical benefit. BMJ. 2007;334(7586):163–164.
  • van der Worp HB, Howells DW, Sena ES, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7(3):e1000245.
  • Moore E, Reynolds JA, Davidson A, et al. Promise and complexity of lupus mouse models. Nat Immunol. 2021;22(6):683–686.
  • Moore E, Putterman C. Are lupus animal models useful for understanding and developing new therapies for human SLE? J Autoimmun. 2020;112:102490.
  • Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach? JACC Basic Transl Sci. 2019;4(7):845–854.
  • Van Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: part 2: potential alternatives to the use of animals in preclinical trials. JACC Basic Transl Sci. 2020;5(4):387–397.
  • Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172(5):2731–2738.
  • Schwartz N, Stock AD, Putterman C. Neuropsychiatric lupus: new mechanistic insights and future treatment directions. Nat Rev Rheumatol. 2019;15(3):137–152.
  • Sarwar S, Mohamed AS, Rogers S, et al. Neuropsychiatric systemic lupus erythematosus: a 2021 update on diagnosis, management, and current challenges. Cureus. 2021;13(9):e17969.
  • Emerson JS, Gruenewald SM, Gomes L, et al. The conundrum of neuropsychiatric systemic lupus erythematosus: current and novel approaches to diagnosis. Front Neurol. 2023;14:1111769.
  • Seet D, Allameen NA, Tay SH, et al. Cognitive dysfunction in systemic lupus erythematosus: immunopathology, clinical manifestations, neuroimaging and management. Rheumatol Ther. 2021;8(2):651–679.
  • The American college of rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 1999;42(4):599–608.
  • Gulinello M, Wen J, Putterman C. Neuropsychiatric symptoms in lupus. Psychiatr Ann. 2012;42(9):322–328.
  • Kozora E, Ellison MC, West S. Reliability and validity of the proposed American college of rheumatology neuropsychological battery for systemic lupus erythematosus. Arthritis Rheum. 2004;51(5):810–818.
  • Kivity S, Agmon-Levin N, Zandman-Goddard G, et al. Neuropsychiatric lupus: a mosaic of clinical presentations. BMC Med. 2015;13(1):43.
  • Petri M, Naqibuddin M, Carson KA, et al. Brain magnetic resonance imaging in newly diagnosed systemic lupus erythematosus. J Rheumatol. 2008;35(12):2348–2354.
  • Kitagori K, Yoshifuji H, Oku T, et al. Utility of osteopontin in cerebrospinal fluid as a diagnostic marker for neuropsychiatric systemic lupus erythematosus. Lupus. 2019;28(3):414–422.
  • Hanly JG, Li Q, Su L, et al. Peripheral nervous system disease in systemic lupus erythematosus: results from an international inception cohort study. Arthritis Rheumatol. 2020;72(1):67–77.
  • Bortoluzzi A, Piga M, Silvagni E, et al. Peripheral nervous system involvement in systemic lupus erythematosus: a retrospective study on prevalence, associated factors and outcome. Lupus. 2019;28(4):465–474.
  • Cryan JF, Slattery DA. Animal models of mood disorders: recent developments. Curr Opin Psychiatry. 2007;20(1):1–7.
  • Beyer DKE, Freund N. Animal models for bipolar disorder: from bedside to the cage. Int J Bipolar Disord. 2017;5(1):35.
  • Yu C-Y, Kuo C-F, Chou I-J, et al. Comorbidities of systemic lupus erythematosus prior to and following diagnosis in different age-at-onset groups. Lupus. 2022;31(8):963–973.
  • Samuels H, et al. Autoimmune disease classification based on PubMed text mining. J Clin Med. 2022;11(15):4345.
  • Rees F, Doherty M, Grainge M, et al. Burden of comorbidity in systemic lupus erythematosus in the UK, 1999-2012. Arthritis Care Res (Hoboken). 2016;68(6):819–827.
  • Abbott NJ, Mendonça LLF, Dolman DEM. The blood-brain barrier in systemic lupus erythematosus. Lupus. 2003;12(12):908–915.
  • Chi JM. Alterations in blood-brain barrier permeability in patients with systemic lupus erythematosus. AJNR Am J Neuroradiol. 2019;40(3):470–477.
  • Wang X, Ma L, Luo Y, et al. Increasing of blood brain barrier permeability and the association with depression and anxiety in systemic lupus erythematosus patients. Front Med (Lausanne). 2022;9:852835.
  • Sidor MM, Sakic B, Malinowski PM, et al. Elevated immunoglobulin levels in the cerebrospinal fluid from lupus-prone mice. J Neuroimmunol. 2005;165(1-2):104–113.
  • Jacob A, Hack B, Chiang E, et al. C5a alters blood-brain barrier integrity in experimental lupus. FASEB J. 2010;24(6):1682–1688.
  • Nikolopoulos D, Manolakou T, Polissidis A, et al. Microglia activation in the presence of intact blood-brain barrier and disruption of hippocampal neurogenesis via IL-6 and IL-18 mediate early diffuse neuropsychiatric lupus. Ann Rheum Dis. 2023;82(5):646–657.
  • Stock AD, Gelb S, Pasternak O, et al. The blood brain barrier and neuropsychiatric lupus: new perspectives in light of advances in understanding the neuroimmune interface. Autoimmun Rev. 2017;16(6):612–619.
  • Solár P, Zamani A, Kubíčková L, et al. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020;17(1):35.
  • Gueye M, Preziosa P, Ramirez GA, et al. Choroid plexus and perivascular space enlargement in neuropsychiatric systemic ­lupus erythematosus. Mol Psychiatry. 2023.
  • Gelb S, Stock AD, Anzi S, et al. Mechanisms of neuropsychiatric lupus: the relative roles of the blood-cerebrospinal fluid barrier versus blood-brain barrier. J Autoimmun. 2018;91:34–44.
  • Greek R, Menache A. Systematic reviews of animal models: methodology versus epistemology. Int J Med Sci. 2013;10(3):206–221.
  • Bielschowsky M, Helyer BJ, Howie JB. Spontaneous hemolytic anemia in mice of the NZB/BL strain. Proceedings of the University of Otago Medical School; 1959. p. 9–11.
  • Helyer BJ, Howie JB. Positive lupus erythematosus tests in a Cross-Bred strain of mice NZB/BL-NZY/BL. Proceedings of the University of Otago Medical School; 1961. p. 3–4.
  • Helyer BJ, Howie JB. Renal disease associated with positive lupus erythematosus tests in a cross-bred strain of mice. Nature. 1963;197(4863):197–197.
  • Dubois EL. NZB/NZW mice as a model of systemic lupus ­erythematosus. JAMA. 1966;195(4):285–289.
  • Putterman C, Naparstek Y. Murine models of spontaneous systemic lupus erythematosus. In: Cohen IR, editor. Autoimmune disease models. Cambridge: Academic Press; 1994. p. 217–243.
  • Richard ML, Gilkeson G. Mouse models of lupus: what they tell us and what they don’t. Lupus Sci Med. 2018;5(1):e000199.
  • Schrott LM, Crnic LS. Increased anxiety behaviors in autoimmune mice. Behav Neurosci. 1996;110(3):492–502.
  • Zeng J, Meng X, Zhou P, et al. Interferon-alpha exacerbates neuropsychiatric phenotypes in lupus-prone mice. Arthritis Res Ther. 2019;21(1):205.
  • Kier AB. Clinical neurology and brain histopathology in NZB/NZW F1 lupus mice. J Comp Pathol. 1990;102(2):165–177.
  • Graïc J-M, Finos L, Vadori V, et al. Cytoarchitectureal changes in hippocampal subregions of the NZB/W F1 mouse model of ­lupus. Brain Behav Immun Health. 2023;32:100662.
  • Howard MW, Eichenbaum H. Time and space in the hippocampus. Brain Res. 2015;1621:345–354.
  • Umbach G, Kantak P, Jacobs J, et al. Time cells in the human hippocampus and entorhinal cortex support episodic memory. Proc Natl Acad Sci U S A. 2020;117(45):28463–28474.
  • Barraclough M, McKie S, Parker B, et al. Altered cognitive function in systemic lupus erythematosus and associations with ­inflammation and functional and structural brain changes. Ann Rheum Dis. 2019;78(7):934–940.
  • Jacob CO, van der Meide PH, McDevitt HO. In vivo treatment of (NZB X NZW)F1 lupus-like nephritis with monoclonal antibody to gamma interferon. J Exp Med. 1987;166(3):798–803.
  • Wang Y, Hu Q, Madri JA, et al. Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc Natl Acad Sci U S A. 1996;93(16):8563–8568.
  • Murakami Y, Fukui R, Tanaka R, et al. Anti-TLR7 antibody protects against lupus nephritis in NZBWF1 mice by targeting B cells and patrolling monocytes. Front Immunol. 2021;12:777197.
  • Hang LM, Izui S, Dixon FJ. (NZW x BXSB)F1 hybrid. A model of acute lupus and coronary vascular disease with myocardial infarction. J Exp Med. 1981;154(1):216–221.
  • Arabo A, Costa O, Tron F, et al. Spatial and motor abilities during the course of autoimmune disease in (NZW x BXSB)F1 lupus-prone mice. Behav Brain Res. 2005;165(1):126–137.
  • Almizraq RJ, Frias Boligan K, Loriamini M, et al. NZW x BXSB) F1 male mice: an unusual, severe and fatal mouse model of lupus erythematosus. Front Immunol. 2022;13:977698.
  • Olsen CT, Gabrielsen AE. Early complement components in NZB/NZW mice. I. The first component. J Immunol. 1979;122(1):133–135.
  • Rudofsky UH, Lawrence DA. New Zealand mixed mice: a genetic systemic lupus erythematosus model for assessing environmental effects. Environ Health Perspect. 1999;107(Suppl 5):713–721.
  • Lawrence DA, Bolivar VJ, Hudson CA, et al. Antibody induction of lupus-like neuropsychiatric manifestations. J Neuroimmunol. 2007;182(1-2):185–194.
  • Gulinello M, Putterman C. The MRL/lpr mouse strain as a model for neuropsychiatric systemic lupus erythematosus. J Biomed Biotechnol. 2011;2011:1–15.
  • Sakic B, Szechtman H, Talangbayan H, et al. Behavior and immune status of MRL mice in the postweaning period. Brain Behav Immun. 1994;8(1):1–13.
  • Hess DC, et al. Cognitive and neurologic deficits in the MRL/lpr mouse: a clinicopathologic study. J Rheumatol. 1993;20(4):610–617.
  • Guan X, Wang J. Cognitive impairment of MRL mice is related to NMDA receptor-mediated inflammatory response and production of adhesion molecules in MRL/lpr mice-derived micro-vascular endothelial cells. Folia Neuropathol. 2023;61(1):25–36.
  • Ni J, Liu X, Zhang R, et al. Systemic administration of shikonin ameliorates cognitive impairment and neuron damage in NPSLE mice. J Neuroimmunol. 2023;382:578166.
  • Gao H-X, Campbell SR, Cui M-H, et al. Depression is an early disease manifestation in lupus-prone MRL/lpr mice. J Neuroimmunol. 2009;207(1-2):45–56.
  • Gao H-X, Sanders E, Tieng AT, et al. Sex and autoantibody titers determine the development of neuropsychiatric manifestations in lupus-prone mice. J Neuroimmunol. 2010;229(1-2):112–122.
  • Li Y, Eskelund AR, Zhou H, et al. Behavioral deficits are accompanied by immunological and neurochemical changes in a mouse model for neuropsychiatric lupus (NP-SLE). Int J Mol Sci. 2015;16(7):15150–15171.
  • Sakic B, Lacosta S, Denburg JA, et al. Altered neurotransmission in brains of autoimmune mice: pharmacological and neurochemical evidence. J Neuroimmunol. 2002;129(1-2):84–96.
  • Lu F, Lu H, Xie M, et al. Limited preventive effect of prednisone on neuropsychiatric symptoms in murine systemic lupus erythematosus. Inflammopharmacology. 2019;27(3):511–520.
  • Wang Y, Ren Y, Hong T, et al. Lipidomics changes in a murine model of neuropsychiatric lupus. J Inflamm Res. 2022;15:6569–6580.
  • Sakic B, Szechtman H, Talangbayan H, et al. Disturbed emotionality in autoimmune MRL-lpr mice. Physiol Behav. 1994;56(3):609–617.
  • Han X, Xu T, Ding C, et al. Neuronal NR4A1 deficiency drives complement-coordinated synaptic stripping by microglia in a mouse model of lupus. Signal Transduct Target Ther. 2022;7(1):50.
  • Nielsen DM, Crnic LS. Elevated plus maze behavior, auditory startle response, and shock sensitivity in predisease and in early stage autoimmune disease MRL/lpr mice. Brain Behav Immun. 2002;16(1):46–61.
  • Sakic B, Szechtman H, Braciak T, et al. Reduced preference for sucrose in autoimmune mice: a possible role of interleukin-6. Brain Res Bull. 1997;44(2):155–165.
  • Sakic B, Denburg JA, Denburg SD, et al. Blunted sensitivity to sucrose in autoimmune MRL-lpr mice: a curve-shift study. Brain Res Bull. 1996;41(5):305–311.
  • Stock AD, Wen J, Doerner J, et al. Neuropsychiatric systemic lupus erythematosus persists despite attenuation of systemic disease in MRL/lpr mice. J Neuroinflamm. 2015;12(1):205.
  • Murphy ED, Roths JB. A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation. Arthritis Rheum. 1979;22(11):1188–1194.
  • McPhee CG, Bubier JA, Sproule TJ, et al. IL-21 is a double-edged sword in the systemic lupus erythematosus-like disease of BXSB.Yaa mice. J Immunol. 2013;191(9):4581–4588.
  • Bubier JA, Sproule TJ, Foreman O, et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc Natl Acad Sci U S A. 2009;106(5):1518–1523.
  • Hyde LA, Hoplight BJ, Harding S, et al. Effects of ectopias and their cortical location on several measures of learning in BXSB mice. Dev Psychobiol. 2001;39(4):286–300.
  • Galaburda AM, Sherman GF, Rosen GD, et al. Developmental dyslexia: four consecutive patients with cortical anomalies. Ann Neurol. 1985;18(2):222–233.
  • Lahita RG. Systemic lupus erythematosus: learning disability in the male offspring of female patients and relationship to laterality. Psychoneuroendocrinology. 1988;13(5):385–396.
  • Yousef Yengej FA, van Royen-Kerkhof A, Derksen RHWM, et al. The development of offspring from mothers with systemic lupus erythematosus. A systematic review. Autoimmun Rev. 2017;16(7):701–711.
  • Boehm GW, Sherman GF, Hoplight BJ, et al. Learning and memory in the autoimmune BXSB mouse: effects of neocortical ectopias and environmental enrichment. Brain Res. 1996;726(1-2):11–22.
  • Arabo A, Costa O, Dubois M, et al. Effects of systemic lupus erythematosus on spatial cognition and cerebral regional metabolic reactivity in BxSB lupus-prone mice. Neuroscience. 2005;135(3):691–702.
  • Hyde LA, Sherman GF, Hoplight BJ, et al. Working memory deficits in BXSB mice with neocortical ectopias. Physiol Behav. 2000;70(1-2):1–5.
  • Crispín JC, Vargas-Rojas MI, Monsiváis-Urenda A, et al. Phenotype and function of dendritic cells of patients with systemic lupus erythematosus. Clin Immunol. 2012;143(1):45–50.
  • Blanco P, Palucka AK, Gill M, et al. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science. 2001;294(5546):1540–1543.
  • Cuda CM, Misharin AV, Gierut AK, et al. Caspase-8 acts as a molecular rheostat to limit RIPK1- and MyD88-mediated dendritic cell activation. J Immunol. 2014;192(12):5548–5560.
  • Makinde HM, Winter DR, Procissi D, et al. A novel Microglia-Specific transcriptional signature correlates with behaviora l deficits in neuropsychiatric lupus. Front Immunol. 2020;11:230.
  • Appenzeller S, Cendes F, Costallat LT. Cerebellar ataxia in systemic lupus erythematosus. Lupus. 2008;17(12):1122–1126.
  • Smith RW, Ellison DW, Jenkins EA, et al. Cerebellum and brainstem vasculopathy in systemic lupus erythematosus: two clinico-pathological cases. Ann Rheum Dis. 1994;53(5):327–330.
  • Al-Arfaj HF, Naddaf HO. Cerebellar atrophy in systemic lupus erythematosus. Lupus. 1995;4(5):412–414.
  • Kutlubaev MA, Idrisova RF, Zakirova EN, et al. Cerebellar ataxia as a first manifestation of systemic lupus erythematosus. Acta Neurol Belg. 2020;120(5):1241–1243.
  • Correa MA, Borrego A, Jensen JR, et al. Mice selected for acute inflammation present altered immune response during pristane-induced arthritis progression. Biomed Res Int. 2018;2018:1267038–1267010.
  • Satoh M, Reeves WH. Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane. J Exp Med. 1994;180(6):2341–2346.
  • Reeves WH, Lee PY, Weinstein JS, et al. Induction of autoimmunity by pristane and other naturally occurring hydrocarbons. Trends Immunol. 2009;30(9):455–464.
  • Han S, Zhuang H, Xu Y, et al. Maintenance of autoantibody production in pristane-induced murine lupus. Arthritis Res Ther. 2015;17(1):384.
  • Devarapu SK, et al. Cellular and molecular mechanisms of autoimmunity and lupus nephritis. Int Rev Cell Mol Biol. 2017;332:43–154.
  • Yun Y, Wang X, Xu J, et al. Pristane induced lupus mice as a model for neuropsychiatric lupus (NPSLE). Behav Brain Funct. 2023;19(1):3.
  • Luciano-Jaramillo J, Sandoval-García F, Vázquez-Del Mercado M, et al. Downregulation of hippocampal NR2A/2B subunits related to cognitive impairment in a pristane-induced lupus BALB/c mice. PLoS One. 2019;14(9):e0217190.
  • Guo Q, Zhang L, Yaron JR, et al. Preclinical testing of viral therapeutic efficacy in pristane-induced lupus nephritis and diffuse alveolar hemorrhage mouse models. Methods Mol Biol. 2021;2225:241–255.
  • Monneaux F, Muller S. Epitope spreading in systemic lupus erythematosus: identification of triggering peptide sequences. Arthritis Rheum. 2002;46(6):1430–1438.
  • Scofield RH, James JA. Immunization as a model for systemic lupus erythematosus. Semin Arthritis Rheum. 1999;29(3):140–147.
  • Qiao B, Wu J, Chu YW, et al. Induction of systemic lupus erythematosus-like syndrome in syngeneic mice by immunization with activated lymphocyte-derived DNA. Rheumatology (Oxford). 2005;44(9):1108–1114.
  • Mendlovic S, Brocke S, Shoenfeld Y, et al. Induction of a systemic lupus erythematosus-like disease in mice by a common human anti-DNA idiotype. Proc Natl Acad Sci U S A. 1988;85(7):2260–2264.
  • Nestor J, et al. Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. J Exp Med. 2018;215(10):2554–2566.
  • Putterman C, Diamond B. Immunization with a peptide surrogate for double-stranded DNA (dsDNA) induces autoantibody production and renal immunoglobulin deposition. J Exp Med. 1998;188(1):29–38.
  • Chang EH, Volpe BT, Mackay M, et al. Selective impairment of spatial cognition caused by autoantibodies to the N-Methyl-D-Aspartate receptor. EBioMedicine. 2015;2(7):755–764.
  • Bortoluzzi A, Silvagni E, Furini F, et al. Peripheral nervous system involvement in systemic lupus erythematosus: a review of the evidence. Clin Exp Rheumatol. 2019;37(1):146–155.
  • Jasmin R, Sockalingam S, Ramanaidu LP, et al. Clinical and electrophysiological characteristics of symmetric polyneuropathy in a cohort of systemic lupus erythematosus patients. Lupus. 2015;24(3):248–255.
  • Xianbin W, Mingyu W, Dong X, et al. Peripheral neuropathies due to systemic lupus erythematosus in China. Medicine (Baltimore). 2015;94(11):e625.),
  • Yan X, Maixner DW, Li F, et al. Chronic pain and impaired ­glial glutamate transporter function in lupus-prone mice are ameliorated by blocking macrophage colony-stimulating factor-1 ­receptors. J Neurochem. 2017;140(6):963–976.
  • Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32(1):77–88.
  • Graur D, Duret L, Gouy M. Phylogenetic position of the order lagomorpha (rabbits, hares and allies). Nature. 1996;379(6563):333–335.
  • de Almeida da Anunciação AR, Favaron PO, de Morais-Pinto L, et al. Central nervous system development in rabbits (oryctolagus cuniculus L. 1758). Anat Rec (Hoboken). 2021;304(6):1313–1328.
  • Mage RG, Esteves PJ, Rader C. Rabbit models of human diseases for diagnostics and therapeutics development. Dev Comp Immunol. 2019;92:99–104.
  • Puliyath N, Ray S, Milton J, et al. Genetic contributions to the autoantibody profile in a rabbit model of systemic lupus erythematosus (SLE). Vet Immunol Immunopathol. 2008;125(3-4):251–267.
  • James JA, Gross T, Scofield RH, et al. Immunoglobulin epitope spreading and autoimmune disease after peptide immunization: sm B/B’-derived PPPGMRPP and PPPGIRGP induce spliceosome autoimmunity. J Exp Med. 1995;181(2):453–461.
  • Rai G, Ray S, Milton J, et al. Gene expression profiles in a rabbit model of systemic lupus erythematosus autoantibody production. J Immunol. 2010;185(7):4446–4456.
  • Yang J, Pospisil R, Ray S, et al. Investigations of a rabbit (oryctolagus cuniculus) model of systemic lupus erythematosus (SLE), BAFF and its receptors. PLoS One. 2009;4(12):e8494.
  • Mage RG, Rai G. A rabbit model of systemic lupus erythematosus, useful for studies of neuropsychiatric SLE. In: Almoallim H, editor. Systemic lupus erythematosus. London: IntechOpen Limited; 2012. p. 201–2016.
  • Weiss C, Disterhoft JF. Eyeblink conditioning and novel object recognition in the rabbit: behavioral paradigms for assaying psychiatric diseases. Front Psychiatry. 2015;6:142.
  • Weiss C, Procissi D, Power JM, et al. The rabbit as a behavioral model system for magnetic resonance imaging. J Neurosci Methods. 2018;300:196–205.
  • Salcini C, Baştan B, Sunter G, et al. Brainstem reflexes in systemic lupus erythematosus patients without clinical neurological manifestations. Noro Psikiyatr Ars. 2017;54(1):78–81.
  • Fan J, Chen Y, Yan H, et al. Principles and applications of rabbit models for atherosclerosis research. J Atheroscler Thromb. 2018;25(3):213–220.
  • Shen H, Yang Z, Rodrigues AD. Cynomolgus monkey as an emerging animal model to study drug transporters: in vitro, in vivo, in vitro-to-in vivo translation. Drug Metab Dispos. 2022;50(3):299–319.
  • Wang J, et al. Characterization of a PRISTANE-induced lupus-associated model in the non-human primate cynomolgus monkey. J Med Primatol. 2018;47(1):18–28.
  • Lewis RM, Schwartz R, Henry WB.Jr. Canine systemic lupus erythematosus. Blood. 1965;25(2):143–160.
  • Choi E, Shin I, Youn H, et al. Development of canine systemic lupus erythematosus model. J Vet Med A Physiol Pathol Clin Med. 2004;51(7-8):375–383.
  • Halliwell RE. Autoimmune diseases in domestic animals. J Am Vet Med Assoc. 1982;181(10):1088–1096.
  • Shanley KJ. Lupus erythematosus in small animals. Clin Dermatol. 1985;3(3):131–138.
  • Slauson DO, Russell SW, Schechter RD. Naturally occurring immune-complex glomerulonephritis in the cat. J Pathol. 1971;103(2):131–133.
  • Powell RJ, Jones DR. Can man’s best friend provide clues to the aetiology of systemic lupus erythematosus? Ann Rheum Dis. 1992;51(7):833–834.
  • McKinney WT, Jr., Bunney WE.Jr. Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry. 1969;21(2):240–248.
  • Willner P. The validity of animal models of depression. Psychopharmacology (Berl). 1984;83(1):1–16.
  • Geyer MA, Markou A. Animal models of psychiatric disorders, in psychophamacology: the fourth generation of progress. In: Bloom FE and Kupfer DJ, editors. New York: Raven Press; 2000. p. 787–798.
  • Hoffman KL. Modeling neuropsychiatric disorders in laboratory animals. Sawston, Cambridge: Woodhead Publishing; 2015.
  • Belzung C, Lemoine M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol Mood Anxiety Disord. 2011;1(1):9.
  • Hollander JA, Cory-Slechta DA, Jacka FN, et al. Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease. Neuropsychopharmacology. 2020;45(7):1086–1096.
  • Schmitt A, Malchow B, Hasan A, et al. The impact of environmental factors in severe psychiatric disorders. Front Neurosci. 2014;8:19.
  • van Vollenhoven R, Askanase AD, Bomback AS, et al. Conceptual framework for defining disease modification in systemic lupus erythematosus: a call for formal criteria. Lupus Sci Med. 2022;9(1):e000634.
  • Lorenzo-Vizcaya A, Isenberg DA. Clinical trials in systemic lupus erythematosus: the dilemma-Why have phase III trials failed to confirm the promising results of phase II trials? Ann Rheum Dis. 2023;82(2):169–174.
  • Casey TP. Immunosuppression by cyclophosphamide in NZB X NZW mice with lupus nephritis. Blood. 1968;32(3):436–444.
  • Shiraki M, Fujiwara M, Tomura S. Long term administration of cyclophosphamide in MRL/1 mice. I. The effects on the development of immunological abnormalities and lupus nephritis. Clin Exp Immunol. 1984;55(2):333–339.
  • Horowitz RE, et al. Cyclophosphamide treatment of mouse systemic lupus erythematosus. Lab Invest. 1969;21(3):199–206.
  • Macanovic M, Sinicropi D, Shak S, et al. The treatment of systemic lupus erythematosus (SLE) in NZB/W F1 hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin Exp Immunol. 1996;106(2):243–252.
  • Shen C, Xue X, Zhang X, et al. Dexamethasone reduces autoantibody levels in MRL/lpr mice by inhibiting TFH cell responses. J Cell Mol Med. 2021;25(17):8329–8337.
  • Ramos MA, Piñera C, Setién MA, et al. Modulation of autoantibody production by mycophenolate mofetil: effects on the development of SLE in (NZB x NZW)F1 mice. Nephrol Dial Transplant. 2003;18(5):878–883.
  • McMurray RW, Elbourne KB, Lagoo A, et al. Mycophenolate mofetil suppresses autoimmunity and mortality in the female NZB x NZW F1 mouse model of systemic lupus erythematosus. J Rheumatol. 1998;25(12):2364–2370.
  • Lui SL, Tsang R, Wong D, et al. Effect of mycophenolate mofetil on severity of nephritis and nitric oxide production in lupus-prone MRL/lpr mice. Lupus. 2002;11(7):411–418.
  • Ginzler EM, Dooley MA, Aranow C, et al. Mycophenolate mofetil or intravenous cyclophosphamide for lupus nephritis. N Engl J Med. 2005;353(21):2219–2228.
  • Appel GB, Contreras G, Dooley MA, et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of ­lupus nephritis. J Am Soc Nephrol. 2009;20(5):1103–1112.
  • Piali L, et al. Cenerimod, a novel selective S1P(1) receptor modulator with unique signaling properties. Pharmacol Res Perspect. 2017;5(6):e00370.
  • Strasser DS, Froidevaux S, Sippel V, et al. Preclinical to clinical translation of cenerimod, a novel S1P(1) receptor modulator, in systemic lupus erythematosus. RMD Open. 2020;6(2):e001261.
  • Hermann V, Batalov A, Smakotina S, et al. First use of cenerimod, a selective S1P(1) receptor modulator, for the treatment of SLE: a double-blind, randomised, placebo-controlled, proof-of-concept study. Lupus Sci Med. 2019;6(1):e000354.
  • Perel P, Roberts I, Sena E, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ. 2007;334(7586):197.
  • Macleod M. Why animal research needs to improve. Nature. 2011;477(7366):511–511.
  • Andrade D, Redecha PB, Vukelic M, et al. Engraftment of peripheral blood mononuclear cells from systemic lupus erythematosus and antiphospholipid syndrome patient donors into BALB-RAG-2-/- IL-2Rgamma-/- mice: a promising model for studying human disease. Arthritis Rheum. 2011;63(9):2764–2773.
  • Moore RE, Kirwan J, Doherty MK, et al. Biomarker discovery in animal health and disease: the application of post-genomic technologies. Biomark Insights. 2007;2:117727190700200.
  • Liu S, Cheng Y, Zhao Y, et al. Hippocampal atrophy in systemic lupus erythematosus patients without major neuropsychiatric manifestations. J Immunol Res. 2020;2020:2943848–2943847.
  • Appenzeller S, Carnevalle AD, Li LM, et al. Hippocampal atrophy in systemic lupus erythematosus. Ann Rheum Dis. 2006;65(12):1585–1589.
  • Emmer BJ, van der Grond J, Steup-Beekman GM, et al. Selective involvement of the amygdala in systemic lupus erythematosus. PLoS Med. 2006;3(12):e499.
  • Huerta PT, Kowal C, DeGiorgio LA, et al. Immunity and behavior: antibodies alter emotion. Proc Natl Acad Sci U S A. 2006;103(3):678–683.
  • Wu, Bei-Bei, Ma, Ye, Xie, Lei, et al. Impaired decision-making and functional neuronal network activity in systemic lupus erythematosus. J Magn Reson Imaging, 2018;48(6):1508–1517.
  • Barnes CA. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979;93(1):74–104.
  • Pitts MW. Barnes maze procedure for spatial learning and memory in mice. Bio Protoc. 2018;8(5):e2744.
  • Negrón-Oyarzo I, Espinosa N, Aguilar-Rivera M, et al. Coordinated prefrontal-hippocampal activity and navigation strategy-related prefrontal firing during spatial memory formation. Proc Natl Acad Sci USA. 2018;115(27):7123–7128.
  • Harrison FE, Hosseini AH, McDonald MP. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behav Brain Res. 2009;198(1):247–251.
  • Rodríguez Peris L, Scheuber MI, Shan H, et al. Barnes maze test for spatial memory: a new, sensitive scoring system for mouse search strategies. Behav Brain Res. 2024;458:114730.
  • Hayakawa K, Fujishiro M, Yoshida Y, et al. Exposure of female NZBWF1 mice to imiquimod-induced lupus nephritis at an early age via a unique mechanism that differed from spontaneous onset. Clin Exp Immunol. 2022;208(1):33–46.
  • Hemmi H, Kaisho T, Takeuchi O, et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol. 2002;3(2):196–200.
  • Kadowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med. 2001;194(6):863–869.
  • Souyris M, Cenac C, Azar P, et al. TLR7 escapes X chromosome inactivation in immune cells. Sci Immunol. 2018;3(19):eaap8855.
  • Liu W, Li M, Wang Z, et al. IFN-gamma mediates the development of systemic lupus erythematosus. Biomed Res Int. 2020;2020:7176515.
  • Hein WR, Griebel PJ. A road less travelled: large animal models in immunological research. Nat Rev Immunol. 2003;3(1):79–84.
  • Ballok DA, Woulfe J, Sur M, et al. Hippocampal damage in mouse and human forms of systemic autoimmune disease. Hippocampus. 2004;14(5):649–661.
  • Sakic B, et al. Progressive atrophy of pyramidal neuron dendrites in autoimmune MRL-lpr mice. J Neuroimmunol. 1998;87(1-2):162–170.
  • Sherman GF, Galaburda AM, Behan PO, et al. Neuroanatomical anomalies in autoimmune mice. Acta Neuropathol. 1987;74(3):239–242.
  • Sakic B, Kolb B, Whishaw IQ, et al. Immunosuppression prevents neuronal atrophy in lupus-prone mice: evidence for brain damage induced by autoimmune disease? J Neuroimmunol. 2000;111(1-2):93–101.
  • Spencer DG, Humphries K, Mathis D, Jr., et al. Behavioral impairments related to cognitive dysfunction in the autoimmune New Zealand black mouse. Behav Neurosci. 1986;100(3):353–358.,
  • Wright JW, Alt JA, Turner GD, et al. Differences in spatial learning comparing transgenic p75 knockout, New Zealand black, C57BL/6, and Swiss webster mice. Behav Brain Res. 2004;153(2):453–458.
  • Vogelweid CM, Wright DC, Johnson JC, et al. Evaluation of memory, learning ability, and clinical neurologic function in pathogen-free mice with systemic lupus erythematosus. Arthritis Rheum. 1994;37(6):889–897.
  • Jaramillo JL, et al. Alterations in memory and visio-spatial learning in a pristane-induced lupus balb/c mice. Ann Rheum Dis. 2018;77(Suppl 2):677–677.
  • Nagata W, Koizumi A, Nakagawa K, et al. Treatment with lysophosphatidic acid prevents microglial activation and depression-like behaviours in a murine model of neuropsychiatric systemic lupus erythematosus. Clin Exp Immunol. 2023;212(2):81–92.
  • Aki B, Szechtman H, Denburg S, et al. Immunosuppressive treatment prevents behavioral deficit in autoimmune MRL-lpr mice. Physiol Behav. 1995;58(4):797–802.
  • Wang S, Zhao X, Qiao Z, et al. Paeoniflorin attenuates depressive behaviors in systemic lupus erythematosus mice. Biomed Pharmacother. 2018;103:248–252.